1
|
Valdivia-Berroeta GA, Gonnella NC. N-oxidation Regioselectivity and Risk Prediction Using DFT-ALIE Calculations. Pharm Res 2023; 40:1873-1883. [PMID: 37386273 DOI: 10.1007/s11095-023-03553-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION The formation of N-oxide degradants is a major concern in development of new drugs due to potential effects on a compound's pharmacological activity. Such effects include but are not limited to solubility, stability, toxicity, and efficacy. In addition, these chemical transformations can impact physicochemical properties that affect drug manufacturability. Hence identification and control of N-oxide transformations is of critical importance in the development of new therapeutics. OBJECTIVE This study describes the development of an in-silico approach to identify N-oxide formation in APIs with respect to autoxidation. METHODS Average Local Ionization Energy (ALIE) calculations were carried out using molecular modeling techniques and application of Density Functional Theory (DFT) at the B3LYP/6-31G(d,p) level of theory. A total of 257 nitrogen atoms and 15 different oxidizable nitrogen types were used in developing this method. RESULTS The results show that ALIE could be reliably used to predict the most susceptible nitrogen for N-oxide formation. A risk scale was developed that rapidly categorizes nitrogen's oxidative vulnerabilities as small, medium, or high. CONCLUSIONS The developed process presents a powerful tool to identify structural susceptibilities for N-oxidation as well as enabling rapid structure elucidation in resolving potential experimental ambiguities.
Collapse
Affiliation(s)
- Gabriel A Valdivia-Berroeta
- Department of Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., P.O. Box 368, Ridgefield, CT, 06877, USA.
| | - Nina C Gonnella
- Department of Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., P.O. Box 368, Ridgefield, CT, 06877, USA.
| |
Collapse
|
2
|
ALSaeedy M, Al-Adhreai A, Öncü-Kaya EM, Şener E. An Overview of Advances in the Chromatography of Drugs Impurity Profiling. Crit Rev Anal Chem 2022; 53:1455-1471. [PMID: 35180027 DOI: 10.1080/10408347.2022.2032587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
A systematic literature survey published in several journals of pharmaceutical chemistry and of chromatography used to analyze impurities for most of the drugs that have been reviewed. This article covers the period from 2016 to 2020, in which almost of chromatographic techniques have been used for drug impurity analysis. These chromatography techniques are important in the analysis and description of drug impurities. Moreover, some recent developments in forced impurity profiling have been discussed, such as buffer solutions, mobile phase, columns, elution modes, and detectors are highlighted in drugs used for the study. This primarily focuses on thorough updating of different analytical methods which include hyphenated techniques for detecting and quantifying impurity and degradation levels in various pharmaceutical matrices.
Collapse
Affiliation(s)
- Mohammed ALSaeedy
- Department of Chemistry, Faculty of Applied Sciences, Dhamar University, Dhamar, Yemen
- Department of Analytical Chemistry, Faculty of Sciences, Eskisehir Technical University, Eskisehir, Turkey
| | - Arwa Al-Adhreai
- Department of Chemistry, Faculty of Applied Sciences, Dhamar University, Dhamar, Yemen
- Department of Chemistry, Maulana Azad of Arts, Science and Commerce, Aurangabad, India
| | - Elif Mine Öncü-Kaya
- Department of Analytical Chemistry, Faculty of Sciences, Eskisehir Technical University, Eskisehir, Turkey
| | - Erol Şener
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| |
Collapse
|
3
|
Andrade ÂL, Cardoso TD, Thomasi SS, Alvarenga ME, da Silva MAN, Magalhães EJ, Duarte HA, de Almeida KJ. A simple and efficient method for simultaneous quantification of levodopa and carbidopa based on controlled oxidation process. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Mutalik SP, Mullick P, Pandey A, Kulkarni SS, Mutalik S. Box-Behnken design aided optimization and validation of developed reverse phase HPLC analytical method for simultaneous quantification of dolutegravir sodium and lamivudine co-loaded in nano-liposomes. J Sep Sci 2021; 44:2917-2931. [PMID: 34076952 DOI: 10.1002/jssc.202100152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/11/2022]
Abstract
A stability-indicating reversed-phase high-performance liquid chromatography method for simultaneous estimation of dolutegravir sodium and lamivudine encapsulated in the nanoliposomal formulation was developed. The chromatographic parameters namely, organic phase ratio, flow rate, and sample injection volume were selected as independent factors and were optimized by multivariate Box-Behnken design. Responses analyzed were retention time, peak area, and resolution. The optimized chromatographic method with Hypersil BDS C8 CN column as stationary phase and methanol and acetonitrile mixture and acidified Milli-Q water (pH 2.8, adjusted with 0.02% v/v orthophosphoric acid) as the mobile phase in an isocratic elution mode was validated according to parameters of International Conference on Harmonization Q1(R2) guidelines. The validated reversed-phase high-performance liquid chromatography method exhibited specificity for both dolutegravir sodium and lamivudine in the presence of degradation products as well as the liposomal matrix. This method was effectively utilized to determine the amount of drug entrapped and drug loading efficiency of dolutegravir sodium and lamivudine in a nano-liposomal formulation.
