1
|
Li X, Bond T, Tan X, Yang H, Chen Y, Jin B, Chen B. Dissolved inorganic nitrogen as an overlooked precursor of nitrogenous disinfection byproducts - A critical review. WATER RESEARCH 2024; 268:122654. [PMID: 39490092 DOI: 10.1016/j.watres.2024.122654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Aquatic nitrogenous compounds can be classified as dissolved organic nitrogen (DON) and dissolved inorganic nitrogen (DIN), including ammonia, nitrite, nitrate, and inorganic chloramines. The occurrence of nitrogenous disinfection byproducts (N-DBPs) in water, such as haloacetonitriles (HANs), halonitromethanes (HNMs), haloacaetamides (HAcAms), and nitrosamines (NAs), has attracted considerable attention due to their higher toxicity than regulated carbonaceous analogues. While numerous studies have investigated the contributions of DON to N-DBP formation, relatively fewer studies have explored DIN as N-DBP precursors, although DINs are sometimes evaluated as influencing factors. Through a literature review and data mining, this study delves into the existing body of evidence that analyze the contributions of different forms of DIN to N-DBP generation. The results showed that ammonia and nitrite can enhance trichloronitromethane (TCNM) and nitrodimethylamine (NDMA) formation in conventional chlorination and chloramination processes, nitrate can promote HNM formation in ultraviolet-based processes, and monochloramine can increase HAN, HAcAm, HNM, and NDMA formation in most disinfection scenarios. Notably, some experiments demonstrated that the yields of dichloroacetonitrile (DCAN) and TCNM can be higher from reactions involving nitrogen-free organic precursors and DIN than those involving DON and nitrogen-free disinfectant, suggesting that the relative importance of DON and DIN in forming N-DBP in real water remains unresolved. These insights thus underscore DIN as a non-negligible precursor in N-DBP formation and call for more attention to water management strategies for DIN.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Tom Bond
- School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Xiaoyu Tan
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Haolin Yang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yuheng Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bingbing Jin
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Liu X, Akay C, Köpke J, Kümmel S, Richnow HH, Imfeld G. Direct Phototransformation of Sulfamethoxazole Characterized by Four-Dimensional Element Compound Specific Isotope Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10322-10333. [PMID: 38822809 DOI: 10.1021/acs.est.4c02666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
The antibiotic sulfamethoxazole (SMX) undergoes direct phototransformation by sunlight, constituting a notable dissipation process in the environment. SMX exists in both neutral and anionic forms, depending on the pH conditions. To discern the direct photodegradation of SMX at various pH levels and differentiate it from other transformation processes, we conducted phototransformation of SMX under simulated sunlight at pH 7 and 3, employing both transformation product (TP) and compound-specific stable isotope analyses. At pH 7, the primary TPs were sulfanilic acid and 3A5MI, followed by sulfanilamide and (5-methylisoxazol-3-yl)-sulfamate, whereas at pH 3, a photoisomer was the dominant product, followed by sulfanilic acid and 3A5MI. Isotope fractionation patterns revealed normal 13C, 34S, and inverse 15N isotope fractionation, which exhibited significant differences between pH 7 and 3. This indicates a pH-dependent transformation process in SMX direct phototransformation. The hydrogen isotopic composition of SMX remained stable during direct phototransformation at both pH levels. Moreover, there was no variation observed in 33S between the two pH levels, indicating that the 33S mass-independent process remains unaffected by changes in pH. The analysis of main TPs and single-element isotopic fractionation suggests varying combinations of bond cleavages at different pH values, resulting in distinct patterns of isotopic fractionation. Conversely, dual-element isotope values at different pH levels did not significantly differ, indicating cleavage of several bonds in parallel. Hence, prudent interpretation of dual-element isotope analysis in these systems is warranted. These findings highlight the potential of multielement compound-specific isotope analysis in characterizing pH-dependent direct phototransformation of SMX, thereby facilitating the evaluation of its natural attenuation through sunlight photolysis in the environment.
