1
|
Ewedah TM, Abdalla A, Hagag RS, Elhabal SF, Teaima MH, El-Nabarawi MA, Schlatter G, Shoueir KR. Enhancing cellular affinity for skin disorders: Electrospun polyurethane/collagen nanofiber mats coated with phytoceramides. Int J Pharm 2024; 663:124541. [PMID: 39089344 DOI: 10.1016/j.ijpharm.2024.124541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/03/2024]
Abstract
Although the use of thermoplastic polyurethane (Tpu) nanofiber mats as wound dressings is of great interest due to their mechanical properties, they are hindered by their poor wettability and bioavailability. In this study, we aimed to improve the cellular affinity of Tpu nanofiber mats for skin disorders by incorporating extracted collagen (Col) from tendons and physically mixed with a layer of phytoceramides (Phyto) to produce TpuCol@X-Phyto mats in which the weight % of Phyto relatively to the weight of the solution was X = 0.5, 1.0, or 1.5 wt% via facile electrospinning approach. The collective observations strongly indicate the successful incorporation and retention of Phyto within the TpuCol architecture. An increase in the Phyto concentration decreased the water contact angle from 69.4° ± 3.47° to 57.9° ± 2.89°, demonstrating improvement in the hydrophilicity of Tpu and binary blend TpuCol nanofiber mats. The mechanical property of 1.0 wt% Phyto aligns with practical requirements owing to the presence of two hydroxyl groups and the amide linkage likely contributing to various hydrogen bonds, providing mechanical strength to the channel structure and a degree of rigidity essential for transmitting mechanical stress. The proliferation of human skin fibroblast (HSF) peaked significantly 100 % with TpuCol@X-Phyto mats coated for X =1.0 and 1.5 wt% of Phyto. Electrospun scaffolds with the highest Phyto content have shown the lowest degree of hemolysis, demonstrating the high level of compatibility between them and blood. The TpuCol@1.5Phyto mat also demonstrated higher efficacy in antibacterial and antioxidant activities, achieving a rate of DPPH radical scavenging of 83.3 % for this latter property. The most notable wound closure among all tested formulations was attributed to higher Phyto. Thus, the developed TpuCol@1.5Phyto nanofiber formula exhibited enhanced healing in an in vitro epidermal model.
Collapse
Affiliation(s)
- Tassneim M Ewedah
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Egyptian Russian University, Egypt
| | - Ahmed Abdalla
- Pharmaceutics and Pharmaceutical Technology Department, Faculty of Pharmacy, Egyptian Russian University, Egypt.
| | - Radwa Samir Hagag
- Lecturer at Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt.
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Guy Schlatter
- ICPEES, Institut de Chimie et Procédé pour l'Energie, l'Environnement et la Santé, CNRS, UMR 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| | - Kamel R Shoueir
- ICPEES, Institut de Chimie et Procédé pour l'Energie, l'Environnement et la Santé, CNRS, UMR 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France; Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| |
Collapse
|
2
|
Wang G, Jia XJ, Song BB, Li R, Liu XF, Chen JP, Zhong SY, Zhou HK. Extraction Optimization, UHPLC-Triple-TOF-MS/MS Analysis and Antioxidant Activity of Ceramides from Sea Red Rice Bran. Foods 2022; 11:1399. [PMID: 35626968 PMCID: PMC9140675 DOI: 10.3390/foods11101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/27/2022] Open
Abstract
As a new type of salt-tolerant rice, sea red rice contains more minerals, proteins, and lipid compounds, and, in particular, its by-product rice bran may be used to replace other commercial rice brans as the main source of ceramides (Cers). However, the extraction rate of Cers is generally low, and it is crucial to seek an efficient extraction method. This study optimized the ultrasonic-assisted extraction of Cers from sea red rice bran using response surface methodology (RSM) and obtained a Cers yield of 12.54% under optimal conditions involving an extraction temperature of 46 °C, an extraction time of 46 min, and a material-to-liquid ratio of 5 g/mL. The Cers content in sea red rice bran was preliminarily analyzed using thin-layer chromatography, and the Cers content was determined via UHPLC-Triple-TOF-MS/MS after purification and separation using silica column chromatography. Forty-six different types of Cers were identified in sea red rice bran, of which Cer 18:0/24:0 (2OH), Cer 18:0/26:0, Cer 18:0/26:0 (2OH), and Cer 18:0/24:0 accounted for 23.66%, 17.54%, 14.91%, and 11.96%. Most of the Cers structures were mainly composed of sphingadienine. A biological activity assay indicated that Cers extracted from sea red rice bran had significant antioxidant and anti-aging properties. These findings indicate that the extracted Cers show great potential for applications in the cosmetic and pharmaceutical industries.