Collapse
Affiliation(s)
- Sadhana P Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Prashansha Mullick
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Smita S Kulkarni
- Division of Virology, ICMR-National AIDS Research Institute (NARI), Pune, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
5
|
Kurmi M, Sahu A, Balhara A, Singh IP, Kulkarni S, Singh NK, Garg P, Singh S. Stability behaviour of antiretroviral drugs and their combinations. 11: Characterization of interaction products of zidovudine and efavirenz, and evaluation of their anti HIV-1 activity, and physiochemical and ADMET properties. J Pharm Biomed Anal 2019; 178:112911. [PMID: 31627078 DOI: 10.1016/j.jpba.2019.112911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
Abstract
Zidovudine (ZDV) and efavirenz (EFV), which belong to two separate classes of antiretroviral drugs, viz., NRTI and NNRTI, respectively, were subjected to different stability test conditions alone and in solid mixtures to evaluate possibility of interaction among them. The exposed samples were analyzed by high performance liquid chromatography (HPLC) using a C18 column and a PDA detector. Two new peaks were observed in the sample in which 50 μl CH3CN was added to increase the contact among the drugs, and which was subjected in open beaker to accelerated stability test condition of 40 °C/75%RH for 15 d. Subsequently, liquid chromatography-high resolution mass spectrometric (LC-HRMS) studies were carried out to obtain their accurate mass. The products were also isolated, and subjected to 1H, 13C, DEPT-135, COSY, HSQC and HMBC nuclear magnetic resonance (NMR) studies. The collective information allowed their structural characterization as isomeric cycloaddition products of the two drugs. As these were novel compounds, they were subjected to testing for cytotoxicity and in vitro anti-HIV-1 activity against primary isolates HIV-1UG070 (X4, subtype D) and HIV-1VB59 (R5, subtype C) in TZM-bl cell line. The two were found to show weak activity against the standard drugs. The reason was sought through molecular docking studies, which highlighted that it was perhaps their comparative bigger molecular size than the drugs of both classes used currently in HIV therapy. Being previously unknown molecules, their in silico physicochemical and ADMET properties were also evaluated using ADMET Predictor™ and TOPKAT software.
Collapse
Affiliation(s)
- Moolchand Kurmi
- Present Address: Analytical Research and Development, Biocon Bristol-Myers Squibb Research & Development Center (BBRC), Syngene, Bangalore 560099, Karnataka, India; Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India
| | - Archana Sahu
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India
| | - Ankit Balhara
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India
| | - Inder Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India
| | - Smita Kulkarni
- Virology Division, ICMR-National AIDS Research Institute (NARI), Pune 411026, Maharashtra, India
| | - Navneet Kumar Singh
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India
| | - Saranjit Singh
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar 160062, Punjab, India.