Collapse
Affiliation(s)
- Xiao Liu
- Institut Terre et Environnement de Strasbourg, Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France
| | - Caglar Akay
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Jimmy Köpke
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307 Berlin, Germany
| | - Steffen Kümmel
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Hans Hermann Richnow
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany
| | - Gwenaël Imfeld
- Institut Terre et Environnement de Strasbourg, Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France
| |
Collapse
|
3
|
Wang W, Bi Y, Ye J, Chen C, Bi X. Origin traceability of Cordyceps sinensis based on trace elements and stable isotope fingerprints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169591. [PMID: 38154647 DOI: 10.1016/j.scitotenv.2023.169591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Cordyceps sinensis is a kind of valuable Chinese herbal medicine, and its quality and price depend on the place of origin. Building a traceability system for Cordyceps sinensis products is an effective way to protect Cordyceps sinensis geographical indication products and consumers. In this study, concentrations of 45 trace elements and stable C, N, and Pb isotopes were used to distinguish Cordyceps sinensis samples from different habitats and different varieties (natural and artificial). The results showed that there were significant differences in the isotope compositions of N and Pb and trace elements contents in the Cordyceps sinensis samples from different sources. Stepwise discriminant analysis was used to select effective traceability indicators, and three discriminant models were successfully established. A combination of Co, Sr, Cu, Tl, and Zr indexes was selected to distinguish the naturally grown samples from the artificially cultivated ones, with an overall cross-validation correctness rate of 90.0 %; while a combination of As, Cu, Rb, Tl, W, and Zr indexes was adopted to distinguish the naturally grown samples from different regions, with a corresponding 100.0 % overall cross-validation correctness rate. To simultaneously distinguish samples between natural and artificial and between different regions, a combination of As, Cu, Rb, Tl, U, W, and δ15N indexes was employed, with an overall cross-validation correctness rate of 89.3 %.
Collapse
Affiliation(s)
- Wanzhe Wang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Yifan Bi
- Xizang Zangcao-Yisheng Biotechnology Co., Ltd, Lhasa 850000, China
| | - Jiaxin Ye
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Canzhi Chen
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Xiangyang Bi
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
4
|
Newton PN, Chesson LA, Mayxay M, Dondorp A, Tabernero P, Howa JD, Cerling TE. Forensic investigation of falsified antimalarials using isotope ratio mass spectrometry: a pilot investigation. Sci Rep 2024; 14:3995. [PMID: 38369604 PMCID: PMC10874941 DOI: 10.1038/s41598-024-54168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024] Open
Abstract
We explored whether isotope ratio mass spectrometry (IRMS) is useful to investigate the origin of falsified antimalarials. Forty-four falsified and genuine antimalarial samples (artesunate, artemether-lumefantrine, dihydroartemisinin-piperaquine and sulphamethopyrazine-pyrimethamine) were analyzed in bulk for carbon (C), nitrogen (N), and oxygen (O) element concentrations and stable isotope ratios. The insoluble fraction ("starch") was extracted from 26 samples and analyzed. Samples of known geographical origin maize, a common source of excipient starch, were used to produce a comparison dataset to predict starch source. In both an initial (n = 18) and a follow-on set of samples that contained/claimed to contain artesunate/artemether (n = 26), falsified antimalarials had a range of C concentrations less than genuine comparator antimalarials and δ13C values higher than genuine comparators. The δ13C values of falsified antimalarials suggested that C4 plant-based organic material (e.g., starch derived from maize) had been included. Using the known-origin maize samples, predictions for growth water δ18O values for the extracted "starch" ranged from - 6.10 to - 1.62‰. These findings suggest that IRMS may be a useful tool for profiling falsified antimalarials. We found that C4 ingredients were exclusively used in falsified antimalarials versus genuine antimalarials, and that it may be possible to predict potential growth water δ18O values for the starch present in falsified antimalarials.
