1
|
Tynkkynen T, Vassaki M, Tiihonen TE, Lehto VP, Demadis KD, Turhanen PA. Simple and User-Friendly Methodology for Crystal Water Determination by Quantitative Proton NMR Spectroscopy in Deuterium Oxide. Anal Chem 2023; 95:17020-17027. [PMID: 37923567 PMCID: PMC10666084 DOI: 10.1021/acs.analchem.3c03689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
In drug research and development, knowledge of the precise structure of an active ingredient is crucial. However, it is equally important to know the water content of the drug molecule, particularly the number of crystal waters present in its structure. Such knowledge ensures the avoidance of drug dosage and formulation errors since the number of water molecules affects the physicochemical and pharmaceutical properties of the molecule. Several methods have been used for crystal water measurements of organic compounds, of which thermogravimetry and crystallography may be the most common ones. To the best of our knowledge, solution-state NMR spectroscopy has not been used for crystal water determination in deuterium oxide. Quantitative NMR (qNMR) method will be presented in the paper with a comparison of single-crystal X-ray diffraction and thermogravimetric analysis results. The qNMR method for water content measurement is straightforward, reproducible, and accurate, including measurement of 1H NMR spectrum before and after the addition of the analyte compound, and the result can be calculated after integration of the reference compound, analyte, and HDO signals using the given equation. In practical terms, there is no need for weighing the samples under study, which makes it simple and is a clear advantage to the current determination methods. In addition, the crystal structures of two model bisphosphonates used herein are reported: that of monopotassium etidronate dihydrate and monosodium zoledronate trihydrate.
Collapse
Affiliation(s)
- Tuulia Tynkkynen
- School
of Pharmacy, Biocenter Kuopio, University
of Eastern Finland, Yliopistonranta 8, FI-70211 Kuopio, Finland
| | - Maria Vassaki
- Crystal
Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Heraklion GR-71003, Crete, Greece
| | - Tommi E. Tiihonen
- Department
of Technical Physics, University of Eastern
Finland, Yliopistonranta
8, FI-70211 Kuopio, Finland
| | - Vesa-Pekka Lehto
- Department
of Technical Physics, University of Eastern
Finland, Yliopistonranta
8, FI-70211 Kuopio, Finland
| | - Konstantinos D. Demadis
- Crystal
Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Heraklion GR-71003, Crete, Greece
| | - Petri A. Turhanen
- School
of Pharmacy, Biocenter Kuopio, University
of Eastern Finland, Yliopistonranta 8, FI-70211 Kuopio, Finland
| |
Collapse
|
2
|
Zhang Y, Wang Y. Machine learning applications for multi-source data of edible crops: A review of current trends and future prospects. Food Chem X 2023; 19:100860. [PMID: 37780348 PMCID: PMC10534232 DOI: 10.1016/j.fochx.2023.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
The quality and safety of edible crops are key links inseparable from human health and nutrition. In the era of rapid development of artificial intelligence, using it to mine multi-source information on edible crops provides new opportunities for industrial development and market supervision of edible crops. This review comprehensively summarized the applications of multi-source data combined with machine learning in the quality evaluation of edible crops. Multi-source data can provide more comprehensive and rich information from a single data source, as it can integrate different data information. Supervised and unsupervised machine learning is applied to data analysis to achieve different requirements for the quality evaluation of edible crops. Emphasized the advantages and disadvantages of techniques and analysis methods, the problems that need to be overcome, and promising development directions were proposed. To monitor the market in real-time, the quality evaluation methods of edible crops must be innovated.
Collapse
Affiliation(s)
- Yanying Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| |
Collapse
|
3
|
Hogwood J, Mulloy B, Lever R, Gray E, Page CP. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol Rev 2023; 75:328-379. [PMID: 36792365 DOI: 10.1124/pharmrev.122.000684] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been elucidated that heparin exhibits anti-inflammatory effect via interference of the formation of neutrophil extracellular traps and this may also contribute to heparin's antithrombotic activity. This illustrates that heparin interacts with a broad range of biomolecules, exerting both anticoagulant and nonanticoagulant actions. Since our previous review, there has been an increased interest in these nonanticoagulant effects of heparin, with the beneficial role in patients infected with SARS2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. SIGNIFICANCE STATEMENT: This state-of-the-art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immunothrombosis observations, and as nonanticoagulant including a role in the treatment of SARS-coronavirus and inflammatory conditions.
