1
|
Wu Y, Huang T, Wei Q, Yan X, Chen L, Ma Z, Luo L, Cao J, Chen H, Wei X, Tan H, Chen F, Tong G, Li L, Tang Z, Luo Y. Combined effects of copper and cadmium exposure on ovarian function and structure in Nile Tilapia (Oreochromis niloticus). ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:266-280. [PMID: 38436777 DOI: 10.1007/s10646-024-02744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
With the rapid development of industrialization and urbanization, the issue of copper (Cu) and cadmium (Cd) pollution in aquatic ecosystems has become increasingly severe, posing threats to the ovarian tissue and reproductive capacity of aquatic organisms. However, the combined effects of Cu and Cd on the ovarian development of fish and other aquatic species remain unclear. In this study, female Nile tilapia (Oreochromis niloticus) were individually or co-exposed to Cu and/or Cd in water. Ovarian and serum samples were collected at 15, 30, 60, 90, and 120 days, and the bioaccumulation, ovarian development, and hormone secretion were analyzed. Results showed that both single and combined exposure significantly reduced the gonadosomatic index and serum hormone levels, upregulated estrogen receptor (er) and progesterone receptor (pr) gene transcription levels, and markedly affected ovarian metabolite levels. Combined exposure led to more adverse effects than single exposure. The data demonstrate that the Cu and Cd exposure can impair ovarian function and structure, with more pronounced adverse effects under Cu and Cd co-exposure. The Cu and Cd affect the metabolic pathways of nucleotides and amino acids, leading to ovarian damage. This study highlights the importance of considering combined toxicant exposure in aquatic toxicology research and provides insights into the potential mechanisms underlying heavy metal-induced reproductive toxicity in fish.
Collapse
Affiliation(s)
- Yijie Wu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
- College of Aquaculture and life sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Ting Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Qiyu Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Xin Yan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Liting Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Zhirui Ma
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Liming Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
- College of Aquaculture and life sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xinxian Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Honglian Tan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Fuyan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Guixiang Tong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Liping Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Zhanyang Tang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, 530021, Guangxi, China.
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Nanning, 530021, China.
| |
Collapse
|
2
|
Bo Y, Yu Q, Gao W. Progress of depression mechanism based on Omics method. J Pharm Biomed Anal 2024; 240:115884. [PMID: 38183729 DOI: 10.1016/j.jpba.2023.115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/08/2024]
Abstract
Depression is a very common disabling mental disorder, which is typically characterized by high rates of disability and mortality. Although research into the various mechanisms of depression was still underway, its physiopathology remains uncertain. The rapid developments in new technologies and the combined use of a variety of techniques will help to understand the pathogenesis of depression and explore effective treatment methods. In this review, we focus on the combination of proteomic and metabolomic approaches to analyze metabolites and proteins in animal models of depression induced by different modeling approaches, with the aim of broadening the understanding of the physiopathological mechanisms of depression using complementary "omics" strategy.
Collapse
Affiliation(s)
- Yaping Bo
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Qing Yu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China.
| |
Collapse
|
3
|
Pan W, Shi H, Zang Z, Meng Q, Cheng Y, Liang L, Zhai Y, Yin G, Sun L, Ma K. Research progress on classical traditional Chinese medicine formula Baihe Zhimu ( Lilium lancifolium bulb and Anemarrhena asphodeloides rhizome) decoction in the treatment of depression. Heliyon 2024; 10:e25171. [PMID: 38352746 PMCID: PMC10862512 DOI: 10.1016/j.heliyon.2024.e25171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Depression is considered to be an "emotional disease" in ancient books of traditional Chinese medicine. Its clinical features are similar to those of "Lily disease" in the ancient Chinese medicine book Synopsis of the Golden Chamber written by Zhang Zhongjing in the Han Dynasty. Baihe Zhimu (Lilium lancifolium bulb and Anemarrhena asphodeloides rhizome) decoction (LBRAD) is the first prescription of "Lily Disease" in this book. It is also a special remedy for "Lily disease" after sweating. The classic recipe LBRAD consists of two herbs, fresh lily bulbs and dried Rhizoma Anemarrhena slice. It has the effect of supplementing nutrition and clearing heat, nourishing Yin and moistening. After more than two thousand years of clinical practice, it has been currently widely used in clinical treatment of depression. In this paper, the relationship between LBRAD and depression was systematically reviewed from both clinical and experimental studies, as well as the preparation, the clinical application, the pharmacological mechanism and the effective material basis for the treating depression of LBRAD. The core targets and biological processes of the depression treatment were explored through network pharmacological analysis, so as to speculate its potential mechanism. Finally, the association between LBRAD and post-COVID-19 depression was discussed. We concluded with a summary and future prospects. This review may provide a theoretical basis for the expansion of the clinical application of LBRAD and the development of new drugs for the treatment of depression, as well as new ideas for the secondary development of classical prescriptions.
Collapse
Affiliation(s)
- Wenchao Pan
- Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China
| | - Huishan Shi
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhiping Zang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China
| | - Qingwen Meng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China
| | - Yiran Cheng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China
| | - Lili Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China
| | - Yuanhui Zhai
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China
| | - Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China
| | - Lingzhi Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China
| | - Ke Ma
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| |
Collapse
|
4
|
Ma H, Huang H, Li C, Li S, Gan J, Lian C, Ling Y. The antidepressive mechanism of Longya Lilium combined with Fluoxetine in mice with depression-like behaviors. NPJ Syst Biol Appl 2024; 10:5. [PMID: 38218856 PMCID: PMC10787738 DOI: 10.1038/s41540-024-00329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Traditional Chinese medicine is one of the most commonly used complementary and alternative medicine therapies for depression. Integrated Chinese-western therapies have been extensively applied in numerous diseases due to their superior efficiency in individual treatment. We used the meta-analysis, network pharmacology, and bioinformatics studies to identify the putative role of Longya Lilium combined with Fluoxetine in depression. Depression-like behaviors were mimicked in mice after exposure to the chronic unpredictable mild stress (CUMS). The underlying potential mechanism of this combination therapy was further explored based on in vitro and in vivo experiments to analyze the expression of COX-2, PGE2, and IL-22, activation of microglial cells, and neuron viability and apoptosis in the hippocampus. The antidepressant effect was noted for the combination of Longya Lilium with Fluoxetine in mice compared to a single treatment. COX-2 was mainly expressed in hippocampal CA1 areas. Longya Lilium combined with Fluoxetine reduced the expression of COX-2 and thus alleviated depression-like behavior and neuroinflammation in mice. A decrease of COX-2 curtailed BV-2 microglial cell activation, inflammation, and neuron apoptosis by blunting the PGE2/IL-22 axis. Therefore, a combination of Longya Lilium with Fluoxetine inactivates the COX-2/PGE2/IL-22 axis, consequently relieving the neuroinflammatory response and the resultant depression.
Collapse
Affiliation(s)
- Huina Ma
- Department of Health, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Hehua Huang
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Chenyu Li
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Shasha Li
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Juefang Gan
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Chunrong Lian
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China
| | - Yanwu Ling
- Department of Human Anatomy, Youjiang Medical University for Nationalities, Baise, 533000, P. R. China.
| |
Collapse
|
5
|
Fang C, Zhang Z, Xu H, Liu Y, Wang X, Yuan L, Xu Y, Zhu Z, Zhang A, Shao A, Lou M. Natural Products for the Treatment of Post-stroke Depression. Front Pharmacol 2022; 13:918531. [PMID: 35712727 PMCID: PMC9196125 DOI: 10.3389/fphar.2022.918531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Post-stroke depression (PSD) is the most frequent and important neuropsychiatric consequence of stroke. It is strongly associated with exacerbated deterioration of functional recovery, physical and cognitive recoveries, and quality of life. However, its mechanism is remarkably complicated, including the neurotransmitters hypothesis (which consists of a monoaminergic hypothesis and glutamate-mediated excitotoxicity hypothesis), inflammation hypothesis, dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, and neurotrophic hypothesis and neuroplasticity. So far, the underlying pathogenesis of PSD has not been clearly defined yet. At present, selective serotonin reuptake inhibitors (SSRIs) have been used as the first-line drugs to treat patients with PSD. Additionally, more than SSRIs, a majority of the current antidepressants complied with multiple side effects, which limits their clinical application. Currently, a wide variety of studies revealed the therapeutic potential of natural products in the management of several diseases, especially PSD, with minor side effects. Accordingly, in our present review, we aim to summarize the therapeutic targets of these compounds and their potential role in-clinic therapy for patients with PSD.
Collapse
Affiliation(s)
- Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyu Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yibo Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengyang Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Meiqing Lou,
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Meiqing Lou,
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Meiqing Lou,
| |
Collapse
|
6
|
Anxiolytic and antidepressants' effect of Crataegus pinnatifida (Shan Zha): biochemical mechanisms. Transl Psychiatry 2022; 12:208. [PMID: 35589704 PMCID: PMC9117595 DOI: 10.1038/s41398-022-01970-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 12/05/2022] Open
Abstract
Depression and anxiety disorders are highly prevalent. Selective serotonin reuptake inhibitors (SSRIs) are the current first-line treatment for depression, but they have pronounced limitations. Traditional Chinese medicine can serve as a safe and effective alternative to conventional drugs, particularly since many herbal remedies have already been approved for human use as food additives, making the transition from bench to bedside more efficient. We previously demonstrated that a novel herbal treatment (NHT) induces anxiolytic- and antidepressant-like effects. NHT consists of four herbs: Crataegus pinnatifida (Shan Zha), Triticum aestivum (Fu Xiao Mai), Lilium brownii (Baihe), and the fruit of Ziziphus jujuba (Da Zao). In the current study, we examined the antidepressant-like and anxiolytic-like activities of each individual herb on stressed mice and compared those to the effects of NHT and escitalopram. We show here that Shan Zha is sufficient to produce an anxiolytic and antidepressant-like effect similar to NHT or the escitalopram through activation of 5-HT1A receptor and an elevation in BDNF levels in the hippocampus and Pre-frontal cortex (PFC). Chronic treatment with Shan Zha did not alter serotonin transporter levels in the PFC, as opposed to escitalopram treatment. These results were confirmed in vitro, as none of the herbs blocked SERT activity in Xenopus oocytes. Notably, Shan Zha is sold as a nutritional supplement; thus, its transition to clinical trials can be easier. Once its efficacy and safety are substantiated, Shan Zha may serve as an alternative to conventional antidepressants.
