1
|
Mathers A, Fulem M. Drug-polymer compatibility prediction via COSMO-RS. Int J Pharm 2024; 664:124613. [PMID: 39179010 DOI: 10.1016/j.ijpharm.2024.124613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
In this work, the solid-liquid equilibrium (SLE) curve for ten active pharmaceutical ingredients (APIs) with the polymer polyvinylpyrrolidone (PVP) K12 was purely predicted using the Conductor-like Screening Model for Real Solvents (COSMO-RS). In particular, two COSMO-RS-based strategies were followed (i.e., a traditional approach and an expedited approach), and their performances were compared. The veracity of the predicted SLE curves was assessed via a comparison with their respective SLE dataset that was obtained using the step-wise dissolution (S-WD) method. Overall, the COSMO-RS-based API-PVP K12 SLE curves were in satisfactory agreement with the S-WD-based data points. Of the twenty predicted SLE curves, only two were found to be in strong disagreement with the corresponding experimental values (both modeled using the expedited approach). Hence, it was recommended to use the traditional approach when predicting the API-polymer SLE curve. At the present moment, COSMO-RS may be an effective computational tool for the expeditious screening of API-polymer compatibility, particularly in the case of promising novel APIs, for which experimental datasets are likely limited or non-existent.
Collapse
Affiliation(s)
- Alex Mathers
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Michal Fulem
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
2
|
Jablan J, Marguí E, Posavec L, Klarić D, Cinčić D, Galić N, Jug M. Product contamination during mechanochemical synthesis of praziquantel co-crystal, polymeric dispersion and cyclodextrin complex. J Pharm Biomed Anal 2024; 238:115855. [PMID: 37948780 DOI: 10.1016/j.jpba.2023.115855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
This paper aims to evaluate the product contamination by elemental impurities during the mechanochemical synthesis of praziquantel (PZQ) co-crystal, polymeric dispersion and cyclodextrin complex by grinding. To assess that, PZQ was co-ground with malic acid (MA), Poloxamer F-127 (F-127) and hydroxypropyl-β-cyclodextrin (HPβCD) in high-energy vibrational mills using stainless steel and agate grinding tools, applying different processing time (30 and 90 min). Differential scanning calorimetry and X-ray powder diffraction confirmed the formation of the targeted products, regardless of applied processing time and grinding tool type. After digestion of the solid powder products, the levels of selected elemental impurities were analysed by inductively coupled plasma mass spectrometry (ICP-MS). The analysis revealed that the content of Mg, Ca, and V are below the limit of quantification in all samples analysed. The contents of P and Na are not related to the type of ball mill and reaction time, but to the starting materials themselves, considering that Na is found in HPβCD and MA, while P was found in F-127. The detected Si impurities in the co-ground products can be related to the use of the agate balls and jars, while the presence of Cr and Fe can be related to the use of the stainless steel grinding tools. The risk assessment showed that the oral administration of the prepared co-ground products in quantities corresponding to regular PZQ oral doses resulted in only insignificant exposure to Cr. Finally, the use of agate grinding tools should be preferred, as administration of such products results in lower Cr exposure. The presented elemental impurities did not lead to any significant drug degradation as PZQ content at the end of the six-month testing period was still in the range of 95-105 % of the initial content. Regardless, ICP-MS analysis of the elemental impurities should be considered in regular quality control procedures in the development and production of novel pharmaceutical products prepared by grinding.
Collapse
Affiliation(s)
- Jasna Jablan
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Analytical Chemistry, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Eva Marguí
- University of Girona, Department of Chemistry, C/M.Aurèlia Capmany 69, 17003 Girona, Spain
| | - Lidija Posavec
- University of Zagreb Faculty of Science, Department of Chemistry, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - David Klarić
- University of Zagreb Faculty of Science, Department of Chemistry, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Dominik Cinčić
- University of Zagreb Faculty of Science, Department of Chemistry, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Nives Galić
- University of Zagreb Faculty of Science, Department of Chemistry, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Mario Jug
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, A. Kovačića 1, 10 000 Zagreb, Croatia.