Collapse
Affiliation(s)
- Gang Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China; (G.W.); (X.-J.J.); (B.-B.S.); (R.L.); (X.-F.L.); (J.-P.C.)
| | - Xue-Jing Jia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China; (G.W.); (X.-J.J.); (B.-B.S.); (R.L.); (X.-F.L.); (J.-P.C.)
| | - Bing-Bing Song
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China; (G.W.); (X.-J.J.); (B.-B.S.); (R.L.); (X.-F.L.); (J.-P.C.)
| | - Rui Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China; (G.W.); (X.-J.J.); (B.-B.S.); (R.L.); (X.-F.L.); (J.-P.C.)
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Xiao-Fei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China; (G.W.); (X.-J.J.); (B.-B.S.); (R.L.); (X.-F.L.); (J.-P.C.)
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Jian-Ping Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China; (G.W.); (X.-J.J.); (B.-B.S.); (R.L.); (X.-F.L.); (J.-P.C.)
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Sai-Yi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China; (G.W.); (X.-J.J.); (B.-B.S.); (R.L.); (X.-F.L.); (J.-P.C.)
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hong-Kai Zhou
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang 524088, China;
| |
Collapse
|
3
|
Sphingolipids in foodstuff: Compositions, distribution, digestion, metabolism and health effects - A comprehensive review. Food Res Int 2021; 147:110566. [PMID: 34399542 DOI: 10.1016/j.foodres.2021.110566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/26/2022]
Abstract
Sphingolipids (SLs) are common in all eukaryotes, prokaryotes, and viruses, and played a vital role in human health. They are involved in physiological processes, including intracellular transport, cell division, and signal transduction. However, there are limited reviews on dietary effects on endogenous SLs metabolism and further on human health. Various dietary conditions, including the SLs-enriched diet, high-fat diet, and vitamins, can change the level of endogenous SLs metabolites and even affect human health. This review systematically summarizes the main known SLs in foods concerning their variety and contents, as well as their isolation and identification approaches. Moreover, the present review discusses the role of dietary (particularly SLs-enriched diet, high-fat diet, and vitamins) in endogenous SLs metabolism, highlighting how exogenous SLs are digested and absorbed. The role of SLs family in the pathogenesis of diseases, including cancers, neurological disorders, infectious and inflammatory diseases, and cardiovascular diseases, and in recently coronavirus disease-19 outbreak was also discussed. In the post-epidemic era, we believe that the concern for health and the need for plant-based products will increase. Therefore, a need for research on the absorption and metabolism pathway of SLs (especially plant-derived SLs) and their bioavailability is necessary. Moreover, the effects of storage treatment and processing on the content and composition of SLs in food are worth exploring. Further studies should also be conducted on the dose-response of SLs on human health to support the development of SLs supplements. More importantly, new approaches, such as, making SLs based hydrogels can effectively achieve sustained release and targeted therapies.
Collapse
|
4
|
Yumoto E, Sato M, Kubota T, Enomoto H, Miyamoto K, Yamane H, Koga J. Direct LC–ESI–MS/MS analysis of plant glucosylceramide and ceramide species with 8E and 8Z isomers of the long chain base. Biosci Biotechnol Biochem 2020; 85:205-210. [DOI: 10.1093/bbb/zbaa032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/18/2020] [Indexed: 11/12/2022]
Abstract
ABSTRACT
Glucosylceramides and ceramides with 8E and 8Z isomers of the long chain base are found in plants. These isomers have been difficult to quantify separately using liquid chromatography–tandem mass spectrometry (LC–MS/MS) because the isomers have the same retention time, their precursor and product ions have the same m/z values, and plant ceramide standards are not commercially available. Here we tested trial separations using various ODS columns and prepared plant ceramide standards generated by human glucocerebrosidase (imiglucerase) using commercially available plant glucosylceramide standards as the substrates. Consequently, we were able to quantify the isomers based on differences in retention times in a TSKgel ODS-120A column (Tosoh, Tokyo Japan) using LC–electrospray ionization–MS/MS (LC–ESI–MS/MS).