Collapse
|
7
|
Gu S, Mou T, Chen J, Wang J, Zhang Y, Cui M, Hao W, Zhang C, Sun Y, Zhao T, Wei B. Develop a stepwise integrated method to screen biomarkers of Baihe-Dihuang Tang on the treatment of depression in Rats Applying with composition screened, untargeted and targeted metabolomics analysis. J Sep Sci 2022; 45:1656-1671. [PMID: 35234356 DOI: 10.1002/jssc.202100841] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 11/10/2022]
Abstract
Baihe-Dihuang Tang is a commonly prescribed remedy for depression. In this study, component screening with untargeted and targeted metabolomics was used to to identify potential biomarkers for depression in chronic unpredictable mildly-stressed rats. Using this novel identification method, the screening of organic acids, lily saponins, iridoids, and other ingredients formed the basis for subsequent metabolomics research. Baihe-Dihuang Tang supplementation in chronic unpredictable mild-stress -induced depression models, increased their body weight, sucrose preference, brain-derived neurotrophic factor deposition, and spatial exploring. Untargeted metabolomics revealed that Baihe-Dihuang Tang exerts its antidepressant effects by regulating the levels of lipids, organic acids and its derivatives, and benzenoids in the brain, plasma, and urine of the depressed rats. Moreover, it also modulates the D-glutamine and D-glutamate metabolism and purine metabolism. Targeted metabolomics demonstrated significant reduction in L-glutamate levels in the brains of depressed rats. This could be a potential biomarker for depression. Baihe-Dihuang Tang alleviated depression by regulating the levels of L-glutamate, xanthine, and adenine in the brains of depressed rats. Together, these findings conclusively established the promising therapeutic effect of Baihe-Dihuang Tang on depression and also unraveled the underlying molecular mechanism of its potential antidepressant function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shuo Gu
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Tingting Mou
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Jian Chen
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Jing Wang
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Ying Zhang
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Meirong Cui
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Wenqian Hao
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Chengqin Zhang
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Yue Sun
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Tiantian Zhao
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Binbin Wei
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| |
Collapse
|
8
|
Fu C, Shuang Q, Liu Y, Zeng L, Su W. Baihe Extracts Reduce the Activation and Apoptosis of Microglia in the Hippocampus of Mice with Depression-like Behaviors by Downregulating MYC. ACS Chem Neurosci 2022; 13:587-598. [PMID: 35139304 DOI: 10.1021/acschemneuro.1c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
The purpose of our investigation is to identify the potential effects and key molecular targets of Baihe extracts in depression treatment. Network meta-analysis was applied for the synthesis of efficacy outcomes of fluoxetine and three traditional Chinese medicine Baihe prescriptions in depression. Depression-related target genes were screened using "GeneCards" database and "Comparative Toxicogenomics Database (CTD)". The major active components and targets of Baihe were screened using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. The identified depression-related genes and the target genes of Baihe were intersected, an interaction network was constructed using the "String" database, and key target genes were determined based on their degree value. Functional enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) profiles was performed using the "ClusterProfiler" R package. A mouse model with depression-like behaviors was constructed to verify the putative roles of the in silico identified key genes. Microglia were isolated from the mouse hippocampus, and the effects of Baihe extract-containing serum on microglia activation and apoptosis by targeting the key genes were examined in vitro. The meta-analysis results revealed no obvious differences in depression treatment efficacy between fluoxetine and the three Baihe prescriptions, suggesting Baihe extracts as a safe and effective alternative treatment for depression. Using network pharmacology and bioinformatics analysis, Baihe extracts were found to modulate depression by regulating 15 key genes, with MYC as the key gene. Subsequent animal experiments demonstrated that Baihe extracts reduced depression-related behavior, microglial activation, and inflammatory mediator release in mice by inhibiting MYC. Serum containing Baihe extracts could inhibit the activation of microglia and the release of inflammatory mediators by downregulating MYC. In summary, Baihe extracts were found to diminish MYC expression to reduce microglial activation and inflammatory factor release, thereby exerting antidepressant effects.
Collapse
Affiliation(s)
- Chunyan Fu
- College of Pharmacy, Shaoyang University, Shaoyang 422000, P. R. China
- The First Affiliated Hospital of Shaoyang University, Shaoyang 422000, P. R. China
- Hunan Engineering Research Center for Development and Utilization of Traditional Chinese Medicine in Southwest Hunan, Shaoyang University, Shaoyang 422000, P. R. China
| | - Qincui Shuang
- The First Affiliated Hospital of Shaoyang University, Shaoyang 422000, P. R. China
| | - Yonghui Liu
- The Second Affiliated Hospital of Shaoyang University, Shaoyang 422000, P. R. China
| | - Li Zeng
- College of Pharmacy, Shaoyang University, Shaoyang 422000, P. R. China
| | - Wen Su
- College of Pharmacy, Shaoyang University, Shaoyang 422000, P. R. China
| |
Collapse
|
9
|
Dai W, Feng K, Sun X, Xu L, Wu S, Rahmand K, Jia D, Han T. Natural products for the treatment of stress-induced depression: Pharmacology, mechanism and traditional use. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114692. [PMID: 34742864 DOI: 10.1016/j.jep.2021.114692] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression, one of the most common psychiatric disorders, is the fourth leading cause of long-term disability worldwide. A series of causes triggered depression, including psychological stress and conflict, as well as biological derangement, among which stress has a pivotal role in the development of depression. Traditional herbal medicine has been used for the treatment of various disorders including depression for a long history with multi-targets, multi-levels and multi-ways, attracting great attention from scholars. Recently, natural products have been commercialized as antidepressants which have become increasingly popular in the world health drug markets. Major research contributions in ethnopharmacology have generated and updated vast amount of data associated with natural products in antidepressant-like activity. AIMS OF THE REVIEW This review aims to briefly discuss the pathological mechanism, animal models of stress-induced depression, traditional use of herbal medicines and especially recapitulate the natural products with antidepressant activity and their pharmacological functions and mechanism of action, which may contribute to a better understanding of potential therapeutic effects of natural products and the development of promising drugs with high efficacy and low toxicity for the treatment of stress-induced depression. MATERIALS AND METHODS The contents of this review were sourced from electronic databases including PubMed, Sci Finder, Web of Science, Science Direct, Elsevier, Google Scholar, Chinese Knowledge On frastructure (CNKI), Wan Fang, Chinese Scientific and Technological Periodical Database (VIP) and Chinese Biomedical Database (CBM). Additional information was collected from Yao Zhi website (https://db.yaozh.com/). Data were obtained from April 1992 to June 2021. Only English language was applied to the search. The search terms were 'stress-induced depression', 'pathological mechanism' in the title and 'stress', 'depression', 'animal model' and 'natural products' in the whole text. RESULTS Stress-induced depression is related to the monoaminergic system, hypothalamic-pituitary-adrenal (HPA) axis, neuronal plasticity and a series of inflammatory factors. Four main types of animal models of stress-induced depression were represented. Fifty-eight bioactive phytochemical compounds, fifty-six herb medicines and five formulas from traditional Chinese medicine were highlighted, which exert antidepressant effects by inhibiting monoamine oxidase (MAO) reaction, alleviating dysfunction of the HPA axis and nerve injury, and possessing anti-inflammatory activities. CONCLUSIONS Natural products provide a large number of compounds with antidepressant-like effects, and their therapeutic impacts has been highlighted for a long time. This review summarized the pathological mechanism and animal models of stress-induced depression, and the natural products with antidepressant activity in particular, which will shed light on the action mechanism and clinical potential of these compounds. Natural products also have been a vital and promising source for future antidepressant drug discovery.
Collapse
Affiliation(s)
- Wei Dai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China; Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Kunmiao Feng
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xiaolei Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China; Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Lingchuan Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China.
| | - Sijia Wu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Khalid Rahmand
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Dan Jia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China.
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
10
|
Transcriptomics integrated with metabolomics reveals the effect of Lycium barbarum polysaccharide on apoptosis in Nile tilapia (Oreochromis niloticus). Genomics 2021; 114:229-240. [PMID: 34933073 DOI: 10.1016/j.ygeno.2021.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022]
Abstract
Lycium barbarum polysaccharide (LBP) is one of the main active ingredients in the fruit of L. barbarum L. It has been used as herbal medicine for thousands of years in China. In this study, Nile tilapia (Oreochromis niloticus) was taken as the research object. After feeding tilapia with 5 different doses of LBP (0 mg/kg, 500 mg/kg, 1000 mg/kg, 1500 mg/kg, 2000 mg/kg) for 55 d, it was found that LBP could promote the growth of tilapia, and this effect was the strongest at Group 1500 mg/kg. Apoptosis analysis in the liver and spleen showed that dietary supplementation with 1000 mg/kg LBP had the best protective effect on the spleen and liver in tilapia. Combined transcriptomics and metabolomics of the spleen in tilapia at Group 0 mg/kg and 1000 mg/kg showed that the differentially expressed genes (DEGs) such as NT5C2L1, pmm1, FasL and the differentially metabolites such as xanthine, dGMP, guanine and glutamate were mainly concentrated in signaling pathways such as Purine metabolism and FoxO signaling pathway. In conclusion, LBP regulates the metabolic waste levels of tilapia mainly through Purine metabolism and the FoxO signaling pathway, thereby inhibiting cell apoptosis, improving the utilization of nutrients, and promoting the growth of tilapia. This study not only provides a theoretical basis for the application of LBP in aquatic animals but also provides useful information for the healthy development of the aquaculture.