Collapse
Affiliation(s)
- John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Rebeca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| |
Collapse
|
4
|
Zhao J, Wang M, Saroja SG, Khan IA. NMR technique and methodology in botanical health product analysis and quality control. J Pharm Biomed Anal 2022; 207:114376. [PMID: 34656935 DOI: 10.1016/j.jpba.2021.114376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
Botanicals have played an important role in maintaining human health and well-being throughout history. During the past few decades in particular, the use of botanical health products has gained more popularity. Whereas, quality, safety and efficacy concerns have continuously been critical issues due to the intrinsic chemical complexity of botanicals. Chemical analytical technologies play an imperative role in addressing these issues. Nuclear magnetic resonance (NMR) spectroscopy has proven to be a powerful and useful tool for the investigation of botanical health products. In this review, NMR techniques and methodologies that have been successfully applied to the research and development of botanical health products in all stages, from plants to products, are discussed and summarized. Furthermore, applications of NMR together with other analytical techniques in a variety of domains of botanical health products investigation, such as plant species differentiation, adulteration detection, and bio-activity evaluation, are discussed and illustrated with typical examples. This article provides an overview of the potential uses of NMR techniques and methodologies in an attempt to further promote their recognition and utilization in the field of botanical health products analysis and quality control.
Collapse
Affiliation(s)
- Jianping Zhao
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Mei Wang
- Natural Products Utilization Research Unit, Agricultural Research Service, US Department of Agriculture, University, MS 38677, USA
| | - Seethapathy G Saroja
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, University, MS 38677, USA; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
5
|
Quality-by-design in pharmaceutical development: From current perspectives to practical applications. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:497-526. [PMID: 36651549 DOI: 10.2478/acph-2021-0039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 01/19/2023]
Abstract
Current pharmaceutical research directions tend to follow a systematic approach in the field of applied research and development. The concept of quality-by-design (QbD) has been the focus of the current progress of pharmaceutical sciences. It is based on, but not limited, to risk assessment, design of experiments and other computational methods and process analytical technology. These tools offer a well-organized methodology, both to identify and analyse the hazards that should be handled as critical, and are therefore applicable in the control strategy. Once implemented, the QbD approach will augment the comprehension of experts concerning the developed analytical technique or manufacturing process. The main activities are oriented towards the identification of the quality target product profiles, along with the critical quality attributes, the risk management of these and their analysis through in silico aided methods. This review aims to offer an overview of the current standpoints and general applications of QbD methods in pharmaceutical development.
Collapse
|
6
|
Sakr M, Fouad M, Hanafi R, Al-Easa H, El-Moghazy S. Response Surface Methodology for Spectrophotometric Determination of Two β-Adrenergic Agonists-Terbium Chemosensors in Urine and Pharmaceutical Dosage Forms. J AOAC Int 2021; 104:355-367. [PMID: 33871029 DOI: 10.1093/jaoacint/qsaa131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/23/2020] [Accepted: 09/10/2020] [Indexed: 11/13/2022]
Abstract
BACKGROUND According to literature reports, none of the previous methods of analysis had touched the multivariate approach for the quantification of significant factors affecting the interaction of dobutamine or hexoprenaline with Terbium. OBJECTIVE Two novel β-adrenergic agonists-lanthanide chemosensors were prepared for the determination of dobutamine and hexoprenaline in their pure and pharmaceutical dosage forms and in urine samples. Fabrication of the two chemosensors was based on their ligand-metal interaction with the lanthanide Terbium. METHODS A Plackett-Burman Design (PBD) was selected for the screening of four main variables (reaction time, metal volume, pH, and temperature). Applying Response Surface Methodology (RSM), a Central Composite Design (CCD) was executed for the optimization of the significant factors with narrower upper and lower limits. Spectrophotometric technique was exploited for the analysis of the two chemosensors. RESULTS Maximum absorption was obtained at 299 and 298 nm for dobutamine-terbium and hexoprenaline-terbium complexes, respectively. Only factors that were found to bear significant effects on the formed complexes were promoted to the optimization level. Model verification was carried out, where target results coincided with those at the predicted levels, indicating the efficiency of the two proposed models. Validation of the proposed was implemented and linear ranges were found to be 3.30-13.50 and 1.90-10.00 µg/mL, for dobutamine and hexoprenaline, respectively. CONCLUSIONS Recovery and relative standard deviation values by application in pure powder, pharmaceutical dosage forms and spiked urine samples indicated high accuracy and reproducibility. Wide-ranging linear values and comparatively low detection limits inferred the effectiveness of the proposed method. HIGHLIGHTS RSM for optimization of spectrophotometric determination of dobutamine and hexoprenaline β-adrenergic agonists-lanthanide chemosensors; PBD was used for screening and CCD for optimization of variables affecting the spectrophotometric method; Determination of dobutamine and hexoprenaline in pure powder, pharmaceutical dosage form, and spiked urine samples was accomplished after method validation.