Collapse
Affiliation(s)
- Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, Tochigi, Japan
| | - Masaki Sato
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Tomoyoshi Kubota
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Hirofumi Enomoto
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Koji Miyamoto
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Hisakazu Yamane
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Jinichiro Koga
- Department of Biosciences, School of Science and Engineering, Teikyo University, Tochigi, Japan
| |
Collapse
|
5
|
Adem AA, Belete A, Soboleva A, Frolov A, Tessema EN, Gebre-Mariam T, Neubert RHH. Structural characterization of plant glucosylceramides and the corresponding ceramides by UHPLC-LTQ-Orbitrap mass spectrometry. J Pharm Biomed Anal 2020; 192:113677. [PMID: 33099117 DOI: 10.1016/j.jpba.2020.113677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022]
Abstract
Ceramides (CERs) play a major role in skin barrier function and direct replacement of depleted skin CERs, due to skin disorder or aging, has beneficial effects in improving skin barrier function and skin hydration. Though, plants are reliable source of CERs, absence of economical and effective method of hydrolysis to convert the dominant plant sphingolipid, glucosylceramides (GlcCERs), into CERs remains a challenge. This study aims at exploring alternative GlcCERs sources and chemical method of hydrolysis into CERs for dermal application. GlcCERs isolated from lupin bean (Lupinus albus), mung bean (Vigna radiate) and naked barley (Hordium vulgare) were identified using ultra high performance liquid chromatography hyphenated with atmospheric pressure chemical ionization - high resolution tandem mass spectrometer (UHPLC/APCI-HRMS/MS) and quantified with validated automated multiple development-high performance thin layer chromatography (AMD-HPTLC) method. Plant GlcCERs were hydrolyzed into CERs with mild acid hydrolysis (0.1 N HCl) after treating them with oxidizing agent, NaIO4, and reducing agent, NaBH4. GlcCERs with 4,8-sphingadienine, 8-sphingenine and 4-hydroxy-8-sphingenine sphingoid bases linked with C14 to C26 α-hydroxylated fatty acids (FAs) were identified. Single GlcCER (m/z 714.5520) was dominant in lupin and mung beans while five major GlcCERs species (m/z 714.5520, m/z 742.5829, m/z 770.6144, m/z 842.6719 and m/z 844.56875) were obtained from naked barley. The GlcCERs contents of the three plants were comparable. However, lupin bean contains predominantly (> 98 %) a single GlcCER (m/z 714.5520). Considering the affordability, GlcCER content and yield, lupin bean would be the preferred alternative commercial source of GlcCERs. CER species bearing 4,8-sphingadienine and 8-sphingenine sphingoid bases attached to C14 to 24 FAs were found after mild acid hydrolysis. CER species with m/z 552.4992 was the main component in the beans while CER with m/z 608.5613 was dominant in the naked barley. However, CERs with 4-hydroxy-8-sphingenine sphingoid base were not detected in UHPLC-HRMS/MS study suggesting that the method works for mainly GlcCERs carrying dihydroxy sphingoid bases. The method is economical and effective which potentiates the commercialization of plant CERs for dermal application.
Collapse
Affiliation(s)
- Admassu Assen Adem
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia; Institute of Applied Dermatopharmacy, Martin Luther University, Halle-Wittenberg, Weinbergweg 23, 06120 Halle (Saale), Germany
| | - Anteneh Belete
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Alena Soboleva
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Efrem N Tessema
- Institute of Applied Dermatopharmacy, Martin Luther University, Halle-Wittenberg, Weinbergweg 23, 06120 Halle (Saale), Germany
| | - Tsige Gebre-Mariam
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Reinhard H H Neubert
- Institute of Applied Dermatopharmacy, Martin Luther University, Halle-Wittenberg, Weinbergweg 23, 06120 Halle (Saale), Germany; Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Martin Luther University, Halle-Wittenberg, 06120 Halle (Saale), Germany.