Collapse
Affiliation(s)
- Paul N Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Infectious Diseases Data Observatory, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | | | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of Health, Vientiane, Lao PDR
| | - Arjen Dondorp
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol Oxford Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Patricia Tabernero
- Lao-Oxford-Mahosot Hospital-Wellcome Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Infectious Diseases Data Observatory, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Public Health Unit, Faculty of Medicine, Universidad de Alcalá, Alcalá de Henares, Spain
| | | | - Thure E Cerling
- IsoForensics, Inc, Salt Lake City, UT, USA
- Department of Geology and Geophysics and Department of Biology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Wang YY, Yang F, Chen J, Li YJ, Zhou J, Qing X, Yan D, Lu X, Zhou P, Zhang L. Multidimensional isotope analysis of carbon, hydrogen, and oxygen as a tool for traceability of lactose in drug products. J Pharm Biomed Anal 2023; 226:115270. [PMID: 36716528 DOI: 10.1016/j.jpba.2023.115270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Lactose is one of the most commonly used pharmaceutical excipients. Depending on manufactures, the properties of lactose are very different, which could impact the pharmacokinetic behavior of drug products. Therefore, it is very important to trace the origin of pharmaceutical lactose in drug products which is valuable for prescription analysis. In this study, the carbon, hydrogen and oxygen isotope ratios (δ13C, δ2H and δ18O) of thirty-four lactose from seven manufacturers were analyzed by elemental analysis-stable isotope ratio mass spectrometry (EA-IRMS). One-way analysis of variance (ANOVA) and Duncan's test indicated significant differences in isotope ratios of lactose from different origins. To identify the lactose manufacturer, a discrimination model was generated through linear discriminant analysis (LDA). Based on this model, the manufacturers of lactose used in three drug products were successfully identified. Our results suggested that the multidimensional analysis of δ13C, δ2H and δ18O of lactose provided a fast and effective method to trace the lactose manufacturer. In conclusion, this method can be used to analyze the prescription of the drug product quickly, which could speed up the development of generic drug product.
Collapse
Affiliation(s)
- Yu-Ye Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fan Yang
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jian Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ying-Jian Li
- Department of Formulation Development, Boehringer Ingelheim Animal Health, North Brunswick, NJ, 08902 USA
| | - Jia Zhou
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xia Qing
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Dong Yan
- Dasan Pharmaceutical Technology Co. Ltd., 860-1, Shangshengou, Shenyang 110179, China
| | - Xin Lu
- Research & Development department, Shanghai Anbison Lab Co., Ltd., No.889 YiShan Road, Shanghai 200233, China
| | - Peng Zhou
- DAOMO (Shanghai) Industrial Co.,Ltd, 7577 Hunan Road, Shanghai 201314, China
| | - Li Zhang
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
6
|
Rajamehala M, Kumara Pandian AM, Rajasimman M, Gopalakrishnan B. Porous nanocomposites for sorptive elimination of ibuprofen from synthetic wastewater and its molecular docking studies. ENVIRONMENTAL RESEARCH 2023; 218:114984. [PMID: 36462695 DOI: 10.1016/j.envres.2022.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Pharmaceuticals are a new developing pollutant that is threatening aquatic ecosystems and impacting numerous species in the ecosystem. The aim of this study is the green synthesis of TiO2-Fe2O3-Chitosan nanocomposites in conjunction with Moringa olifera leaves extract and its applicability for ibuprofen removal. Various characterization studies were performed for the synthesized nanocomposites. Box-Behnken design (BBD) is employed to optimize pH, agitation speed, and composite dosage. Equilibrium results show that adsorption process matches with Langmuir isotherm, demonstrating adsorption on the nanocomposite's homogenous surface and follows pseudo-first-order kinetics. Using the BBD, pH, adsorbent dose, and agitation speed were examined as adsorption parameters. Ibuprofen elimination was demonstrated to be most successful at a pH of 7.3, using 0.05 g of nanocomposites at a rotational speed of 200 rpm. Thermodynamic parameters for ibuprofen sorption were carried out and the ΔH and ΔS was found to be 76.23 & 0.233. Molecular Docking was performed to find the interaction between the pollutant and the nanocomposite. UV-vis spectra confirm the 243 nm absorption band corresponding to the nanocomposite's surface plasmon resonances. Fourier transform infrared spectroscopy spectra relate this band to a group of nanocomposites. The findings of this work emphasize the importance of TiO2-Fe2O3-Chitosan nanocomposites for removing ibuprofen from wastewater.