Collapse
Affiliation(s)
- Marwa Sakr
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Marwa Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Rasha Hanafi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Hala Al-Easa
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Samir El-Moghazy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
7
|
Liu Z, Yang MQ, Zuo Y, Wang Y, Zhang J. Fraud Detection of Herbal Medicines Based on Modern Analytical Technologies Combine with Chemometrics Approach: A Review. Crit Rev Anal Chem 2021; 52:1606-1623. [PMID: 33840329 DOI: 10.1080/10408347.2021.1905503] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fraud in herbal medicines (HMs), commonplace throughout human history, is significantly related to medicinal effects with sometimes lethal consequences. Major HMs fraud events seem to occur with a certain regularity, such as substitution by counterfeits, adulteration by addition of inferior production-own materials, adulteration by chemical compounds, and adulteration by addition of foreign matter. The assessment of HMs fraud is in urgent demand to guarantee consumer protection against the four fraudulent activities. In this review, three analysis platforms (targeted, non-targeted, and the combination of non-targeted and targeted analysis) were introduced and summarized. Furthermore, the integration of analysis technology and chemometrics method (e.g., class-modeling, discrimination, and regression method) have also been discussed. Each integration shows different applicability depending on their advantages, drawbacks, and some factors, such as the explicit objective analysis or the nature of four types of HMs fraud. In an attempt to better solve four typical HMs fraud, appropriate analytical strategies are advised and illustrated with several typical studies. The article provides a general workflow of analysis methods that have been used for detection of HMs fraud. All analysis technologies and chemometrics methods applied can conduce to excellent reference value for further exploration of analysis methods in HMs fraud.
Collapse
Affiliation(s)
- Zhimin Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,School of Agriculture, Yunnan University, Kunming, China
| | - Mei Quan Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yingmei Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jinyu Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
8
|
Delgado-Altamirano R, García-Aguilera ME, Delgado-Domínguez J, Becker I, Rodríguez de San Miguel E, Rojas-Molina A, Esturau-Escofet N. 1H NMR profiling and chemometric analysis as an approach to predict the leishmanicidal activity of dichloromethane extracts from Lantana camara (L.). J Pharm Biomed Anal 2021; 199:114060. [PMID: 33848915 DOI: 10.1016/j.jpba.2021.114060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/27/2021] [Accepted: 04/01/2021] [Indexed: 11/30/2022]
Abstract
The application of 1H NMR spectroscopy and chemometrics for the analysis of extracts of Lantana camara is described. This approach allowed to predict the leishmanicidal activity of samples obtained at different harvest times from their 1H NMR spectra. The anti-leishmanial activity of dichloromethane extracts obtained from the aerial parts of L. camara was measured using an in vitro assay. As the extracts displayed differences in their activity according to a one-way ANOVA analysis, their 1H NMR spectra were subjected to multivariate analysis using exploratory (Principal Component Analysis (PCA) and Anova Simultaneous Component Analysis (ASCA)) and regression, (Partial Least Squares Regression to Latent Structures (PLS)) chemometrics methods. These analyses allowed to establish and characterize a predictive model capable of determining the anti-leishmanial activity of Lantana camara dichloromethane extracts from their 1H NMR spectra. Figures of merit of the developed method are given as well. The identified chemical signals responsible for the iPLS calibration model corresponded to the presence of eicosane, caryophyllene oxide, β-ionone, tiglic acid, lantanilic acid, camaric acid, and lantadene B; the chemical markers. This study proposed a fast and simple method that avoids the need of using complex biological assays to predict the leishmanicidal activity of L. camara dichloromethane extracts.