Collapse
|
11
|
Wang HQ, Liu HT, Wang L, Min L, Chen B, Li H. Uncovering the active components, prospective targets, and molecular mechanism of Baihe Zhimu decoction for treating depression using network pharmacology-based analysis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114586. [PMID: 34464700 DOI: 10.1016/j.jep.2021.114586] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baihe Zhimu decoction (BZD) is a classical traditional Chinese medicinal herbal formula. It consists of two herbal medicines, Rhizoma Anemarrhenae (Zhimu), the rhizomes of Anemarrhena asphodeloides Bge. (Liliaceae), and Bulbus Lilii (Baihe), the bulbs of Lilium brownii var. Viridulum Baker (Liliaceae). BZD has been widely used in China to treat depression and verified to be effective without evident side effects. AIM OF THE STUDY The aim of this study was to elucidate the active components, potential targets, and molecular mechanism of Baihe Zhimu decoction for treating depression. MATERIALS AND METHODS In this research, a chronic unpredictable mild stress (CUMS) mice was first established to evaluate the pharmacological effects of BZD for treating depression. A component database was then constructed for BZD. High-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS) technique was used to identify the components in BZD and blood-absorbed components. Further screening and validation of protein targets were performed by molecule docking. The component-target binding affinity was validated by surface plasmon resonance analysis (SPR) assay. The related pathways were predicted by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Relative proteins in the predicted pathways were finally assessed by Western blot. RESULTS The pharmacology evaluation experiment demonstrated that BZD could improve depressive-like behavior, inhibit the hippocampal secretion of pro-inflammatory cytokines and reduce neuronal apoptosis in CUMS mice model. A component database containing 163 components and a target database covering 1286 proteins were constructed. HPLC-QTOF-MS assay identified twenty-six components from BZD and ten components absorbed into rat plasma after an intragastric treatment with BZD. Next, 56 underlying targets were screened out by a virtual high-throughput screening approach. Twenty-seven of them were further screened out and confirmed by molecular docking. Afterward, a component-target network was established, and the component-protein binding affinities were validated by SPR assays. By KEGG pathway enrichment analysis, two signaling pathways PI3K/Akt and MAPK were predicted as the potential signaling cascades. Finally, Western blot showed that BZD dramatically reversed the suppression of PI3K/Akt/GSK-3β pathway and the activation of MAPK pathway in CUMS mice model. CONCLUSIONS BZD demonstrated a substantial pharmacological effect on CUMS mice model. Network pharmacology-based analysis predicted that ten blood-absorbed components can act on 27 target proteins. KEGG and Western blotting analysis suggested that BZD could exert antidepressant effects by regulating the PI3K/Akt and MAPK signaling pathways.
Collapse
Affiliation(s)
- Hai-Qiao Wang
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201112, China.
| | - Hong-Tao Liu
- Huantai County Psychiatric Hospital, Zibo, 256400, China.
| | - Liang Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China.
| | - Liang Min
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201112, China.
| | - Bin Chen
- Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201112, China.
| | - He Li
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201112, China.
| |
Collapse
|
12
|
Ramos-da-Silva L, Carlson PT, Silva-Costa LC, Martins-de-Souza D, de Almeida V. Molecular Mechanisms Associated with Antidepressant Treatment on Major Depression. Complex Psychiatry 2021; 7:49-59. [PMID: 35813936 PMCID: PMC8739385 DOI: 10.1159/000518098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/23/2021] [Indexed: 11/25/2023] Open
Abstract
Major depressive disorder (MDD) is a complex and multifactorial psychiatric disorder that causes serious health, social, and economic concerns worldwide. The main treatment of the symptoms is through antidepressant (AD) drugs. However, not all patients respond properly to these drugs. Omic sciences are widely used to analyze not only biomarkers for the AD response but also their molecular mechanism. In this review, we aimed to focus on omics data to better understand the molecular mechanisms involving AD effects on MDD. We consistently found, from preclinical to clinical data, that glutamatergic transmission, immune/inflammatory processes, energy metabolism, oxidative stress, and lipid metabolism were associated with traditional and potential new ADs. Despite efforts of studies investigating biomarkers of response to ADs, which could contribute to personalized treatment, there is no biomarker panel available for clinical application. From clinical genomic studies, we found that the main findings contribute to the development of pharmacogenomic tests for AD efficacy for each patient. Several studies pointed at DRD2, PXDNL, CACNA1E, and CACNA2D1 genes as potential targets for MDD treatment and the efficacy and rapid-antidepressant effect of ketamine. Finally, more in-depth studies of the molecular targets pointed here are needed to determine the clinical relevance and provide further evidence for precision MDD treatment.
Collapse
Affiliation(s)
- Lívia Ramos-da-Silva
- Department of Biochemistry and Tissue Biology, Laboratory of Neuroproteomics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Pamela T. Carlson
- Department of Biochemistry and Tissue Biology, Laboratory of Neuroproteomics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Licia C. Silva-Costa
- Department of Biochemistry and Tissue Biology, Laboratory of Neuroproteomics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniel Martins-de-Souza
- Department of Biochemistry and Tissue Biology, Laboratory of Neuroproteomics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Valéria de Almeida
- Department of Biochemistry and Tissue Biology, Laboratory of Neuroproteomics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
13
|
Chen Y, Wang W, Fu X, Sun Y, Lv S, Liu L, Zhou P, Zhang K, Meng J, Zhang H, Zhang S. Investigation of the antidepressant mechanism of combined Radix Bupleuri and Radix Paeoniae Alba treatment using proteomics analysis of liver tissue. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122858. [PMID: 34329891 DOI: 10.1016/j.jchromb.2021.122858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/19/2021] [Accepted: 07/06/2021] [Indexed: 11/24/2022]
Abstract
Depression is a chronic, common mental illness characterized by depressed mood, anxiety, insomnia, cognitive impairment, and even suicidal tendency. In traditional Chinese medicine theory, the cause of depression is deemed to be "stagnation of liver qi". So relieving "stagnation of liver qi" is effective for depression. The combination of Radix Bupleuri and Radix Paeoniae Alba, which is used to soothe the liver and relieve depression, has antidepressant effects, but the mechanisms of the effects are still unclear. In this study, a rat model of chronic unpredictable mild stress was established as a model of depression, and proteomics analysis was used to explore the potential mechanisms of this combination in alleviating depression. Biological information analysis was performed on the selected differential proteins, and the enriched pathways mainly included the Jak-STAT signaling pathway, valine, leucine, and isoleucine degradation, and oxidative phosphorylation. The expression of key proteins included metallothionein-1, cyclin-dependent kinase, ubiquitin carboxyl-terminal hydrolase-1, and Cryab was further verified by western blotting, and the results which were consistent with the proteomics results, confirmed the reliability of the proteomic analysis. The antidepressant mechanism of combined Radix Bupleuri and Radix Paeoniae Alba treatment may be related to the oxidative stress response, neuroplasticity, the immune response, and neuroprotection.
Collapse
Affiliation(s)
- Yanyan Chen
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Wenran Wang
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xin Fu
- Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Yonghui Sun
- Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Shaowa Lv
- Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Lei Liu
- Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Peng Zhou
- Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ke Zhang
- Shenyang Pharmaceutical University, Shenyang 110000, China
| | - Jiannan Meng
- Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hongcai Zhang
- Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| | - Shuxiang Zhang
- Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| |
Collapse
|
14
|
Emerging application of metabolomics on Chinese herbal medicine for depressive disorder. Biomed Pharmacother 2021; 141:111866. [PMID: 34225013 DOI: 10.1016/j.biopha.2021.111866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Depressive disorder is a kind of emotional disorder that is mainly manifested with spontaneous and persistent low mood. Its etiology is complex and still not fully understood. Metabolomics, an important part of system biology characterized by its integrity and systematicness, analyzes endogenous metabolites of small molecules in vivo and examines the metabolic status of the organism. It is widely used in the field of disease research for its unique advantage in the disease molecular marker discovering Due to fewer adverse reactions and high safety, Chinese herbal medicine (CHM) has great advantages in the treatment of chronic diseases including depression. Metabolomics has been gradually applied to the efficacy evaluation of CHM in treatment of depression and the metabolomics analysis exhibits a systemic metabolic shift in amino acids (such as alanine, glutamic acid, valine, etc.), organic acids (lactic acid, citric acid, stearic acid, palmitic acid, etc.), and sugars, amines, etc. These differential metabolites are mainly involved in energy metabolism, amino acid metabolism, lipid metabolism, etc. In this review, we have exemplified the study of CHM in animals or clinics on the depression, and revealed that CHM treatment has significantly changed the metabolic disorders associated with depression, promoting metabolic network reorganization through restoring of key metabolites, and metabolic pathways, which may be the main mechanism basis of CHM's treatment on depression. Besides, we further envisioned the future application of metabolomics in the study of CHM treatment of depression.
Collapse
|
15
|
Su Z, Ruan J, Liu X, Zheng H, Ruan J, Lu Y, Cheng B, Wu F, Wu J, Liu X, Song F, Chen Z, Song H, Liang Y, Guo H. Combining 1H-NMR-based metabonomics and network pharmacology to dissect the mechanism of antidepression effect of Milletia speciosa Champ on mouse with chronic unpredictable mild stress-induced depression. J Pharm Pharmacol 2021; 73:881-892. [PMID: 33836071 DOI: 10.1093/jpp/rgaa010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Milletia speciosa Champ (MS), a traditional Chinese medicine, has the abilities of antistress, antifatigue, anti-oxidation and so on. In our previous study, MS was found to antidepression while the underlying mechanism of which needs further elucidation. METHODS Here, a proton nuclear magnetic resonance (1H-NMR)-based metabonomics combined network pharmacology research approach was performed to investigate the antidepressive mechanism of MS act on mouse with chronic unpredictable mild stress-induced depression. KEY FINDINGS Results showed that MS could alleviate the ethology of depression (including sucrose preference degree, crossing lattice numbers and stand-up times) and disordered biochemical parameters (5-hydroxytryptamine, norepinephrine and brain-derived neurotrophic factor). Metabonomics study and network pharmacology analysis showed that MS might improve depression through synergistically regulating five targets including Maoa, Maob, Ache, Ido1 and Comt, and three metabolic pathways such as tryptophan metabolism, synthesis of neurotransmitter and phospholipid metabolism. CONCLUSIONS This study for the first time preliminary clarified the potential antidepressive mechanism of MS and provided theoretical basis for developing MS into novel effective antidepressant.