| |
Collapse
|
6
|
Tessema EN, Gebre-Mariam T, Frolov A, Wohlrab J, Neubert RHH. Development and validation of LC/APCI-MS method for the quantification of oat ceramides in skin permeation studies. Anal Bioanal Chem 2018; 410:4775-4785. [PMID: 29947900 DOI: 10.1007/s00216-018-1162-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/20/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022]
Abstract
Ceramides (CERs) are the backbone of the intercellular lipid lamellae of the stratum corneum (SC), the outer layer of the skin. Skin diseases such as atopic dermatitis, psoriasis, and aged skin are characterized by dysfunctional skin barrier and dryness which are associated with reduced levels of CERs. Replenishing the depleted epidermal CERs with exogenous CERs has been shown to have beneficial effects in improving the skin barrier and hydration. The exogenous CERs such as phyto-derived CERs (PhytoCERs) can be delivered deep into the SC using novel topical formulations. This, however, requires investigating the rate and extent of skin permeation of CERs. In this study, an LC/APCI-MS method to detect and quantify PhytoCERs in different layers of the skin has been developed and validated. The method was used to investigate the skin permeation of PhytoCERs using Franz diffusion cells after applying an amphiphilic cream containing PhytoCERs to the surface of ex vivo human skin. As plant-specific CERs are not commercially available, well-characterized CERs isolated from oat (Avena abyssinica) were used as reference standards for the development and validation of the method. The method was linear over the range of 30-1050 ng/mL and sensitive with limit of detection and quantification of 10 and 30 ng/mL, respectively. The method was also selective, accurate, and precise with minimal matrix effect (with mean matrix factor around 100%). Even if more than 85% of oat CERs in the cream remained in the cream after the incubation periods of 30, 100, and 300 min, it was possible to quantify the small quantities of oat CERs distributed across the SC, epidermis, and dermis of the skin indicating the method's sensitivity. Therefore, the method can be used to investigate the skin permeation of oat CERs from the various pharmaceutical and cosmeceutical products without any interference from the skin constituents such as the epidermal lipids. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Efrem N Tessema
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Tsige Gebre-Mariam
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Johannes Wohlrab
- Department of Dermatology and Venereology, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
- Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg, Weinbergweg 23, 06120, Halle (Saale), Germany
| | - Reinhard H H Neubert
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany.
- Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg, Weinbergweg 23, 06120, Halle (Saale), Germany.
| |
Collapse
|
7
|
Delivery of oat-derived phytoceramides into the stratum corneum of the skin using nanocarriers: Formulation, characterization and in vitro and ex-vivo penetration studies. Eur J Pharm Biopharm 2018; 127:260-269. [DOI: 10.1016/j.ejpb.2018.02.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 01/02/2023]
|
8
|
Affiliation(s)
- Virgil Danciu
- Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Cluj-Napoca, Romania
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, Cluj-Napoca, Romania
| | - Anamaria Hosu
- Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Cluj-Napoca, Romania
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, Cluj-Napoca, Romania
| | - Claudia Cimpoiu
- Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Cluj-Napoca, Romania
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics, Cluj-Napoca, Romania
| |
Collapse
|
9
|
Cheng SS, Chang YL, Fei WM, Zhai WF, Cheng H, Yang S, Zhang XJ. Noninvasive quantitative analysis of ceramide in skin of healthy Chinese population. Skin Res Technol 2018; 24:479-484. [PMID: 29427391 DOI: 10.1111/srt.12457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The objective of this study was to make noninvasive quantitative analysis of ceramide (CER) in skin of healthy Chinese population by high performance liquid chromatography tandem mass spectrometry. METHODS Seven healthy subjects were selected and the stratified skin samples were available using cyanoacrylate adhesion method. High performance liquid chromatography tandem mass spectrometry, use ceramide Subclass Standard C42H85NO3 Quantification of the 12 corresponding ceramide subclass in the epidermis on the 7 skin samples, which cannot get all the standard of ceramides subclass since the stratum corneum ceramide is complex and diverse. Data were collected and analyzed using full-flow lipid analysis software (LipidSearch). RESULTS All the seven skin samples contained 12 subclasses of ceramide and the samples were quantitated with ceramide C42H85NO3 standard. The average contents were 33.63, 27.59, 108.57, 220.75, 149.20, 43.06, and 22.78 μg/mL, respectively. CONCLUSION Ceramide is an important lipid in the epidermis and is closely related to the skin barrier function. There are 12 subtypes of ceramide detected in the skin of Chinese healthy people, and there is a difference in the concentration between individuals. The difference may be associated with the skin barrier condition, and may also be related to the unavoidable error in the process of sampling, treatment, and detection.
Collapse
Affiliation(s)
- S-S Cheng
- Department of Dermatology, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - Y-L Chang
- Department of Dermatology, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - W-M Fei
- Department of Dermatology, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - W-F Zhai
- Department of Dermatology, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - H Cheng
- Department of Dermatology, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - S Yang
- Department of Dermatology, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - X-J Zhang
- Department of Dermatology, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Accurate recognition and feature qualify for flavonoid extracts from Liang-wai Gan Cao by liquid chromatography-high resolution-mass spectrometry and computational MS/MS fragmentation. J Pharm Biomed Anal 2017; 146:37-47. [DOI: 10.1016/j.jpba.2017.07.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 02/06/2023]
|
11
|
Tessema EN, Gebre-Mariam T, Lange S, Dobner B, Neubert RH. Potential application of oat-derived ceramides in improving skin barrier function: Part 1. Isolation and structural characterization. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1065-1066:87-95. [DOI: 10.1016/j.jchromb.2017.09.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 01/01/2023]
|