Collapse
Affiliation(s)
- Ronna Delgado-Altamirano
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, 76010 Querétaro, Mexico; Facultad de Química, Universidad Autónoma de Querétaro, 76010 Querétaro, Mexico
| | | | - José Delgado-Domínguez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, 06720 Ciudad de México, Mexico
| | - Ingeborg Becker
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, 06720 Ciudad de México, Mexico
| | | | | | - Nuria Esturau-Escofet
- Instituto de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| |
Collapse
|
9
|
Sharifi J, Fayazfar H. Highly sensitive determination of doxorubicin hydrochloride antitumor agent via a carbon nanotube/gold nanoparticle based nanocomposite biosensor. Bioelectrochemistry 2021; 139:107741. [PMID: 33524656 DOI: 10.1016/j.bioelechem.2021.107741] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022]
Abstract
A glassy carbon electrode modified with multi-walled carbon nanotubes (MWCNTs) decorated with gold nanoparticles has been investigated for the first time as an ultrasensitive electrochemical sensor for the determination of doxorubicin hydrochloride (DOX), an efficient antitumor agent. The developed nanocomposite has been characterized by scanning electron microscopy (SEM), besides cyclic and linear sweep voltammetry electrochemical techniques. An efficient catalytic activity for the reduction of DOX has been demonstrated, leading to a significant increase in peak current density and a remarkable decrease in reduction over-potential. Under the optimal condition, a wide linear DOX concentration range from 1×10-11 to 1×10-6 M with a very low detection limit of 6.5 pM was achieved with the modified electrode. Meanwhile, the functionalized MWCNTs/gold nanoparticles indicated an appropriate selectivity, reproducibility, and repeatability as well as long-term stability. The promising outcomes of this research approved the applicability of the developed nanocomposite sensor towards trace amounts of DOX in pharmaceutical and clinical preparations.
Collapse
Affiliation(s)
- Javid Sharifi
- Department of Chemical Engineering, Payame Noor University, PO Box 19395-3697, Tehran, Iran
| | - Haniyeh Fayazfar
- Department of Mechanical and Manufacturing Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada.
| |
Collapse
|
10
|
Burmistrova NA, Diehl BWK, Soboleva PM, Rubtsova E, Legin EA, Legin AV, Kirsanov DO, Monakhova YB. Quality Control of Heparin Injections: Comparison of Four Established Methods. ANAL SCI 2020; 36:1467-1471. [PMID: 32801287 DOI: 10.2116/analsci.20p214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/31/2020] [Indexed: 08/09/2023]
Abstract
Heparin is an anticoagulant medication that is usually injected subcutaneously. The quality of a set of commercial heparin injections from different producers was examined by NMR, IR, UV-Vis spectroscopies and potentiometric multisensor system. The type of raw material regarding heparin animal origin and producer, heparin molecular weight and activity values were derived based on the non-targeted analysis of 1H NMR fingerprints. DOSY NMR spectroscopy was additionally used to study homogeneity and additives profile. UV-Vis and IR, being cheaper than NMR, combined with multivariate statistics were successfully applied to study excipients composition as well as semi-estimation of activity values. Potentiometric multisensor measurements were found to be an important additional source of information about inorganic composition of finished heparin formulations. All investigated instrumental techniques are useful for finished heparin injections and should be selected according to availability as well as the information and confidence required for a specific sample.
Collapse
Affiliation(s)
- Natalia A Burmistrova
- Institute of Chemistry, Saratov State University, 83 Astrakhanskaya Street, Saratov, 410012, Russia
| | - Bernd W K Diehl
- Spectral Service AG, Emil-Hoffmann-Strate 33, 50996, Köln, Germany
| | - Polina M Soboleva
- Institute of Chemistry, Saratov State University, 83 Astrakhanskaya Street, Saratov, 410012, Russia
| | - Ekaterina Rubtsova
- Institute of Chemistry, Saratov State University, 83 Astrakhanskaya Street, Saratov, 410012, Russia
- Saratov State Medical University, Bolshaya Kazachia st., 112, Saratov, 410012, Russia
| | - Eugene A Legin
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospect, Petergof, St. Petersburg, 198504, Russia
| | - Andrey V Legin
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospect, Petergof, St. Petersburg, 198504, Russia
| | - Dmitry O Kirsanov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii prospect, Petergof, St. Petersburg, 198504, Russia
| | - Yulia B Monakhova
- Institute of Chemistry, Saratov State University, 83 Astrakhanskaya Street, Saratov, 410012, Russia.