Collapse
Affiliation(s)
- Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Junxiang Ruan
- Pharmaceutical College, Guangxi Medical University, Nanning, China.,Guangxi Yuhualing Technology Development Co. LTD, Nanning, China
| | - Xi Liu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Hua Zheng
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Jingzhou Ruan
- Guangxi Yuhualing Technology Development Co. LTD, Nanning, China
| | - Yuying Lu
- Guangxi Yuhualing Technology Development Co. LTD, Nanning, China
| | - Bang Cheng
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Fang Wu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jinxia Wu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xuwen Liu
- Pharmaceutical College, Guangxi Medical University, Nanning, China.,Department of pharmacy, The People's Hospital of Guangxi Zhuang autonomous region, Nanning, China
| | - Fangming Song
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Zhaoni Chen
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Hui Song
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yonghong Liang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Hongwei Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| |
Collapse
|
16
|
Liu X, Wang Y, Lv M, Zhao S, Chen S, Li S, Qin X. Serum metabolomics reveals compatibility rules of the antidepressant effects of Xiaoyaosan and its efficacy groups. Psychiatry Res 2021; 299:113827. [PMID: 33676173 DOI: 10.1016/j.psychres.2021.113827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/21/2021] [Indexed: 01/03/2023]
Abstract
Traditional Chinese medicines (TCMs) have attracted more attentions in the treatment of depression. Xiaoyaosan (XYS), a classic anti-depression TCM prescription, contains eight herbs. However, the compatibility effects of XYS in modern pharmacology need to be investigated in depth. In this study, the chronic unpredictable mild stress (CUMS) depression-like model was constructed. Afterwards, XYS was divided into the Shugan and the Jianpi groups according to the research strategy ofefficacy groups. Meanwhile, a proton nuclear magnetic resonance spectrometry (1H NMR) based serum metabolomics was applied. XYS and its efficacy groups significantly regulated the abnormal levels of differential metabolites related to depression, but to different degrees. Metabolic profiling by orthogonal partial least squares discriminant analysis showed that XYS at high dose (XH) exhibited the strongest effects than other treatment groups. Ten metabolites related to depression were identified as differential metabolites. Besides, relative distance (Rd) was calculated to quantitatively evaluate the effects. We found that XH group had the highest Rd value. Moreover, among the five metabolic pathways of depression, XYS and Jianpi groups significantly regulated all pathways while Shugan group regulated four pathways. These findings lay a solid foundation for comprehensively and deeply understanding the compatibility effects of XYS against depression.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Institute of Biomedicine and Health, Shanxi University, Taiyuan 030006, China.
| | - Yaze Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Institute of Biomedicine and Health, Shanxi University, Taiyuan 030006, China
| | - Meng Lv
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Institute of Biomedicine and Health, Shanxi University, Taiyuan 030006, China
| | - Sijun Zhao
- Shanxi Institute for Food and Drug Control, Taiyuan 030001, China
| | - Shijian Chen
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Shunyong Li
- School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Institute of Biomedicine and Health, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
17
|
Wang X, Lu G, Liu X, Li J, Zhao F, Li K. Assessment of Phytochemicals and Herbal Formula for the Treatment of Depression through Metabolomics. Curr Pharm Des 2021; 27:840-854. [PMID: 33001005 DOI: 10.2174/1381612826666201001125124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Depression is a widespread and persistent psychiatric disease. Due to various side effects and no curative treatments of conventional antidepressant drugs, botanical medicines have attracted considerable attention as a complementary and alternative approach. The pathogenesis of depression is quite complicated and unclear. Metabolomics is a promising new technique for the discovery of novel biomarkers for exploring the potential mechanisms of diverse diseases and assessing the therapeutic effects of drugs. In this article, we systematically reviewed the study of botanical medicine for the treatment of depression using metabolomics over a period from 2010 to 2019. Additionally, we summarized the potential biomarkers and metabolic pathways associated with herbal medicine treatment for depression. Through a comprehensive evaluation of herbal medicine as novel antidepressants and understanding of their pharmacomechanisms, a new perspective on expanding the application of botanical medicines for the treatment of depression is provided.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guanyu Lu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinhui Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fei Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kefeng Li
- School of Medicine, University of California, San Diego, CA 92103, United States
| |
Collapse
|
18
|
Song Y, Wang H, Zhang L, Lai B, Liu K, Tan M. Protein corona formation of human serum albumin with carbon quantum dots from roast salmon. Food Funct 2021; 11:2358-2367. [PMID: 32125329 DOI: 10.1039/c9fo02967b] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
When food-borne nanoparticles enter biological systems, they can interact with various proteins to form protein coronas, which can affect their physicochemical properties and biological identity. In this study, the protein corona formation of carbon quantum dots (CQDs) from roast salmon with human serum albumin (HSA) was explored. Furthermore, the biological identity of the HSA-CQD coronas, in relation to cell apoptosis, energy, glucose and lipid metabolism and acute toxicity in mice, was also investigated. The HSA-CQD coronas were formed between HSA and CQDs via a static binding mechanism, and the binding site of CQDs on HSA was located at both Sudlow's site I and site II. After entering the cytoplasm, the HSA-CQD coronas became localized in the lysosomes and autolysosomes. Importantly, the HSA coronas reduced the cytotoxicity of the CQDs from 18.65% to 9.26%, and the energy metabolism was rectified by changing from glycolytic to aerobic metabolism. The glucose and lipid metabolite profile of cells exposed to the HSA-CQD coronas differed from that of those treated with CQDs, indicating that the HSA-CQD coronas rectified metabolic disturbances caused by CQDs. Histopathological and blood biochemical analysis revealed no statistically significant differences between the treated and control mice after a single CQDs dose of 2000 mg per kg body weight. Overall, the results confirmed the formation of protein coronas between HSA and food-borne fluorescent CQDs, and could be helpful for evaluating the safety of fluorescent CQDs in cooked food items.
Collapse
Affiliation(s)
- Yukun Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, China. and Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, China and Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Haitao Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, China. and Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, China and Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Lijuan Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, China. and Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, China and Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Bin Lai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, China. and Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, China and Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Kangjing Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, China. and Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, China and Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Mingqian Tan
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, China. and Engineering Research Center of Seafood of Ministry of Education of China, Dalian 116034, China and Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
19
|
Lu X, Ce Q, Jin L, Zheng J, Sun M, Tang X, Li D, Sun J. Deoiled sunflower seeds ameliorate depression by promoting the production of monoamine neurotransmitters and inhibiting oxidative stress. Food Funct 2020; 12:573-586. [PMID: 33367360 DOI: 10.1039/d0fo01978j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We aimed to evaluate the antidepressant activity of deoiled sunflower seeds (SFS), which are rich in tryptophan, in our mouse model and explored a possible mechanism of action. Male C57BL/6J mice were subjected to chronic unpredictable mild stress (CUMS) and were administered a diet containing SFS as the main protein source. SFS alleviated CUMS-induced depression-like behaviors, compared to the effects of a whey protein-based diet. This effect was related to increases in the levels of serotonin, dopamine, norepinephrine, acetylcholine, and brain-derived neurotrophic factor in SFS-fed mice. These changes accompanied the amelioration of inflammatory abnormalities and oxidative stress. SFS increased the aromatic amino acid levels, and the ratio of tryptophan to neutral amino acids. Furthermore, the antidepressant-like effects of SFS were involved in lipid, nucleotide, and amino acid metabolism. In summary, SFS was found to attenuate depression-like symptoms in mice. These antidepressant effects may be related to the increase in the levels of aromatic amino acids and neurotransmitters, amelioration of oxidative stress and inflammation, and the regulation of the levels of abnormal metabolites to the normal levels.
Collapse
Affiliation(s)
- Xiaomeng Lu
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao 266071, Shandong, China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Tran DNH, Hwang IH, Chen FJ, Tseng YP, Chang CM, Tsai SJ, Yang JL, Wu TP, Hsu CH, Chen FP, Kung YY. Core prescription pattern of Chinese herbal medicine for depressive disorders in Taiwan: a nationwide population-based study. Integr Med Res 2020; 10:100707. [PMID: 33665095 PMCID: PMC7903348 DOI: 10.1016/j.imr.2020.100707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 11/20/2022] Open
Abstract
Background Depressive disorders (DD) affect not only mood and behavior but also various physical functions. Traditional Chinese medicine (TCM) has been shown to have some benefits in treating DD. However, one formula or one single herb might be not show high efficacy when used to treat depression. Thus, this study aimed to examine the core prescription pattern of Chinese herbal medicine (CHM) among patients with DD in Taiwan as a reference for related research and clinical applications. Methods All patients, who had been diagnosed with major depressive disorder or minor depression or dysthymia without any other baseline diseases and had at least one CHM outpatient clinical visit from 2002 to 2011, were extracted from three randomly sampled cohorts, namely the 2000, 2005 and 2010 cohorts of the National Health Insurance Research Database (NHIRD) of Taiwan. The collected data was analyzed to explore the patterns of herbal products. Results There were 197,146 patients with a diagnosis of DD and of these 1806 subjects had only a diagnosis of DD and utilized CHM. The most common formula was Gan-Mai-Da-Zao-Tang (12.19%), while Suan-Zao-Ren (3.99%) was the most commonly prescribed single herb. The core pattern of prescriptions consisted of a combination of Gan-Mai-Da-Zao-Tang, Jia-Wei-Xiao-Yao-San, Chai-Hu-Jia-Long-Gu-Mu-Li-Tang, He-Huan-Pi, Yuan-Zhi and Shi-Chang-Pu. Conclusions This study describes the CHM core prescription pattern used to treat patients in Taiwan with DD and it is a potential candidate for study in future pharmacological or clinical trials targeting DD.
Collapse
Affiliation(s)
- Diem Ngoc Hong Tran
- Institute of Traditional Medicine, National Yang-Ming University, School of Medicine, Taipei, Taiwan
| | - I-Hsuan Hwang
- Quality Management Center, Cheng Hsin General Hospital, Taiwan
| | - Fun-Jou Chen
- School of Chinese Medicine & Graduate Institute of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yuan-Pu Tseng
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Mao Chang
- Institute of Traditional Medicine, National Yang-Ming University, School of Medicine, Taipei, Taiwan
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jen-Lin Yang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ta-Peng Wu
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Hua Hsu
- Institute of Traditional Medicine, National Yang-Ming University, School of Medicine, Taipei, Taiwan
- Division of Chinese Internal Medicine, Linsen Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
| | - Fang-Pey Chen
- Institute of Traditional Medicine, National Yang-Ming University, School of Medicine, Taipei, Taiwan
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Ying Kung
- Institute of Traditional Medicine, National Yang-Ming University, School of Medicine, Taipei, Taiwan
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Corresponding author at: No. 201, Section 2, Shipai Road, Beitou District, Taipei City, 112 Taiwan, ROC.