Collapse
Affiliation(s)
- M Rajamehala
- Department of Biotechnology, Vivekanandha College of Engineering for Women, Tiruchengode, Namakkal, 637205, Tamilnadu, India.
| | - A Muthu Kumara Pandian
- Department of Biotechnology, Vivekanandha College of Engineering for Women, Tiruchengode, Namakkal, 637205, Tamilnadu, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, 608002, India
| | - B Gopalakrishnan
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, 608002, India
| |
Collapse
|
7
|
Ouyang WY, Kümmel S, Adrian L, Zhu YG, Richnow HH. Carbon and hydrogen stable isotope fractionation of sulfamethoxazole during anaerobic transformation catalyzed by Desulfovibrio vulgaris Hildenborough. CHEMOSPHERE 2023; 311:136923. [PMID: 36349587 DOI: 10.1016/j.chemosphere.2022.136923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
The fate of antibiotics in aquatic environments is of high concern and approaches are needed to assess the transformation of antibiotics in wastewater treatment plants. Here we used the model organism Desulfovibrio vulgaris Hildenborough to analyze compound specific isotope fractionation associated with anaerobic transformation of the antibiotic sulfamethoxazole (SMX). The results show that the rearrangement of the isoxazole ring in SMX is leading to significant carbon and hydrogen isotopic fractionation (εC = -5.8 ± 0.7‰, εH = -34 ± 9‰) during anaerobic transformation. The observed carbon isotopic fractionation is significantly higher than the values reported for aerobic degradation (εC = -0.6 ± 0.1‰) or abiotic reactions (εC = -0.8 to -4.8‰ for photolysis, εC = -0.8 to -2.2‰ for advanced oxidation). This indicates that carbon isotope fractionation can be used as a parameter to differentiate reaction mechanisms of SMX transformation. The corresponding apparent kinetic isotope effect (AKIEC) for anaerobic transformation of SMX was 1.029 ± 0.003, suggesting that the mechanism for anaerobic transformation is distinct from the mechanism reported for microbial aerobic degradation (AKIEC = 1.006 ± 0.001). In addition, dual-element (C-H) isotope analysis of SMX was performed in the present study, which was achieved by utilizing gas chromatography (GC) as the separation method instead of routine liquid chromatography. This dual-element isotope analysis resulted in a Λ value of 4.5 ± 2.2. Overall, compound specific isotope analysis can be a feasible tool to monitor the mitigation of SMX in wastewater treatment plants.
Collapse
Affiliation(s)
- Wei-Ying Ouyang
- Helmholtz Centre for Environmental Research - UFZ, Isotope Biogeochemistry, Leipzig, Germany; Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany
| | - Steffen Kümmel
- Helmholtz Centre for Environmental Research - UFZ, Isotope Biogeochemistry, Leipzig, Germany
| | - Lorenz Adrian
- Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany; Helmholtz Centre for Environmental Research - UFZ, Environmental Biotechnology, Leipzig, Germany
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hans H Richnow
- Helmholtz Centre for Environmental Research - UFZ, Isotope Biogeochemistry, Leipzig, Germany; Isodetect GmbH, Leipzig, Germany.