- Spectral Service AG, Emil-Hoffmann-Strate 33, 50996, Köln, Germany.
| |
Collapse
|
11
|
Burmistrova NA, Soboleva PM, Monakhova YB. Is infrared spectroscopy combined with multivariate analysis a promising tool for heparin authentication? J Pharm Biomed Anal 2020; 194:113811. [PMID: 33281004 DOI: 10.1016/j.jpba.2020.113811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022]
Abstract
The investigation of the possibility to determine various characteristics of powder heparin (n = 115) was carried out with infrared spectroscopy. The evaluation of heparin samples included several parameters such as purity grade, distributing company, animal source as well as heparin species (i.e. Na-heparin, Ca-heparin, and heparinoids). Multivariate analysis using principal component analysis (PCA), soft independent modelling of class analogy (SIMCA), and partial least squares - discriminant analysis (PLS-DA) were applied for the modelling of spectral data. Different pre-processing methods were applied to IR spectral data; multiplicative scatter correction (MSC) was chosen as the most relevant. Obtained results were confirmed by nuclear magnetic resonance (NMR) spectroscopy. Good predictive ability of this approach demonstrates the potential of IR spectroscopy and chemometrics for screening of heparin quality. This approach, however, is designed as a screening tool and is not considered as a replacement for either of the methods required by USP and FDA.
Collapse
Affiliation(s)
- Natalia A Burmistrova
- Institute of Chemistry, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia.
| | - Polina M Soboleva
- Institute of Chemistry, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia
| | - Yulia B Monakhova
- Institute of Chemistry, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia; Spectral Service AG, Emil-Hoffmann-Straße 33, 50996 Cologne, Germany
| |
Collapse
|
12
|
Creydt M, Fischer M. Food Phenotyping: Recording and Processing of Non-Targeted Liquid Chromatography Mass Spectrometry Data for Verifying Food Authenticity. Molecules 2020; 25:E3972. [PMID: 32878155 PMCID: PMC7504784 DOI: 10.3390/molecules25173972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Experiments based on metabolomics represent powerful approaches to the experimental verification of the integrity of food. In particular, high-resolution non-targeted analyses, which are carried out by means of liquid chromatography-mass spectrometry systems (LC-MS), offer a variety of options. However, an enormous amount of data is recorded, which must be processed in a correspondingly complex manner. The evaluation of LC-MS based non-targeted data is not entirely trivial and a wide variety of strategies have been developed that can be used in this regard. In this paper, an overview of the mandatory steps regarding data acquisition is given first, followed by a presentation of the required preprocessing steps for data evaluation. Then some multivariate analysis methods are discussed, which have proven to be particularly suitable in this context in recent years. The publication closes with information on the identification of marker compounds.
Collapse
Affiliation(s)
- Marina Creydt
- Hamburg School of Food Science-Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany;
- Center for Hybrid Nanostructures (CHyN), Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science-Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany;
- Center for Hybrid Nanostructures (CHyN), Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
13
|
Li Y, Shen Y, Yao CL, Guo DA. Quality assessment of herbal medicines based on chemical fingerprints combined with chemometrics approach: A review. J Pharm Biomed Anal 2020; 185:113215. [DOI: 10.1016/j.jpba.2020.113215] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 01/08/2020] [Accepted: 02/26/2020] [Indexed: 12/30/2022]
|
14
|
Valentino G, Graziani V, D’Abrosca B, Pacifico S, Fiorentino A, Scognamiglio M. NMR-Based Plant Metabolomics in Nutraceutical Research: An Overview. Molecules 2020; 25:E1444. [PMID: 32210071 PMCID: PMC7145309 DOI: 10.3390/molecules25061444] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Few topics are able to channel the interest of researchers, the public, and industries, like nutraceuticals. The ever-increasing demand of new compounds or new sources of known active compounds, along with the need of a better knowledge about their effectiveness, mode of action, safety, etc., led to a significant effort towards the development of analytical approaches able to answer the many questions related to this topic. Therefore, the application of cutting edges approaches to this area has been observed. Among these approaches, metabolomics is a key player. Herewith, the applications of NMR-based metabolomics to nutraceutical research are discussed: after a brief overview of the analytical workflow, the use of NMR-based metabolomics to the search for new compounds or new sources of known nutraceuticals are reviewed. Then, possible applications for quality control and nutraceutical optimization are suggested. Finally, the use of NMR-based metabolomics to study the impact of nutraceuticals on human metabolism is discussed.