| |
Collapse
|
21
|
Shi M, Deng S, Cui Y, Chen X, Shi T, Song L, Zhang R, Zhang Y, Xu J, Shi J, Wang C, Li L. Repeated low-dose exposures to sarin disrupted the homeostasis of phospholipid and sphingolipid metabolism in guinea pig hippocampus. Toxicol Lett 2020; 338:32-39. [PMID: 33253782 DOI: 10.1016/j.toxlet.2020.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 01/22/2023]
Abstract
Repeated low-level exposure to sarin results to hippocampus dysfunction. Metabonomics involves a holistic analysis of a set of metabolites in an organism in the search for a relationship between these metabolites and physiological or pathological changes. The objective of the present study was to evaluate the effects of repeated exposure to low-level sarin on the metabonomics in hippocampus of a guinea pig model. Guinea pigs were divided randomly into control and sarin treated groups (n = 14). Guinea pigs in the control group received saline; while the sarin-treated group received 0.4×LD50 (16.8 μg/kg) sarin. Daily injections (a total of 14 days) were administered sc between the shoulder blades in a volume of 1.0 ml/kg body weight. At the end of the final injection, 6 animals in each group were chosen for Morris water maze test. The rest guinea pigs (n = 8 for each group) were sacrificed by decapitation, and hippocampus were dissected for analysis. Compared with the control-group, the escape latency in sarin-group was significantly (p < 0.05) longer while the crossing times were significantly decreased in the Morris water task (p < 0.05). Sarin inhibited activities of acetylcholinesterase (AChE) and neuropathy target esterase (NTE) in hippocampus. The AChE activity of hippocampus from sarin-treated groups is equivalent to 59.9 ± 6.4 %, and the NTE activity of hippocampus from sarin-groups is equivalent to 78.1 ± 8.3 % of that from control-group. Metabolites were identified and validated. A total of 14 variables were selected as potential biomarkers. Phospholipids [phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylinositol (PI), Lysophosphatidylethanolamine (LysoPE or LPE)] and sphingolipids (SPs) [sphinganine (SA), phytosphingosine (PSO) and sphinganine-1-phosphate (SA1P)] were clearly modified. In conclusion, repeated low-dose exposures to sarin disrupted the homeostasis of phospholipid and sphingolipid metabolism in guinea pig hippocampus and may lead to a neuronal-specific function disorders. Identified metabolites such as SA1P need to be studied more deeply on their biological function that against sarin lesions. In future research, we should pay more attention to characterize the physiological roles of lipid metabolism enzymes as well as their involvement in pathologies induced by repeated low-level sarin exposure.
Collapse
Affiliation(s)
- Meng Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Shikun Deng
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Yalan Cui
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Tong Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Liangcai Song
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Ruihua Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Yi Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Jianfu Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Jingjing Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China.
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China.
| |
Collapse
|
22
|
Yang H, Guo J, Jin W, Chang C, Guo X, Xu C. A combined proteomic and metabolomic analyses of the priming phase during rat liver regeneration. Arch Biochem Biophys 2020; 693:108567. [PMID: 32898568 DOI: 10.1016/j.abb.2020.108567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 01/07/2023]
Abstract
By comparing differentially abundant proteins and metabolites, the protein expression, metabolic changes and metabolic regulation mechanisms during the priming phase of liver regeneration (LR) were investigated. We combined proteomic analysis via isobaric tags for relative and absolute quantification (iTRAQ) with metabolomic analysis via nontargeted liquid chromatography-mass spectrometry (LC-MS). LC-MS was used to examine 29 energy metabolites expression alterations in targeted metabolomics. A total number of 441 differentially expressed proteins and 65 metabolites were identified. PSMB10, PSMB5, RCG_63409, PSME4 and PSMB7 were key node proteins, these proteins are involved in the proteasome pathway. The most strongly enriched transcription factor motif was TP63. These results point out a critical role of the proteasome pathway (defense mechanisms) and of TP63 (metabolic regulator) as the key transcription factor during the priming phase of LR. Metabolomic and metabolite analysis showed that profiling indicates upregulation of arginine biosynthesis and glycolysis as the main ATP-delivering pathway. Integrative proteomic and metabolomic analysis showed that biomolecular changes were primarily related to the neurological disease, cell death and survival and cell morphology. What's more, neurotransmitters may play an important role in the regulation of LR.
Collapse
Affiliation(s)
- Hui Yang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Jianlin Guo
- College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Wei Jin
- College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Cuifang Chang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Xueqiang Guo
- College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
23
|
An integrative metabolomics and network pharmacology method for exploring the effect and mechanism of Radix Bupleuri and Radix Paeoniae Alba on anti-depression. J Pharm Biomed Anal 2020; 189:113435. [DOI: 10.1016/j.jpba.2020.113435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
|
24
|
Qiu K, Li Z, Li C, Huang H, Zhu W. Protective effect of total glycosides from lily on H2O2-induced H9C2 cells mitochondrial damage and characterization of the chemical profiles by UHPLC-LTQ-Orbitrap-MSn. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
25
|
Li Y, Wu L, Chen C, Wang L, Guo C, Zhao X, Zhao T, Wang X, Liu A, Yan Z. Serum Metabolic Profiling Reveals the Antidepressive Effects of the Total Iridoids of Valeriana jatamansi Jones on Chronic Unpredictable Mild Stress Mice. Front Pharmacol 2020; 11:338. [PMID: 32265710 PMCID: PMC7099651 DOI: 10.3389/fphar.2020.00338] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/06/2020] [Indexed: 12/20/2022] Open
Abstract
Background Depression is a long-term complex psychiatric disorder, and its etiology remains largely unknown. Valeriana jatamansi Jones ex Roxb (V. jatamansi) is used in the clinic for the treatment of depression, but there are insufficient reports of its antidepressive mechanisms and a poor understanding of its endogenous substance-related metabolism. The objective of this study was to identify biomarkers related to depression in serum samples and evaluate the antidepressive effects of the iridoid-rich fraction of V. jatamansi (IRFV) in a chronic unpredictable mild stress (CUMS) mouse model. Methods Here, CUMS was used to establish a mouse model of depression. Behavioral and biochemical indicators were investigated to evaluate the pharmacodynamic effects. A comprehensive serum metabolomics study by nuclear magnetic resonance (NMR) approach was applied to investigate the pharmacological mechanism of IRFV in CUMS mouse. Subsequently, we used multivariate statistical analysis to identify metabolic markers, such as principal component analysis (PCA) and orthogonal projection to latent structure with discriminant analysis (OPLS-DA), to distinguish between the CUMS mouse and the control group. Results After IRFV treatment, the immobility time, sucrose preference, and monoamine neurotransmitter were improved. PCA scores showed clear differences in metabolism between the CUMS group and control group. The PLS-DA or OPLS-DA model exhibited 26 metabolites as biomarkers to distinguish between the CUMS mice and the control mouse. Moreover, IRFV could significantly return 21 metabolites to normal levels. Conclusion The results confirmed that IRFV exerted an antidepressive effect by regulating multiple metabolic pathways, including the tricarboxylic acid cycle, the synthesis of neurotransmitters, and amino acid metabolism. These findings provide insights into the antidepressive mechanisms of IRFV.
Collapse
Affiliation(s)
- Yongbiao Li
- School of Life Science and Engineering, Southwest Jiao Tong University, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanlan Wu
- School of Life Science and Engineering, Southwest Jiao Tong University, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chang Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liwen Wang
- School of Life Science and Engineering, Southwest Jiao Tong University, Chengdu, China
| | - Cong Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoqin Zhao
- School of Life Science and Engineering, Southwest Jiao Tong University, Chengdu, China
| | - Tingting Zhao
- School of Life Science and Engineering, Southwest Jiao Tong University, Chengdu, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyi Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - An Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiyong Yan
- School of Life Science and Engineering, Southwest Jiao Tong University, Chengdu, China
| |
Collapse
|
26
|
Peng Z, Zhang C, Yan L, Zhang Y, Yang Z, Wang J, Song C. EPA is More Effective than DHA to Improve Depression-Like Behavior, Glia Cell Dysfunction and Hippcampal Apoptosis Signaling in a Chronic Stress-Induced Rat Model of Depression. Int J Mol Sci 2020; 21:ijms21051769. [PMID: 32150824 PMCID: PMC7084382 DOI: 10.3390/ijms21051769] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Clinical evidence indicated that eicosapentaenoic acid (EPA) was more effective than docosahexaenoic acid (DHA) in depression treatment. However, possible mechanisms remain unclear. Here, a chronic unpredictable mild stress (CUMS)-induced model of depression was used to compare EPA and DHA anti-depressant effects. After EPA or DHA feeding, depression-like behavior, brain n-3/n-6 PUFAs profile, serum corticosterone and cholesterol concentration, hippocampal neurotransmitters, microglial and astrocyte related function, as well as neuronal apoptosis and survival signaling pathways were studied. EPA was more effective than DHA to ameliorate CUMS-induced body weight loss, and depression-like behaviors, such as increasing sucrose preference, shortening immobility time and increasing locomotor activity. CUMS-induced corticosterone elevation was reversed by bother fatty acids, while increased cholesterol was only reduced by EPA supplement. Lower hippocampal noradrenaline and 5-hydroxytryptamine concentrations in CUMS rats were also reversed by both EPA and DHA supplement. However, even though CUMS-induced microglial activation and associated increased IL-1β were inhibited by both EPA and DHA supplement, increased IL-6 and TNF-α levels were only reduced by EPA. Compared to DHA, EPA could improve CUMS-induced suppressive astrocyte biomarkers and associated BDNF-TrkB signaling. Moreover, EPA was more effective than DHA to attenuate CUMS-induced higher hippocampal NGF, GDNF, NF-κB, p38, p75, and bax expressions, but reversed bcl-2 reduction. This study for the first time revealed the mechanisms by which EPA was more powerful than DHA in anti-inflammation, normalizing astrocyte and neurotrophin function and regulating NF-κB, p38 and apoptosis signaling. These findings reveal the different mechanisms of EPA and DHA in clinical depression treatment.