| |
Collapse
|
8
|
Raimondo M, Borioni A, Prestinaci F, Sestili I, Gaudiano MC. A NIR, 1H-NMR, LC-MS and chemometrics pilot study on the origin of carvedilol drug substances: a tool for discovering falsified active pharmaceutical ingredients. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1396-1405. [PMID: 35302118 DOI: 10.1039/d1ay02035h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Falsification of drugs, entailing the use of drug substances from unknown unapproved suppliers, is one of the main concerns for the quality of medicines. Therefore, traceability of active ingredients represents an effective tool to fight the illegal trade of medicinal products. In this view, the present pilot study explores the profile of carvedilol active ingredients and possible differences related to the origin. Sixteen samples were examined by near-infrared spectroscopy (NIR), proton nuclear magnetic resonance (1H-NMR spectrometry) and liquid chromatography mass spectrometry (LC-MS) Q-TOF and the data were analysed by principal component analysis (PCA), cluster analysis and PLSDA discriminant analysis. The results evidenced that the combined information from the three techniques gave good classification of the samples neatly distinguishing the APIs from European countries from the APIs manufactured out of Europe. In particular, NIR spectroscopy provided effective separation between European and non-European manufacturers and 1H-NMR or LC-MS added specific information related to the separation. Concerning LC-MS Q-TOF, the analysis of multiple isobaric peaks proved to be highly predictive of the drug substance origin and emerged as a promising tool in the field of medicine traceability.
Collapse
Affiliation(s)
- Mariangela Raimondo
- Chemical Medicines Unit, Centro Nazionale Controllo e Valutazione dei Farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Anna Borioni
- Chemical Medicines Unit, Centro Nazionale Controllo e Valutazione dei Farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Francesca Prestinaci
- Chemical Medicines Unit, Centro Nazionale Controllo e Valutazione dei Farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Isabella Sestili
- Chemical Medicines Unit, Centro Nazionale Controllo e Valutazione dei Farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Maria Cristina Gaudiano
- Chemical Medicines Unit, Centro Nazionale Controllo e Valutazione dei Farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
9
|
Akoka S, Remaud GS. NMR-based isotopic and isotopomic analysis. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 120-121:1-24. [PMID: 33198965 DOI: 10.1016/j.pnmrs.2020.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Molecules exist in different isotopic compositions and most of the processes, physical or chemical, in living systems cause selection between heavy and light isotopes. Thus, knowing the isotopic fractionation of the common atoms, such as H, C, N, O or S, at each step during a metabolic pathway allows the construction of a unique isotope profile that reflects its past history. Having access to the isotope abundance gives valuable clues about the (bio)chemical origin of biological or synthetic molecules. Whereas the isotope ratio measured by mass spectrometry provides a global isotope composition, quantitative NMR measures isotope ratios at individual positions within a molecule. We present here the requirements and the corresponding experimental strategies to use quantitative NMR for measuring intramolecular isotope profiles. After an introduction showing the historical evolution of NMR for measuring isotope ratios, the vocabulary and symbols - for describing the isotope content and quantifying its change - are defined. Then, the theoretical framework of very accurate quantitative NMR is presented as the principle of Isotope Ratio Measurement by NMR spectroscopy, including the practical aspects with nuclei other than 2H, that have been developed and employed to date. Lastly, the most relevant applications covering three issues, tackling counterfeiting, authentication, and forensic investigation, are presented, before giving some perspectives combining technical improvements and methodological approaches.
Collapse
Affiliation(s)
- Serge Akoka
- Université de Nantes, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Gérald S Remaud
- Université de Nantes, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| |
Collapse
|
10
|
Lihl C, Heckel B, Grzybkowska A, Dybala-Defratyka A, Ponsin V, Torrentó C, Hunkeler D, Elsner M. Compound-specific chlorine isotope fractionation in biodegradation of atrazine. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:792-801. [PMID: 32091522 DOI: 10.1039/c9em00503j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atrazine is a frequently detected groundwater contaminant. It can be microbially degraded by oxidative dealkylation or by hydrolytic dechlorination. Compound-specific isotope analysis is a powerful tool to assess its transformation. In previous work, carbon and nitrogen isotope effects were found to reflect these different transformation pathways. However, chlorine isotope fractionation could be a particularly sensitive indicator of natural transformation since chlorine isotope effects are fully represented in the molecular average while carbon and nitrogen isotope effects are diluted by non-reacting atoms. Therefore, this study explored chlorine isotope effects during atrazine hydrolysis with Arthrobacter aurescens TC1 and oxidative dealkylation with Rhodococcus sp. NI86/21. Dual element isotope slopes of chlorine vs. carbon isotope fractionation (Λ = 1.7 ± 0.9 vs. Λ = 0.6 ± 0.1) and chlorine vs. nitrogen isotope fractionation (Λ = -1.2 ± 0.7 vs. Λ = 0.4 ± 0.2) provided reliable indicators of different pathways. Observed chlorine isotope effects in oxidative dealkylation (εCl = -4.3 ± 1.8‰) were surprisingly large, whereas in hydrolysis (εCl = -1.4 ± 0.6‰) they were small, indicating that C-Cl bond cleavage was not the rate-determining step. This demonstrates the importance of constraining expected isotope effects of new elements before using the approach in the field. Overall, the triple element isotope information brought forward here enables a more reliable identification of atrazine sources and degradation pathways.
