1
|
Vitharana S, Stillahn JM, Katayama DS, Henry CS, Manning MC. Application of Formulation Principles to Stability Issues Encountered During Processing, Manufacturing, and Storage of Drug Substance and Drug Product Protein Therapeutics. J Pharm Sci 2023; 112:2724-2751. [PMID: 37572779 DOI: 10.1016/j.xphs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition. This review describes how formulation principles can be applied to stabilize biopharmaceutical proteins during bioprocessing and manufacturing, considering each unit operation involved in prepration of the drug substance. In addition, the impact of the container on stabilty is discussed as well.
Collapse
Affiliation(s)
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
2
|
Process- and Product-Related Foulants in Virus Filtration. Bioengineering (Basel) 2022; 9:bioengineering9040155. [PMID: 35447715 PMCID: PMC9030149 DOI: 10.3390/bioengineering9040155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Regulatory authorities place stringent guidelines on the removal of contaminants during the manufacture of biopharmaceutical products. Monoclonal antibodies, Fc-fusion proteins, and other mammalian cell-derived biotherapeutics are heterogeneous molecules that are validated based on the production process and not on molecular homogeneity. Validation of clearance of potential contamination by viruses is a major challenge during the downstream purification of these therapeutics. Virus filtration is a single-use, size-based separation process in which the contaminating virus particles are retained while the therapeutic molecules pass through the membrane pores. Virus filtration is routinely used as part of the overall virus clearance strategy. Compromised performance of virus filters due to membrane fouling, low throughput and reduced viral clearance, is of considerable industrial significance and is frequently a major challenge. This review shows how components generated during cell culture, contaminants, and product variants can affect virus filtration of mammalian cell-derived biologics. Cell culture-derived foulants include host cell proteins, proteases, and endotoxins. We also provide mitigation measures for each potential foulant.
Collapse
|
3
|
Martinez-Lopez JE, Coleman O, Meleady P, Clynes M. Transfection of miR-31* boosts oxidative phosphorylation metabolism in the mitochondria and enhances recombinant protein production in Chinese hamster ovary cells. J Biotechnol 2021; 333:86-96. [PMID: 33940052 DOI: 10.1016/j.jbiotec.2021.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
MicroRNAs are increasingly being used to enhance relevant pathways of interest during CHO cell line development and to optimise biopharmaceutical production processes. Previous studies have demonstrated that genetic manipulation of microRNAs has led to the development of highly productive phenotypes by increasing cell density through modifying the cell cycle, extending the culture lifespan by delaying apoptotic mechanisms, or improving the energetic flux by targeting mitochondrial metabolism. Re-programming mitochondrial metabolism has arisen as a potential area of interest due to the potential to decrease the Warburg effect and increase cell specific productivity with significant impact on the manufacture of recombinant therapeutic proteins. In this study, we have demonstrated a role for miR-31* to enhance specific productivity in CHO cells by boosting oxidative phosphorylation in the mitochondria. A detailed analysis of the mitochondrial metabolism revealed that miR-31* transfection increases basal oxygen consumption and spare respiratory capacity that leads to an increase in ATP production. Additionally, a proteomic analysis unveiled a number of potential targets involved in fatty acid metabolism and the TCA cycle, both implicated in mitochondrial metabolism. This data demonstrates a potential role for miR-31* to reprogramme the mitochondrial energetic metabolism and increase recombinant protein production in CHO cells.
Collapse
Affiliation(s)
- Jesus E Martinez-Lopez
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, D09 NR58, Ireland
| | - Orla Coleman
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, D09 NR58, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, D09 NR58, Ireland.