Collapse
Affiliation(s)
- Zhilan Peng
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
- Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Cai Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
- Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ling Yan
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
| | - Yongping Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
- Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhiyou Yang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
- Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiajia Wang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
- Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence:
| |
Collapse
|
27
|
Xu S, Liu Y, Pu J, Gui S, Zhong X, Tian L, Song X, Qi X, Wang H, Xie P. Chronic Stress in a Rat Model of Depression Disturbs the Glutamine-Glutamate-GABA Cycle in the Striatum, Hippocampus, and Cerebellum. Neuropsychiatr Dis Treat 2020; 16:557-570. [PMID: 32158215 PMCID: PMC7047974 DOI: 10.2147/ndt.s245282] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a complex psychiatric illness involving multiple brain regions. Increasing evidence indicates that the striatum is involved in depression, but the molecular mechanisms remain unclear. METHODS In this study, we performed a gas chromatography-mass spectrometer (GC/MS)-based metabolomic analysis in the striatum of depressed rats induced by chronic unpredictable mild stress (CUMS). We then compared striatal data with our previous data from the hippocampus and cerebellum to systematically investigate the potential pathogenesis of depression. RESULTS We identified 22 differential metabolites in the striatum between the CUMS and control groups; these altered metabolites were mainly involved in amino acid, carbohydrate, and nucleotide metabolism. Pathway analysis revealed that the shared metabolic pathways of the striatum, hippocampus, and cerebellum were mainly involved in the glutamine-glutamate metabolic system. Four genes in the striatum (GS, GLS2, GLT1, and SSADH), six genes in the hippocampus (GS, SNAT1, GAD1, SSADH, VGAT, and ABAT), and five genes in the cerebellum (GS, ABAT, SNAT1, VGAT, and GDH) were found to be significantly altered using RT-qPCR. Correlation analysis indicated that these differential genes were strongly correlated. CONCLUSION These results suggest that chronic stress might induce depressive behaviors by disturbing the glutamine-glutamate-GABA cycle in the striatum, hippocampus, and cerebellum, and that the glutamine-glutamate-GABA cycle among these three brain regions might generate cooperative action in response to chronic stress.
Collapse
Affiliation(s)
- Shaohua Xu
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, People's Republic of China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China
| | - Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China.,College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China
| | - Lu Tian
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China
| | - Xuemian Song
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China.,College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xunzhong Qi
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, People's Republic of China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
28
|
Zhong M, Tian X, Chen S, Chen M, Guo Z, Zhang M, Zheng G, Li Z, Shi Z, Wang G, Gao H, Liu F, Huang C. Identifying the active components of Baihe-Zhimu decoction that ameliorate depressive disease by an effective integrated strategy: a systemic pharmacokinetics study combined with classical depression model tests. Chin Med 2019; 14:37. [PMID: 31572489 PMCID: PMC6757420 DOI: 10.1186/s13020-019-0254-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
Background Modern pharmacological studies have demonstrated that Baihe–Zhimu decoction (BZD) has antidepressant effects. However, the complex composition and lack of clear evaluation standards for BZD make it less likely to be understood and accepted than evidence-based active natural compounds. Methods In this study, an effective method for the identification of antidepressant components was demonstrated and applied to BZD. The first step was to evaluate the efficacy of BZD by the forced swimming test (FST) and the tail suspension test (TST), followed by successive quantitative analyses of the absorbed constituents at different stages, such as before hepatic disposition, liver distribution, after hepatic disposition and brain distribution after the oral administration of BZD. Finally, the compounds detected in the brain were confirmed by activity testing. Results Our investigation observed that timosaponin BII and timosaponin BIII were accurately determined in the brain after oral administration of BZD, and they were further confirmed to reduce the immobility time in the FST and TST. As described above, timosaponin BII and timosaponin BIII were used to scientifically and reasonably explain the effective chemical basis of the effect of BZD on depression. Conclusions This research affords an effective method to discover lead molecules for antidepressants from traditional Chinese medicine.
Collapse
Affiliation(s)
- Ming Zhong
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 People's Republic of China
| | - Xiaoting Tian
- 2Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203 People's Republic of China
| | - Shuoji Chen
- 2Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203 People's Republic of China
| | - Mingcang Chen
- 2Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203 People's Republic of China
| | - Ziqiong Guo
- 2Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203 People's Republic of China
| | - Minna Zhang
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 People's Republic of China
| | - Gongpu Zheng
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 People's Republic of China
| | - Zhixiong Li
- 2Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203 People's Republic of China
| | - Zhangpeng Shi
- 2Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203 People's Republic of China
| | - Guanghui Wang
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 People's Republic of China
| | - Honggang Gao
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 People's Republic of China
| | - Fang Liu
- 2Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203 People's Republic of China
| | - Chenggang Huang
- 2Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203 People's Republic of China
| |
Collapse
|
29
|
Li H, Wu C, Liu Y, Zhang S, Gao X. Baihe Zhimu formula attenuates the efficacy of tamoxifen against breast cancer in mice through modulation of CYP450 enzymes. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:240. [PMID: 31484532 PMCID: PMC6727345 DOI: 10.1186/s12906-019-2651-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 08/21/2019] [Indexed: 01/13/2023]
Abstract
Background Major depression is an important complication in patients with breast cancer, but is an underrecognized and undertreated condition in this population. The Baihe Zhimu Tang (BZ formula) is a traditional Chinese formula consisting of Lilium brownii var. viridulum Baker (L. brownii) and Anemarrhena asphodeloides (A. asphodeloides) Bunge that is used for the treatment of depression. However, the interaction between tamoxifen and BZ formula is frequently overlooked by traditional and alternative medical doctors. In the present study, the influence of BZ formula on the effectiveness of tamoxifen in breast cancer in mice and the effects of tamoxifen on the antidepressant effect of BZ formula and its major components mangiferin and timosaponin BII in mice were investigated. Methods Identification of the major components of BZ formula was performed using fast HPLC-tandem mass spectrometry (HPLC-MS/MS). The main flavonoids and saponins in A. asphodeloides were determined by HPLC-UV and HPLC-ELSD, separately. The antidepressant efficacy of BZ formula was evaluated using a mouse tail-suspension test. The effects of BZ formula on the antineoplastic activity of tamoxifen were performed in a mouse xenograft model of human breast cancer MCF-7 cells. P450 activity was determined using microsomal incubations by HPLC-MS/MS. Measurement of serum concentrations of tamoxifen and its metabolites was used by HPLC-MS/MS. Results BZ formula attenuated the effectiveness of tamoxifen treatment of breast cancer and reduced the concentrations of endoxifen and 4-OH-tamoxifen in tumor-bearing mice. Of two of the major components of BZ formula, the antidepressant effect of mangiferin, but not timosaponin BII, was significantly inhibited by tamoxifen in mice. BZ formula and its component mangiferin also significantly inhibited CYP450 enzyme activity in rat liver microsomes. Conclusion BZ formula attenuated the effectiveness of tamoxifen in treatment of breast cancer in mice by influencing CYP450 enzymes. The present study laid a foundation for the treatment of patients with breast cancer and depression by BZ formula or other Chinese herbal formulas containing A. asphodeloides.
Collapse
|
30
|
Zhou Y, Tao X, Wang Z, Feng L, Wang L, Liu X, Pan R, Liao Y, Chang Q. Hippocampus Metabolic Disturbance and Autophagy Deficiency in Olfactory Bulbectomized Rats and the Modulatory Effect of Fluoxetine. Int J Mol Sci 2019; 20:ijms20174282. [PMID: 31480539 PMCID: PMC6747550 DOI: 10.3390/ijms20174282] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
An olfactory bulbectomy (OBX) rodent is a widely-used model for depression (especially for agitated depression). The present study aims to investigate the hippocampus metabolic profile and autophagy-related pathways in OBX rats and to explore the modulatory roles of fluoxetine. OBX rats were given a 30-day fluoxetine treatment after post-surgery rehabilitation, and then behavioral changes were evaluated. Subsequently, the hippocampus was harvested for metabonomics analysis and Western blot detection. As a result, OBX rats exhibited a significantly increased hyperemotionality score and declined spatial memory ability. Fluoxetine reduced the hyperemotional response, but failed to restore the memory deficit in OBX rats. Sixteen metabolites were identified as potential biomarkers for the OBX model including six that were rectified by fluoxetine. Disturbed pathways were involved in amino acid metabolism, fatty acid metabolism, purine metabolism, and energy metabolism. In addition, autophagy was markedly inhibited in the hippocampus of OBX rats. Fluoxetine could promote autophagy by up-regulating the expression of LC3 II, beclin1, and p-AMPK/AMPK, and down-regulating the levels of p62, p-Akt/Akt, p-mTOR/mTOR, and p-ULK1/ULK1. Our findings indicated that OBX caused marked abnormalities in hippocampus metabolites and autophagy, and fluoxetine could partly redress the metabolic disturbance and enhance autophagy to reverse the depressive-like behavior, but not the memory deficits in OBX rats.
Collapse
Affiliation(s)
- Yunfeng Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xue Tao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Li Feng
- School of Medicine, the Open University of China, Beijing 100039, China
| | - Lisha Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xinmin Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ruile Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yonghong Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
31
|
Antoniuk S, Bijata M, Ponimaskin E, Wlodarczyk J. Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability. Neurosci Biobehav Rev 2019; 99:101-116. [DOI: 10.1016/j.neubiorev.2018.12.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023]
|
32
|
Yang LN, Pu JC, Liu LX, Wang GW, Zhou XY, Zhang YQ, Liu YY, Xie P. Integrated Metabolomics and Proteomics Analysis Revealed Second Messenger System Disturbance in Hippocampus of Chronic Social Defeat Stress Rat. Front Neurosci 2019; 13:247. [PMID: 30983951 PMCID: PMC6448023 DOI: 10.3389/fnins.2019.00247] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/01/2019] [Indexed: 12/17/2022] Open
Abstract
Depression is a common and disabling mental disorder characterized by high disability and mortality, but its physiopathology remains unclear. In this study, we combined a non-targeted gas chromatography-mass spectrometry (GC-MS)-based metabolomic approach and isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis to elucidate metabolite and protein alterations in the hippocampus of rat after chronic social defeat stress (CSDS), an extensively used animal model of depression. Ingenuity pathway analysis (IPA) was conducted to integrate underlying relationships among differentially expressed metabolites and proteins. Twenty-five significantly different expressed metabolites and 234 differentially expressed proteins were identified between CSDS and control groups. IPA canonical pathways and network analyses revealed that intracellular second messenger/signal transduction cascades were most significantly altered in the hippocampus of CSDS rats, including cyclic adenosine monophosphate (cAMP), phosphoinositol, tyrosine kinase, and arachidonic acid systems. These results provide a better understanding of biological mechanisms underlying depression, and may help identify potential targets for novel antidepressants.