Collapse
Affiliation(s)
- Giovanna Valentino
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche-DiSTABiF, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 43, I-81100 Caserta, Italy; (G.V.); (B.D.); (S.P.)
| | - Vittoria Graziani
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, 17165 Stockholm, Sweden;
| | - Brigida D’Abrosca
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche-DiSTABiF, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 43, I-81100 Caserta, Italy; (G.V.); (B.D.); (S.P.)
- Dipartimento di Biotecnologia Marina, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Severina Pacifico
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche-DiSTABiF, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 43, I-81100 Caserta, Italy; (G.V.); (B.D.); (S.P.)
| | - Antonio Fiorentino
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche-DiSTABiF, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 43, I-81100 Caserta, Italy; (G.V.); (B.D.); (S.P.)
- Dipartimento di Biotecnologia Marina, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Monica Scognamiglio
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche-DiSTABiF, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 43, I-81100 Caserta, Italy; (G.V.); (B.D.); (S.P.)
| |
Collapse
|
15
|
Song Y, Cong Y, Wang B, Zhang N. Applications of Fourier transform infrared spectroscopy to pharmaceutical preparations. Expert Opin Drug Deliv 2020; 17:551-571. [PMID: 32116058 DOI: 10.1080/17425247.2020.1737671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: Various pharmaceutical preparations are widely used for clinical treatment. Elucidation of the mechanisms of drug release and evaluation of drug efficacy in biological samples are important in drug design and drug quality control.Areas covered: This review classifies recent applications of Fourier transform infrared (FTIR) spectroscopy in the field of medicine to comprehend drug release and diffusion. Drug release is affected by many factors of preparations, such as drug delivery system and microstructure polymorphism. The applications of FTIR imaging and nano-FTIR technique in biological samples lay a foundation for studying drug mechanism in vivo.Expert opinion: FTIR spectroscopy meets the research needs on preparations to understand the processes and mechanisms underlying drug release. The combination of attenuated total reflectance-FTIR imaging and nano-FTIR accompanied by chemometrics is a potent tool to overcome the deficiency of conventional infrared detection. FTIR shows an enormous potential in drug characterization, drug quality control, and bio-sample detection.
Collapse
Affiliation(s)
- Yijie Song
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanhua Cong
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Monakhova YB, Diehl BW. Retrospective multivariate analysis of pharmaceutical preparations using 1H nuclear magnetic resonance (NMR) spectroscopy: Example of 990 heparin samples. J Pharm Biomed Anal 2019; 173:18-23. [DOI: 10.1016/j.jpba.2019.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 10/26/2022]
|
17
|
Diehl B, Holzgrabe U, Monakhova Y, Schönberger T. Quo Vadis qNMR? J Pharm Biomed Anal 2019; 177:112847. [PMID: 31505431 DOI: 10.1016/j.jpba.2019.112847] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/11/2023]
Abstract
The quantification of a drug, its impurities, and e.g. components of a mixture has become routine in NMR laboratories and many applications have been described in the literature. However, besides simply using 1D 1H or 13C NMR, a number of more advanced methods has been developed and used in the past. Here, we want to describe the applicability of nuclei beyond the classical ones 1H and 13C. Mixtures can be characterized much better by applying various chemometric methods and separating the signals of mixture components can be achieved by DOSY experiments. All these methods contribute to the platform of qNMR methods and extend the possibilities of NMR for quantification and quality evaluation of drugs, excipients, polymers, and plant extracts. However, for quantification purposes, validation is always an issue and it is necessary to think about taking NMR related measures which might be different from the ones considered for chromatographic methods.
Collapse
Affiliation(s)
- Bernd Diehl
- Spectral Service AG, Emil-Hoffmann-Str. 33, 50996, Cologne, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy, University of Wuerzburg, Am Hubland, 97074, Wuerzburg, Germany.