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, D09 NR58, Ireland
| |
Collapse
|
4
|
Lavoie RA, Chu W, Lavoie JH, Hetzler Z, Williams TI, Carbonell R, Menegatti S. Removal of host cell proteins from cell culture fluids by weak partitioning chromatography using peptide-based adsorbents. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Pythoud N, Bons J, Mijola G, Beck A, Cianférani S, Carapito C. Optimized Sample Preparation and Data Processing of Data-Independent Acquisition Methods for the Robust Quantification of Trace-Level Host Cell Protein Impurities in Antibody Drug Products. J Proteome Res 2020; 20:923-931. [PMID: 33016074 DOI: 10.1021/acs.jproteome.0c00664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Host cell proteins (HCPs) are a major class of bioprocess-related impurities generated by the host organism and are generally present at low levels in purified biopharmaceutical products. The monitoring of these impurities is identified as an important critical quality attribute of monoclonal antibody (mAb) formulations not only due to the potential risk for the product stability and efficacy but also concerns linked to the immunogenicity of some of them. While overall HCP levels are usually monitored by enzyme-linked immunosorbent assay (ELISA), mass spectrometry (MS)-based approaches have been emerging as powerful and promising alternatives providing qualitative and quantitative information. However, a major challenge for liquid chromatography (LC)-MS-based methods is to deal with the wide dynamic range of drug products and the extreme sensitivity required to detect trace-level HCPs. In this study, we developed powerful and reproducible MS-based analytical workflows coupling optimized and efficient sample preparations, the library-free data-independent acquisition (DIA) method, and stringent validation criteria. The performances of several preparation protocols and DIA versus classical data-dependent acquisition (DDA) were evaluated using a series of four commercially available drug products. Depending on the selected protocols, the user has access to different information: on the one hand, a deep profiling of tens of identified HCPs and on the other hand, accurate and reproducible (coefficients of variation (CVs) < 12%) quantification of major HCPs. Overall, a final global HCP amount of a few tens of ng/mg mAb in these mAb samples was measured, while reaching a sensitivity down to the sub-ng/mg mAb level. Thus, this straightforward and robust approach can be intended as a routine quality control for any drug product analysis.
Collapse
Affiliation(s)
- Nicolas Pythoud
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR7178, F-67087 Strasbourg, France
| | - Joanna Bons
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR7178, F-67087 Strasbourg, France
| | - Geoffroy Mijola
- IRPF, Centre d'Immunologie Pierre-Fabre (CIPF), F-74160 Saint-Julien-en-Genevois, France
| | - Alain Beck
- IRPF, Centre d'Immunologie Pierre-Fabre (CIPF), F-74160 Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR7178, F-67087 Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR7178, F-67087 Strasbourg, France
| |
Collapse
|
6
|
Johnson RO, Greer T, Cejkov M, Zheng X, Li N. Combination of FAIMS, Protein A Depletion, and Native Digest Conditions Enables Deep Proteomic Profiling of Host Cell Proteins in Monoclonal Antibodies. Anal Chem 2020; 92:10478-10484. [DOI: 10.1021/acs.analchem.0c01175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Reid O’Brien Johnson
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Tyler Greer
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Milos Cejkov
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Xiaojing Zheng
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| |
Collapse
|
7
|
Reiter K, Suzuki M, Olano LR, Narum DL. Host cell protein quantification of an optimized purification method by mass spectrometry. J Pharm Biomed Anal 2019; 174:650-654. [PMID: 31279895 PMCID: PMC11127253 DOI: 10.1016/j.jpba.2019.06.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/30/2019] [Accepted: 06/27/2019] [Indexed: 11/18/2022]
Abstract
Recombinant ExoProtein A (EPA), a detoxified form of Pseudomonas aeruginosa Exotoxin A, is used as a protein carrier in the vaccine field. A scaled manufacturing process, in which EPA was expressed in Escherichia coli, yielded a product that approached or exceeded our upper limit of E. coli host cell protein (HCP) content per human dose. The purification process was redeveloped to reduce HCP levels in the bulk product and HCP content was evaluated by orthogonal methods. Using a platform specific immunoassay, the HCP level from the original purification method was 1,830 ppm (0.18% w/w) while the revised purification process yielded the HCP below the detection limits of the assay. With a 2D/LC-MSE methodology the reference sample from the original process was found to contain 57 unique HCPs at a total level of 37,811 ppm (3.78% w/w). Two lots were tested after purification with the revised process and contained 730 and 598 ppm (0.07% and 0.06% w/w), respectively. To develop a high-throughput MS method, the samples were tested on a 1D/LC-MS/MS. The data sets from the two mass spectrometers correlated well. These improved HCP profiles support implementing the revised purification process for manufacturing the EPA protein carrier and 1D/LC-MS/MS for HCP analysis.