| |
Collapse
|
6
|
Singh DK, Sahu A, Wani AA, Bharatam PV, Kotimoole CN, Batkulwar KB, Deshpande AY, Giri S, Singh S. Stability behaviour of antiretroviral drugs and their combinations. 10: LC-HRMS, LC-MSn, LC-NMR and NMR characterization of fosamprenavir degradation products and in silico determination of their ADMET properties. Eur J Pharm Biopharm 2019; 142:165-178. [DOI: 10.1016/j.ejpb.2019.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
|
7
|
Shelke M, Deshpande SS, Sharma S. Quinquennial Review of Progress in Degradation Studies and Impurity Profiling: An Instrumental Perspective Statistics. Crit Rev Anal Chem 2019; 50:226-253. [DOI: 10.1080/10408347.2019.1615863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Madhav Shelke
- School of Pharmacy & Technology Management, SVKM's NMIMS, Shirpur, Maharashtra, India
| | | | | |
Collapse
|
8
|
Grande F, Ioele G, Occhiuzzi MA, De Luca M, Mazzotta E, Ragno G, Garofalo A, Muzzalupo R. Reverse Transcriptase Inhibitors Nanosystems Designed for Drug Stability and Controlled Delivery. Pharmaceutics 2019; 11:E197. [PMID: 31035595 PMCID: PMC6572254 DOI: 10.3390/pharmaceutics11050197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/12/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022] Open
Abstract
An in-depth analysis of nanotechnology applications for the improvement of solubility, distribution, bioavailability and stability of reverse transcriptase inhibitors is reported. Current clinically used nucleoside and non-nucleoside agents, included in combination therapies, were examined in the present survey, as drugs belonging to these classes are the major component of highly active antiretroviral treatments. The inclusion of such agents into supramolecular vesicular systems, such as liposomes, niosomes and lipid solid NPs, overcomes several drawbacks related to the action of these drugs, including drug instability and unfavorable pharmacokinetics. Overall results reported in the literature show that the performances of these drugs could be significantly improved by inclusion into nanosystems.
Collapse
Affiliation(s)
- Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Maria Antonietta Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Michele De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Elisabetta Mazzotta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Gaetano Ragno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Antonio Garofalo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Rita Muzzalupo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| |
Collapse
|
9
|
Kurmi M, Sahu A, Ladumor MK, Kumar Bansal A, Singh S. Stability behaviour of antiretroviral drugs and their combinations. 9: Identification of incompatible excipients. J Pharm Biomed Anal 2019; 166:174-182. [DOI: 10.1016/j.jpba.2019.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 11/28/2022]
|
10
|
Ncube S, Madikizela LM, Chimuka L, Nindi MM. Environmental fate and ecotoxicological effects of antiretrovirals: A current global status and future perspectives. WATER RESEARCH 2018; 145:231-247. [PMID: 30142521 DOI: 10.1016/j.watres.2018.08.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 05/27/2023]
Abstract
The therapeutic efficacy of antiretroviral drugs as well as challenges and side effects against the human immunodeficiency virus is well documented and reviewed. Evidence is available in literature indication that antiretrovirals are only partially transformed and become completely excreted from the human body in their original form and/or as metabolites in urine and feces. The possibility of massive release of antiretrovirals through human excreta that enters surface water through surface runoff and wastewater treatment plant effluents is now of environmental concern because the public might be experiencing chronic exposure to antiretrovirals. The primary concern of this review is limited data concerning environmental fate and ecotoxicity of antiretrovirals and their metabolites. The review aims to provide a comprehensive insight into the evaluation of antiretrovirals in environmental samples. The objective is therefore to assess the extent of analysis of antiretrovirals in environmental samples and also look at strategies including instrumentation and predictive models that have been reported in literature on the fate and ecotoxicological effects due to presence of antiretrovirals in different environmental compartments. The review also looks at current challenges and offers possible areas of exploration that could help minimize the presence of antiretrovirals in the environment.
Collapse
Affiliation(s)
- Somandla Ncube
- Department of Chemistry, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Lawrence M Madikizela
- Department of Chemistry, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Luke Chimuka
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | - Mathew M Nindi
- Department of Chemistry, University of South Africa, Private Bag X6, Florida, 1710, South Africa.
| |
Collapse
|
11
|
Critical review of reports on impurity and degradation product profiling in the last decade. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.09.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Kurmi M, Sahu A, Singh DK, Singh IP, Singh S. Stability behaviour of antiretroviral drugs and their combinations. 8: Characterization and in-silico toxicity prediction of degradation products of efavirenz. J Pharm Biomed Anal 2018; 148:170-181. [DOI: 10.1016/j.jpba.2017.09.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
|