Collapse
Affiliation(s)
- Christina Lihl
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Makino Y, Urano Y, Kaneko K. Trial analysis of drug profiling by liquid chromatography/mass spectrometry and inductively coupled plasma mass spectrometry to establish the origin of ephedrines used as precursors for illicit production of methamphetamine. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:995-1005. [PMID: 30849207 DOI: 10.1002/rcm.8429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE We investigated whether chemical information on the origin of ephedrine and pseudoephedrine (ephedrines) can be acquired by liquid chromatography/mass spectrometry (LC/MS) as a substitute method for stable isotope ratio mass spectrometry (IRMS), which is not routinely available in forensic laboratories. We examined the characteristic inorganic elemental contaminants of ephedrines as a preliminary study. METHODS The stable isotope ratios measured by IRMS analysis are expressed relative to the stable isotope ratios of conventional standards. Referring to the method using validated standard samples in IRMS, we selected a standard sample for acquiring stable isotopic ratio by LC/MS. The abundance ratio of the [M + 2H]+ ion to the [M + H]+ ion was measured by means of selected ion monitoring. We carried out qualitative analysis of inorganic elements contained in ephedrines produced by different manufacturing methods with ICPMS. RESULTS We found that the ratio of stable isotope ion to molecular ion (stable isotope ratio) of ephedrines could be measured with LC/MS. The stable isotope ratio of ephedrines determined by LC/MS were confirmed to show relatively good correlations with the carbon and hydrogen stable isotope ratios found by IR-MS. We identified strontium as a characteristic inorganic element contained in ephedrines prepared by the semisynthetic method from molasses, or in the biosynthetic method from ephedra plants. CONCLUSIONS Our results suggest that useful chemical information can be obtained by LC/MS, which is easy to carry out, and is generally available in forensic laboratories. It would be worthwhile to investigate the usefulness of stable isotope ratio measurements of Sr in the future.
Collapse
Affiliation(s)
- Yukiko Makino
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kiyoko Kaneko
- Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
12
|
Bakkour R, Bolotin J, Sellergren B, Hofstetter TB. Molecularly Imprinted Polymers for Compound-Specific Isotope Analysis of Polar Organic Micropollutants in Aquatic Environments. Anal Chem 2018; 90:7292-7301. [DOI: 10.1021/acs.analchem.8b00493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Rani Bakkour
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Jakov Bolotin
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Börje Sellergren
- Department of Biomedical Sciences, Malmö University, 20506 Malmö, Sweden
| | - Thomas B. Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
13
|
Removal of ibuprofen from aqueous solutions using O-carboxymethyl-N-laurylchitosan/γ-Fe 2 O 3. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.enmm.2017.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Suto N, Kawashima H. Classification of nine malathion emulsion samples by using carbon isotope ratios and the ratio of organic solvents. Sci Justice 2017; 57:1-5. [DOI: 10.1016/j.scijus.2016.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/25/2016] [Accepted: 10/28/2016] [Indexed: 11/15/2022]
|
15
|
Blaser M, Conrad R. Stable carbon isotope fractionation as tracer of carbon cycling in anoxic soil ecosystems. Curr Opin Biotechnol 2016; 41:122-129. [DOI: 10.1016/j.copbio.2016.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/29/2016] [Accepted: 07/04/2016] [Indexed: 01/16/2023]
|