| | - Yulia Monakhova
- Spectral Service AG, Emil-Hoffmann-Str. 33, 50996, Cologne, Germany; Institute of Chemistry, Saratov State University, Astrakhanskaya Street 83, 410012, Saratov, Russia; Institute of Chemistry, Saint Petersburg State University, 13B Universitetskaya Emb., St Petersburg, 199034, Russia
| | - Torsten Schönberger
- Bundeskriminalamt, Forensic Science Institute, KT43 - Central Analytics II, 65173 Wiesbaden, Germany
| |
Collapse
|
18
|
Martinez-Farina CF, Driscoll S, Wicks C, Burton I, Wentzell PD, Berrué F. Chemical Barcoding: A Nuclear-Magnetic-Resonance-Based Approach To Ensure the Quality and Safety of Natural Ingredients. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7765-7774. [PMID: 31240917 DOI: 10.1021/acs.jafc.9b01066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One of the greatest challenges facing the functional food and natural health product (NHP) industries is sourcing high-quality, functional, natural ingredients for their finished products. Unfortunately, the lack of ingredient standards, modernized analytical methodologies, and industry oversight creates the potential for low quality and, in some cases, deliberate adulteration of ingredients. By exploring a diverse library of NHPs provided by the independent certification organization ISURA, we demonstrated that nuclear magnetic resonance (NMR) spectroscopy provides an innovative solution to authenticate botanicals and warrant the quality and safety of processed foods and manufactured functional ingredients. Two-dimensional NMR experiments were shown to be a robust and reproducible approach to capture the content of complex chemical mixtures, while a binary normalization step allows for emphasizing the chemical diversity in each sample, and unsupervised statistical methodologies provide key advantages to classify, authenticate, and highlight the potential presence of additives and adulterants.
Collapse
Affiliation(s)
- Camilo F Martinez-Farina
- Aquatic and Crop Resource Development , National Research Council of Canada , 1411 Oxford Street , Halifax , Nova Scotia B3H 3Z1 Canada
| | - Stephen Driscoll
- Trace Analysis Research Centre, Department of Chemistry , Dalhousie University , Post Office Box 15000, Halifax , Nova Scotia B3H 4R2 Canada
| | - Chelsi Wicks
- Trace Analysis Research Centre, Department of Chemistry , Dalhousie University , Post Office Box 15000, Halifax , Nova Scotia B3H 4R2 Canada
| | - Ian Burton
- Aquatic and Crop Resource Development , National Research Council of Canada , 1411 Oxford Street , Halifax , Nova Scotia B3H 3Z1 Canada
| | - Peter D Wentzell
- Trace Analysis Research Centre, Department of Chemistry , Dalhousie University , Post Office Box 15000, Halifax , Nova Scotia B3H 4R2 Canada
| | - Fabrice Berrué
- Aquatic and Crop Resource Development , National Research Council of Canada , 1411 Oxford Street , Halifax , Nova Scotia B3H 3Z1 Canada
| |
Collapse
|
19
|
Low-Input Crops as Lignocellulosic Feedstock for Second-Generation Biorefineries and the Potential of Chemometrics in Biomass Quality Control. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9112252] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lignocellulose feedstock (LCF) provides a sustainable source of components to produce bioenergy, biofuel, and novel biomaterials. Besides hard and soft wood, so-called low-input plants such as Miscanthus are interesting crops to be investigated as potential feedstock for the second generation biorefinery. The status quo regarding the availability and composition of different plants, including grasses and fast-growing trees (i.e., Miscanthus, Paulownia), is reviewed here. The second focus of this review is the potential of multivariate data processing to be used for biomass analysis and quality control. Experimental data obtained by spectroscopic methods, such as nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR), can be processed using computational techniques to characterize the 3D structure and energetic properties of the feedstock building blocks, including complex linkages. Here, we provide a brief summary of recently reported experimental data for structural analysis of LCF biomasses, and give our perspectives on the role of chemometrics in understanding and elucidating on LCF composition and lignin 3D structure.