Collapse
Affiliation(s)
- Li-Ning Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Jun-Cai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Lan-Xiang Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Guo-Wei Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Xin-Yu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu-Qing Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi-Yun Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| |
Collapse
|
33
|
Xiaoyao Kangai Jieyu Fang, a Chinese Herbal Formulation, Ameliorates Cancer-Related Depression Concurrent with Breast Cancer in Mice via Promoting Hippocampal Synaptic Plasticity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3967642. [PMID: 30581482 PMCID: PMC6276466 DOI: 10.1155/2018/3967642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022]
Abstract
Diagnosis with breast cancer is a major life event that elicits increases in depressive symptoms for up to 50% of women. Xiaoyao Kangai Jieyu Fang (XYKAJY) is derived from a canonical TCM formula, Xiaoyao San (XYS), which has a history of nearly 1000 years for treating depression. The aim of this study was to investigate whether XYKAJY alleviates depression-like behavior and breast tumor proliferation in breast cancer mice then explore the mechanisms underlying its action on HPA axis and hippocampal plasticity further. XYKAJY was treated at the high dose of 1.95 g/mL and 0.488 g/mL, after 21 days of administration. Different behaviors, monoamine neurotransmitters, tumor markers, and the index of HPA axis were detected to evaluate depressive-like symptoms of breast cancer mice. Also, the pathological changes of the tumor, hippocampus, and the expressions of GR, NR2A, NR2B, CAMKII, CREB, and BDNF were detected. In this study, XYKAJY formulation significantly improved the autonomic behavior, reduced the incubation period of feeding, and reversed the typical depressive-like symptoms in breast cancer mice. Also, it reduced the content of CORT, ACTH, CRH, and CA125, CA153, CEA in the blood, protected the pathological changes of the hippocampus and tumor, upregulated the expression of GR, CREB, and BDNF in the hippocampus, and significantly decreased the expression of NR2A, NR2B, and CaMKII. These results provide direct evidence that XYKAJY effectively alleviates depression-like behaviors and tumor proliferation in vehicle mice with ameliorates hippocampus synaptic plasticity dysfunctions.
Collapse
|
34
|
Akimoto H, Oshima S, Sugiyama T, Negishi A, Nemoto T, Kobayashi D. Changes in brain metabolites related to stress resilience: Metabolomic analysis of the hippocampus in a rat model of depression. Behav Brain Res 2018; 359:342-352. [PMID: 30447240 DOI: 10.1016/j.bbr.2018.11.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/29/2018] [Accepted: 11/12/2018] [Indexed: 12/24/2022]
Abstract
The ability to cope successfully with stress is known as 'resilience', and those with resilience are not prone to developing depression. One preclinical animal model for depression is the chronic mild stress (CMS) model. There are CMS-resilient (do not manifest anhedonia) and CMS-susceptible (manifest anhedonia) rats. This study aimed to investigate the differences in the profiles of hippocampal metabolites between susceptible and resilient rats, and to identify a biomarker that can distinguish the two. We divided stress-loaded rats into susceptible and resilient types based on their sucrose preference values. We then conducted brain-derived neurotrophic factor (BDNF) quantification and metabolomic analysis in the hippocampus. Compared to the controls, no significant differences were observed in the hippocampal BDNF levels of susceptible and resilient rats. However, the control rats were clearly distinguishable from the susceptible rats in terms of their brain metabolite profiles; the control rats were difficult to distinguish from the resilient rats. CMS model rats showed an increase in the levels of N-acetylaspartate and glutamate, and a decrease in the levels of aspartate and γ-aminobutyric acid in the hippocampus. Of the 12 metabolites measured in the present study, N-acetylaspartate was the only one that could differentiate the three types (control, susceptible, and resilient) of rats. Thus, brain metabolomic analyses can not only distinguish CMS model rats from control rats, but also indicate stress susceptibility. The variation in the levels of N-acetylaspartate in the hippocampus of control, resilient, and susceptible rats demonstrated that it could be a biomarker for stress susceptibility.
Collapse
Affiliation(s)
- Hayato Akimoto
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Shinji Oshima
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.
| | - Tomoaki Sugiyama
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Akio Negishi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Tadashi Nemoto
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Daisuke Kobayashi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| |
Collapse
|
35
|
Ren Y, Yang CH, Li ZM, Yang Z, Xiao ZJ, Duan JJ, Zhou T, Xu F. Chronic Stress Disturbs Metabolome of Blood Plasma and Urine in Diabetic Rats. Front Psychiatry 2018; 9:525. [PMID: 30405462 PMCID: PMC6206074 DOI: 10.3389/fpsyt.2018.00525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/03/2018] [Indexed: 01/09/2023] Open
Abstract
About 30% of diabetes patients suffer from varying degrees of depression. Diabetes itself is associated with abnormal carbohydrate and energy metabolism. Whether chronic stress-induced depression-like behavior impacts the metabolome of blood plasma and urine in diabetes is not clear. This study aimed to investigate the effect of chronic stress on metabolome of plasma and urine in spontaneously diabetic Goto-Kakizaki (GK) rats. The GK rats were subjected to 8 weeks' chronic unpredictable mild stress (CUMS) to induce depression-like behavior. Metabolome analysis of blood plasma and urine using liquid chromatography mass spectrometry (LC/MS) was performed. Multivariate data analysis was used to evaluate the data. Behavior and biochemical assay confirmed the successful establishment of CUMS-induced depression-like behavior model in rats. Disturbance of 20 plasma metabolites and 16 urine metabolites were altered in CUMS-induced depression GK rats as compared to control ones. These disturbed metabolites were involved in fatty acid metabolism, sphingolipid metabolism, phenylalanine metabolism, citrate cycle, glycolysis, glutathione metabolism, and nicotinate and nicotinamide metabolism. This study suggest that chronic stress-induced depression-like behavior may further disturb diabetes-itself energy metabolome. The plasma and urine lipid metabolites monitoring may be useful for early detection of depression in patients with diabetes mellitus.
Collapse
Affiliation(s)
- Yu Ren
- Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Cheng-hua Yang
- Fengxian Hospital, Jinzhou Medical University Graduate Base, Shanghai, China
| | - Zhu-man Li
- Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Zhen Yang
- Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Zhi-jun Xiao
- Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Jing-jing Duan
- Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Ting Zhou
- Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Feng Xu
- Fengxian Hospital, Southern Medical University, Shanghai, China
- Fengxian Hospital, Jinzhou Medical University Graduate Base, Shanghai, China
| |
Collapse
|
36
|
Cao Y, Chen X, Xie H, Zou L, Hu LJ, Zhou XJ. Correlation between Electroencephalogram Alterations and Frontal Cognitive Impairment in Esophageal Cancer Patients Complicated with Depression. Chin Med J (Engl) 2018; 130:1785-1790. [PMID: 28748850 PMCID: PMC5547829 DOI: 10.4103/0366-6999.211552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Some esophageal cancer patients complicated with depression exhibit cognitive impairments. Frontal electroencephalogram (EEG) may be used as a reliable biomarker for prefrontal-mediated cognitive functions. This study was to investigate alterations of EEG and frontal cognitive impairment in esophageal cancer patients complicated with depression and to assess their correlation. METHODS Sixty-five esophageal cancer patients with depression (study group) and 62 healthy controls (control group) were included in this study. The study group were assigned into psychotic depressed (PD, n = 32) and nonpsychotic depressed (NPD, n = 33) subgroups based on complication with psychotic symptoms (Brief Psychiatric Rating Scale [BPRS] >35). EEG examination, Beck self-rating depression scale, and BPRS were used to assess clinical symptoms. Chi-square test, two independent sample t-test, one-way analysis of variance, and Kruskal-Wallis test were utilized to compare the variables between two groups. EEG abnormalities and scores of frontal cognitive function test were analyzed by partial correlation analysis in the PD and NPD subgroups. RESULTS Compared with control group, the study group displayed greater scores either in the Stroop test (19.89 ± 2.05 vs. 24.12 ± 2.19, P = 0.006) or Color Trails Test (CTT; 11.92 ± 1.01 vs. 15.02 ± 1.63, P = 0.008), and reduced score (35.05 ± 2.01 vs. 32.11 ± 2.38, P = 0.007) in the verbal fluency test (VFT). Compared to NPD subgroup, PD subgroup exhibited increased scores in Stroop test (22.89 ± 2.07 vs. 25.38 ± 2.32, P = 0.009) and CTT (13.16 ± 1.71 vs. 15.82 ± 1.13, P = 0.008). Moreover, increased scores in Stroop test and CTT as well as scores in VFT were associated with the severity of depression. The study group had an abnormal frontal EEG, such as α forward, α asymmetry, α moderation, and increased θ activity relative to control group. Similarly, compared with NPD subgroup, PD subgroup displayed α forward, α asymmetry, and α moderation. The correlation test revealed that α forward and α asymmetry were negatively associated with VFT score, but positively correlated with the scores of CTT and the Stroop test in PD subgroup. In addition, α asymmetry in NPD subgroup was positively related to CTT scores. CONCLUSION This study indicated that frontal cognitive impairment in esophageal cancer patients complicated with depression is associated with EEG alterations.
Collapse
Affiliation(s)
- Yin Cao
- Department of Neurology, Laboratory of Neurological Diseases, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Xia Chen
- Department of Neurology, Laboratory of Neurological Diseases, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Hui Xie
- Electroencephalogram Laboratory, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Ling Zou
- Department of Automation, School of Information Science and Engineering, Changzhou University, Changzhou, Jiangsu 213000, China
| | - Li-Jun Hu
- Department of Radiotherapy, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Xian-Ju Zhou
- Department of Neurology, Laboratory of Neurological Diseases, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China
| |
Collapse
|
37
|
Yang B, Liu Z, Wang Q, Chai Y, Xia P. Pharmacokinetic comparison of seven major bioactive components in normal and depression model rats after oral administration of Baihe Zhimu decoction by liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 2018; 148:119-127. [DOI: 10.1016/j.jpba.2017.09.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/20/2022]
|
38
|
Zhao H, Du H, Liu M, Gao S, Li N, Chao Y, Li R, Chen W, Lou Z, Dong X. Integrative Proteomics-Metabolomics Strategy for Pathological Mechanism of Vascular Depression Mouse Model. J Proteome Res 2017; 17:656-669. [PMID: 29190102 DOI: 10.1021/acs.jproteome.7b00724] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vascular depression (VD), a subtype of depression, is caused by vascular diseases or cerebrovascular risk factors. Recently, the proportion of VD patients has increased significantly, which severely affects their quality of life. However, the current pathogenesis of VD has not yet been fully understood, and the basic research is not adequate. In this study, on the basis of the combination of LC-MS-based proteomics and metabolomics, we aimed to establish a protein metabolism regulatory network in a murine VD model to elucidate a more comprehensive impact of VD on organisms. We detected 44 metabolites and 304 proteins with different levels in the hippocampus samples from VD mice using a combination of metabolomic and proteomics analyses with an isobaric tags for relative and absolute quantification (iTRAQ) method. We constructed a protein-to-metabolic regulatory network by correlating and integrating the differential metabolites and proteins using ingenuity pathway analysis. Then we quantitatively validated the levels of the bimolecules shown in the bioinformatics analysis using LC-MS/MS and Western blotting. Validation results suggested changes in the regulation of neuroplasticity, transport of neurotransmitters, neuronal cell proliferation and apoptosis, and disorders of amino acids, lipids and energy metabolism. These proteins and metabolites involved in these dis-regulated pathways will provide a more targeted and credible direction to study the mechanism of VD. Therefore, this paper presents an approach and strategy that was applied in integrative proteomics and metabolomics for research and screening potential targets and biomarkers of VD, which could be more precise and credible in a field lacking adequate basic research.