Collapse
Affiliation(s)
- Karine Reiter
- Laboratory of Malaria Immunology and Vaccinology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Motoshi Suzuki
- Research Technologies Branch, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Lisa Renee Olano
- Research Technologies Branch, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
8
|
Zhu Y, Ahluwalia D, Chen Y, Belakavadi M, Katiyar A, Das TK. Characterization of therapeutic antibody fragmentation using automated capillary western blotting as an orthogonal analytical technique. Electrophoresis 2019; 40:2888-2898. [PMID: 31271455 DOI: 10.1002/elps.201900119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 11/06/2022]
Abstract
Fragmentation in protein-based molecules continues to be a challenge during manufacturing and storage, and requires an appropriate control strategy to ensure purity and integrity of the drug product. Electrophoretic and chromatographic methods are commonly used for monitoring the fragments. However, size-exclusion chromatography often suffers from low resolution of low molecular weight fragments. Electrophoretic methods like CE-SDS are not compatible with enriching fragments for additional characterization tests such as MS. These limitations may result in inadequate control strategy for monitoring and characterizing fragments for protein-based molecules. Capillary western blotting was used in this study as an orthogonal method for characterization of fragments in an IgG1 antibody under reduced conditions. To achieve a comprehensive mapping of various fragments generated by thermal stress, capillary western profiles were generated using recognition antibodies for IgG kappa (κ) light chain, Fc, and Fab regions that enabled unambiguous fragment identification. Additionally, three different enzymatic digestion methods (IdeS, PNGase F, and IgdE) were applied coupled with capillary western blotting for clip identifications. Finally, complementary data collected using traditional chromatographic and electrophoretic methods allowed to establish a comparison of analytical profiles with an added benefit of fragment identification offered by capillary western profiling. In addition to various Fc and Fab-related low molecular weight fragments, a non-reducible thio-ether linked 75 kDa HL fragment was also identified.
Collapse
Affiliation(s)
- Yunxiao Zhu
- Methods and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, USA
| | - Deepti Ahluwalia
- Methods and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, USA
| | - Yingchen Chen
- Methods and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, USA
| | - Madesh Belakavadi
- Methods and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, USA
| | - Amit Katiyar
- Methods and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, USA.,Analytical and Formulation Sciences, Patheon, Thermo Fisher Scientific, Princeton, NJ, USA
| | - Tapan K Das
- Methods and Analytical Development, Bristol-Myers Squibb, Pennington, NJ, USA
| |
Collapse
|
9
|
Háda V, Bagdi A, Bihari Z, Timári SB, Fizil Á, Szántay C. Recent advancements, challenges, and practical considerations in the mass spectrometry-based analytics of protein biotherapeutics: A viewpoint from the biosimilar industry. J Pharm Biomed Anal 2018; 161:214-238. [PMID: 30205300 DOI: 10.1016/j.jpba.2018.08.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/22/2023]
Abstract
The extensive analytical characterization of protein biotherapeutics, especially of biosimilars, is a critical part of the product development and registration. High-resolution mass spectrometry became the primary analytical tool used for the structural characterization of biotherapeutics. Its high instrumental sensitivity and methodological versatility made it possible to use this technique to characterize both the primary and higher-order structure of these proteins. However, even by using high-end instrumentation, analysts face several challenges with regard to how to cope with industrial and regulatory requirements, that is, how to obtain accurate and reliable analytical data in a time- and cost-efficient way. New sample preparation approaches, measurement techniques and data evaluation strategies are available to meet those requirements. The practical considerations of these methods are discussed in the present review article focusing on hot topics, such as reliable and efficient sequencing strategies, minimization of artefact formation during sample preparation, quantitative peptide mapping, the potential of multi-attribute methodology, the increasing role of mass spectrometry in higher-order structure characterization and the challenges of MS-based identification of host cell proteins. On the basis of the opportunities in new instrumental techniques, methodological advancements and software-driven data evaluation approaches, for the future one can envision an even wider application area for mass spectrometry in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Viktor Háda
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary.
| | - Attila Bagdi
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Zsolt Bihari
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | | | - Ádám Fizil
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Csaba Szántay
- Spectroscopic Research Department, Gedeon Richter Plc, Hungary.
| |
Collapse
|
10
|
Goey CH, Alhuthali S, Kontoravdi C. Host cell protein removal from biopharmaceutical preparations: Towards the implementation of quality by design. Biotechnol Adv 2018; 36:1223-1237. [DOI: 10.1016/j.biotechadv.2018.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/12/2018] [Accepted: 03/29/2018] [Indexed: 01/05/2023]
|