Collapse
|
20
|
A Deeper Investigation of Drug Degradation Mixtures Using a Combination of MS and NMR Data: Application to Indapamide. Molecules 2019; 24:molecules24091764. [PMID: 31067700 PMCID: PMC6539681 DOI: 10.3390/molecules24091764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/30/2019] [Accepted: 05/05/2019] [Indexed: 12/23/2022] Open
Abstract
A global approach that is based on a combination of mass spectrometry (MS) and nuclear magnetic resonance (NMR) data has been developed for a complete and rapid understanding of drug degradation mixtures. We proposed a workflow based on a sample preparation protocol that is compatible to MS and NMR, the selection of the most appropriate experiments for each technique, and the implementation of prediction software and multivariable analysis method for a better interpretation and correlation of MS and NMR spectra. We have demonstrated the efficient quantification of the remaining active pharmaceutical ingredient (API). The unambiguous characterization of degradation products (DPs) was reached while using the potential of ion mobility-mass spectrometry (IM-MS) for fragment ions filtering (HDMSE) and the implementation of two-dimensional (2D) NMR experiments with the non-uniform sampling (NUS) method. We have demonstrated the potential of quantitative NMR (qNMR) for the estimation of low level DPs. Finally, in order to simultaneously monitor multi-samples, the contribution of partial least squares (PLS) regression was evaluated. Our methodology was tested on three indapamide forced degradation conditions (acidic, basic, and oxidative) and it could be easily transposed in the drug development field to assist in the interpretation of complex mixtures (stability studies, impurities profiling, and biotransformation screening).
Collapse
|
21
|
Simmler C, Graham JG, Chen SN, Pauli GF. Integrated analytical assets aid botanical authenticity and adulteration management. Fitoterapia 2018; 129:401-414. [PMID: 29175549 PMCID: PMC5963993 DOI: 10.1016/j.fitote.2017.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 12/30/2022]
Abstract
This article reviews and develops a perspective for the meaning of authenticity in the context of quality assessment of botanical materials and the challenges associated with discerning adulterations vs. contaminations vs. impurities. Authentic botanicals are by definition non-adulterated, a mutually exclusive relationship that is confirmed through the application of a multilayered set of analytical methods designed to validate the (chemo)taxonomic identity of a botanical and certify that it is devoid of any adulteration. In practice, the ever-increasing sophistication in the process of intentional adulteration, as well as the growing number of botanicals entering the market, altogether necessitate a constant adaptation and reinforcement of authentication methods with new approaches, especially new technologies. This article summarizes the set of analytical methods - classical and contemporary - that can be employed in the authentication of botanicals. Particular emphasis is placed on the application of untargeted metabolomics and chemometrics. An NMR-based untargeted metabolomic model is proposed as a rapid, systematic, and complementary screening for the discrimination of authentic vs. potentially adulterated botanicals. Such analytical model can help advance the evaluation of botanical integrity in natural product research.
Collapse
Affiliation(s)
- Charlotte Simmler
- Center for Natural Product Technologies (CENAPT), United States; UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | - James G Graham
- Center for Natural Product Technologies (CENAPT), United States
| | - Shao-Nong Chen
- Center for Natural Product Technologies (CENAPT), United States; UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | - Guido F Pauli
- Center for Natural Product Technologies (CENAPT), United States; UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States.
| |
Collapse
|
22
|
Dresler S, Kováčik J, Strzemski M, Sowa I, Wójciak-Kosior M. Methodological aspects of biologically active compounds quantification in the genus Hypericum. J Pharm Biomed Anal 2018; 155:82-90. [PMID: 29621655 DOI: 10.1016/j.jpba.2018.03.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 11/26/2022]
Abstract
Accumulation of selected secondary metabolites in two Hypericum species (H. perforatum and H. annulatum) was compared in their vegetative parts (stems and leaves) and in terms of the extraction solvent (80% aq. methanol or 60% aq. ethanol). The presence of chlorogenic acid and quercitrin was not detected in stem of both species. Almost all metabolites were more accumulated in the leaves than in the stems (rutin, hyperoside, quercetin and hypericin) but epicatechin showed the opposite in both species and hyperforin in H. annulatum. Extraction solvents showed rather species-specific differences with EtOH being more suitable for the extraction of hypericin, quercetin, quercitrin, and hyperoside (on average, for both the leaves and stems, extraction increased by approximately 130, 30, 25, and 15%, respectively) while MeOH for the extraction of epicatechin, rutin, and hyperforin (increased extraction by approximately 50, 40, and 35%, respectively). On the other hand, content of total soluble phenols did not differ in relation to solvent in any organ or species. Various ages of H. annulatum plants did not show dramatic impact on the amount of metabolites. Subsequently, the usefulness of capillary electrophoresis (CE) as an alternative to HPLC for the quantification of metabolites in H. perforatum was tested and results showed non-significant differences between CE and HPLC with the methods we developed (the difference did not exceed 10%).
Collapse
Affiliation(s)
- Sławomir Dresler
- Department of Plant Physiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43 Trnava, Slovak Republic.
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Magdalena Wójciak-Kosior
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|