Collapse
Affiliation(s)
- Hongxia Zhao
- School of Pharmacy, Second Military Medical University , Shanghai 200433, China
| | - Hongli Du
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital , Shanghai 200433, China
| | - Min Liu
- Pharmacy Department of Changhai Hospital, Second Military Medical University , Shanghai 200433, China
| | - Songyan Gao
- School of Pharmacy, Second Military Medical University , Shanghai 200433, China
| | - Na Li
- School of Pharmacy, Second Military Medical University , Shanghai 200433, China
| | - Yufan Chao
- School of Pharmacy, Second Military Medical University , Shanghai 200433, China
| | - Ruiqing Li
- School of Life Sciences and Technology, Shanghai Tech University , Shanghai 200433, China
| | - Wei Chen
- Changhai Hospital, Second Military Medical University , Shanghai 200433, China
| | - Ziyang Lou
- School of Pharmacy, Second Military Medical University , Shanghai 200433, China
| | - Xin Dong
- School of Pharmacy, Second Military Medical University , Shanghai 200433, China
| |
Collapse
|
39
|
Yang B, Liu Z, Wang Q, Xia P. Chemical interaction between Lilium brownii and Rhizoma Anemarrhenae, the herbal constituents of Baihe Zhimu decoction, by liquid chromatography coupled to hybrid triple quadrupole linear ion trap mass spectrometer. Biomed Chromatogr 2017; 32. [PMID: 29027684 DOI: 10.1002/bmc.4118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/28/2017] [Accepted: 10/03/2017] [Indexed: 11/08/2022]
Abstract
During the course of decoction, the components of herbal formula interact with each other, such that chemical extraction characteristics are altered. The crude drugs, Lilium brownii (Baihe) and Rhizoma Anemarrhenae (Zhimu), are the herbal constituents of Baihe Zhimu decoction, a traditional herbal formula. To investigate the chemical interaction between Baihe and Zhimu when decocting together, eight marker components in Baihe Zhimu decoction were simultaneously characterized and quantified in one run by a hybrid triple quadrupole linear ion trap mass spectrometer in the multiple reactions monitoring-information dependent acquisition-enhanced product ion mode. The results showed that Zhimu significantly suppressed the extraction of phenolic glycosides (the components from Baihe) when co-decocting, and Baihe clearly suppressed the extraction of xanthones and steroidal saponins (the components from Zhimu). Overall, the presently developed method would be a preferred candidate for the investigation of the chemical interaction between herbal medicines.
Collapse
Affiliation(s)
- Bo Yang
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhirui Liu
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qian Wang
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
40
|
Du H, Zhang H, Zhao Y, Liu M, Chen A, Liu S, Xue D, Liu Y, Zhang G. Metabolic analysis of the antidepressive effects of Yangxinshi Tablet in a vascular depression model in mice. Biomed Chromatogr 2017; 32. [PMID: 28992663 DOI: 10.1002/bmc.4114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 12/28/2022]
Abstract
In recent years, vascular depression has become the focus of international attention. Yangxinshi Tablet (YXST) is usually used in cthe linic for the treatment of arrhythmia and heart failure, but we found that it also has antidepressive effects. The objective of the study was to identify biomarkers related to vascular depression in hippocampus and explore the antidepressive effects of YXST on the mouse model. Untargeted metabolomics based on UHPLC-Q-TOF/MS was applied to identify significantly differential biomarkers between the model group and control group. Unsupervised principal component analysis (PCA) was used to scan the tendency of groups and partial least squares-discriminant analysis (PLS-DA) to distinguish between the vascular depressive mice and the sham. PCA stores showed clear differences in metabolism between the vascular depressive mice and sham groups. The PLS-DA model exhibited 38 metabolites as the biomarkers to distinguish the vascular depressive mice and the sham. Further, YXST significantly regulated 22 metabolites to normal levels. The results suggested that YXST has a comprehensive antidepressive effect on vascular depression via regulation of multiple metabolic pathways including amino acid, the tricarboxylic acid cycle and phosphoglyceride metabolisms. These findings provide insight into the pathophysiological mechanism underlying vascular depression and the mechanism of YXST.
Collapse
Affiliation(s)
- Hongli Du
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yahong Zhao
- Department of Chinese Materia Medica, Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd, Shanghai, China
| | - Min Liu
- Department of Pharmacy, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Anni Chen
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Shiyu Liu
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Dan Xue
- Department of Chinese Materia Medica, Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd, Shanghai, China
| | - Yanjun Liu
- Department of Chinese Materia Medica, Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd, Shanghai, China
| | - Guoqing Zhang
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| |
Collapse
|
41
|
Comprehensive profiling and characterization of chemical constituents of rhizome of Anemarrhena asphodeloides Bge. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060:355-366. [DOI: 10.1016/j.jchromb.2017.06.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/14/2017] [Accepted: 06/17/2017] [Indexed: 12/18/2022]
|
42
|
Yu J, Zhang H, Li Y, Sun S, Gao J, Zhong Y, Sun D, Zhang G. Metabolomics revealed the toxicity of cationic liposomes in HepG2 cells using UHPLC-Q-TOF/MS and multivariate data analysis. Biomed Chromatogr 2017; 31. [PMID: 28664536 DOI: 10.1002/bmc.4036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 01/16/2023]
Abstract
Cationic liposomes (CLs) are novel nonviral vectors widely used for delivering drugs or genes. However, applications of CLs are largely hampered by their cytotoxicity, partly because the potential mechanism underlying the cytotoxicity of CLs remains unclear. The aim of the present study was to explore the underlying mechanism of cytotoxicity induced by CLs on HepG2 cells. Differential metabolites were identified and quantified using ultra-liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). The toxicity of CLs on HepG2 cells was evaluated by multivariate data analysis and statistics. Additionally, CCK-8 assay, heatmap, pathway and co-expression network were carried out to explore the relations between the metabolites and the pathways. The results showed a dose-dependent toxic effect of CLs on HepG2 cells, with an IC50 value of 119.9 μg/mL. Multivariate statistical analysis identified 42 potential metabolites between CLs exposure and control groups. Pathway analysis showed significant changes in pathways involving amino acid metabolism, energy metabolism, lipid metabolism and oxidative stress in the CLs exposure group vs the control group. Metabolites related to the above-mentioned pathways included phenylalanine, methionine, creatine, oxalacetic acid, glutathione, oxidized glutathione, choline phosphate and several unsaturated fatty acids, indicating that cells were disturbed in amino acid metabolism, energy and lipid supply when CLs exposure-induced injury occurred. It is concluded that CLs may induce cytotoxicity by enhancing reactive oxygen species in vitro, affect the normal process of energy metabolism, disturb several vital signaling pathways and finally induce cell death.
Collapse
Affiliation(s)
- Jing Yu
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tong ji University School of Medicine, Shanghai, China
| | - Ying Li
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Sen Sun
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jie Gao
- Second Military Medical University School of Pharmacy, Shanghai, China
| | - Yanqiang Zhong
- Second Military Medical University School of Pharmacy, Shanghai, China
| | - Duxin Sun
- Department of Pharmaceutical Science, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Guoqing Zhang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| |
Collapse
|
43
|
Lu S, Han Y, Chu H, Kong L, Zhang A, Yan G, Sun H, Wang P, Wang X. Characterizing serum metabolic alterations of Alzheimer's disease and intervention of Shengmai-San by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry. Food Funct 2017; 8:1660-1671. [DOI: 10.1039/c7fo00154a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Metabolomics approach describing the nervous protective mechanism of Shengmai-San (SMS) in Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Shengwen Lu
- Heilongjiang University of Chinese Medicine
- Harbin
- China
| | - Ying Han
- Heilongjiang University of Chinese Medicine
- Harbin
- China
| | - Hang Chu
- Heilongjiang University of Chinese Medicine
- Harbin
- China
| | - Ling Kong
- Heilongjiang University of Chinese Medicine
- Harbin
- China
| | - Aihua Zhang
- Heilongjiang University of Chinese Medicine
- Harbin
- China
| | - Guangli Yan
- Heilongjiang University of Chinese Medicine
- Harbin
- China
| | - Hui Sun
- Heilongjiang University of Chinese Medicine
- Harbin
- China
| | - Ping Wang
- Heilongjiang University of Chinese Medicine
- Harbin
- China
| | - Xijun Wang
- Heilongjiang University of Chinese Medicine
- Harbin
- China
| |
Collapse
|
44
|
Lei T, Wang Y, Li M, Zhang X, Lv C, Jia L, Wang J, Lu J. A comparative study of the main constituents and antidepressant effects of raw and vinegar-baked Bupleuri Radix in rats subjected to chronic unpredictable mild stress. RSC Adv 2017. [DOI: 10.1039/c7ra04724j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bupleuri Radix (BR) is a traditional Chinese medicine (TCM) widely used in Asian nations, which originates fromBupleurum chinenseDC orBupleurum scorzonerifoliumWilld.
Collapse
Affiliation(s)
- Tianli Lei
- Department of Medicinal Plants
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Yadan Wang
- Department of Medicinal Plants
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Mingxiao Li
- Department of Medicinal Plants
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Xin Zhang
- Department of Medicinal Plants
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Chongning Lv
- Department of Medicinal Plants
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Lingyun Jia
- Department of Medicinal Plants
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Jing Wang
- Department of Pharmaceutical Botany
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Jincai Lu
- Department of Medicinal Plants
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| |
Collapse
|