| |
Collapse
|
3
|
D’Abbrunzo I, Procida G, Perissutti B. Praziquantel Fifty Years on: A Comprehensive Overview of Its Solid State. Pharmaceutics 2023; 16:27. [PMID: 38258039 PMCID: PMC10821272 DOI: 10.3390/pharmaceutics16010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
This review discusses the entire progress made on the anthelmintic drug praziquantel, focusing on the solid state and, therefore, on anhydrous crystalline polymorphs, amorphous forms, and multicomponent systems (i.e., hydrates, solvates, and cocrystals). Despite having been extensively studied over the last 50 years, new polymorphs and the greater part of their cocrystals have only been identified in the past decade. Progress in crystal engineering science (e.g., the use of mechanochemistry as a solid form screening tool and more strategic structure-based methods), along with the development of analytical techniques, including Synchrotron X-ray analyses, spectroscopy, and microscopy, have furthered the identification of unknown crystal structures of the drug. Also, computational modeling has significantly contributed to the prediction and design of new cocrystals by considering structural conformations and interactions energy. Whilst the insights on praziquantel polymorphs discussed in the present review will give a significant contribution to controlling their formation during manufacturing and drug formulation, the detailed multicomponent forms will help in designing and implementing future praziquantel-based functional materials. The latter will hopefully overcome praziquantel's numerous drawbacks and exploit its potential in the field of neglected tropical diseases.
Collapse
Affiliation(s)
| | | | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy (G.P.)
| |
Collapse
|
4
|
D'Abbrunzo I, Bianco E, Gigli L, Demitri N, Birolo R, Chierotti MR, Škorić I, Keiser J, Häberli C, Voinovich D, Hasa D, Perissutti B. Praziquantel meets Niclosamide: A dual-drug Antiparasitic Cocrystal. Int J Pharm 2023; 644:123315. [PMID: 37579827 DOI: 10.1016/j.ijpharm.2023.123315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
In this paper we report a successful example of combining drugs through cocrystallization. Specifically, the novel solid is formed by two anthelminthic drugs, namely praziquantel (PZQ) and niclosamide (NCM) in a 1:3 molar ratio, and it can be obtained through a sustainable one-step mechanochemical process in the presence of micromolar amounts of methanol. The novel solid phase crystallizes in the monoclinic space group of P21/c, showing one PZQ and three NCM molecules linked through homo- and heteromolecular hydrogen bonds in the asymmetric unit, as also attested by SSNMR and FT-IR results. A plate-like habitus is evident from scanning electron microscopy analysis with a melting point of 202.89 °C, which is intermediate to those of the parent compounds. The supramolecular interactions confer favorable properties to the cocrystal, preventing NCM transformation into the insoluble monohydrate both in the solid state and in aqueous solution. Remarkably, the PZQ - NCM cocrystal exhibits higher anthelmintic activity against in vitro S. mansoni models than corresponding physical mixture of the APIs. Finally, due to in vitro promising results, in vivo preliminary tests on mice were also performed through the administration of minicapsules size M.
Collapse
Affiliation(s)
- Ilenia D'Abbrunzo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy.
| | - Emma Bianco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| | - Lara Gigli
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza-Trieste, Italy.
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza-Trieste, Italy.
| | - Rebecca Birolo
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy
| | - Michele R Chierotti
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy.
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Jennifer Keiser
- Department of Medical Parasitology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel, Basel 4000, Switzerland
| | - Cécile Häberli
- Department of Medical Parasitology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel, Basel 4000, Switzerland
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| | - Dritan Hasa
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy.
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy.
| |
Collapse
|
5
|
Salazar-Rojas D, Kaufman TS, Maggio RM. A study of the heat-mediated phase transformations of praziquantel hydrates. Evaluation of their impact on the dissolution rate. Heliyon 2022; 8:e11317. [DOI: 10.1016/j.heliyon.2022.e11317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
|
6
|
Thermal-induced impact on physicochemical property and bioaccessibility of β-carotene in aqueous suspensions fabricated by wet-milling approach. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
MacEachern L, Kermanshahi-Pour A, Mirmehrabi M. Transformation under pressure: Discovery of a novel crystalline form of anthelmintic drug Praziquantel using high-pressure supercritical carbon dioxide. Int J Pharm 2022; 619:121723. [PMID: 35395364 DOI: 10.1016/j.ijpharm.2022.121723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Supercritical carbon dioxide (CO2) has been used as a processing technique to control polymorphism of pharmaceuticals. However, there are fewer reports of novel polymorphs being discovered by supercritical CO2 processing. As supercritical crystallization methods gain attention for potential in pharmaceutical processing, they may become a critical screening tool for discovery of new polymorphs. In this work, a case study is presented for a novel crystalline form of the anthelmintic drug, Praziquantel, found through supercritical CO2 processing. The novel form of Praziquantel was characterized by chromatography, nuclear magnetic resonance and infrared spectroscopy, X-ray powder diffraction, thermal analysis, and scanning electron microscopy. Furthermore, the novel form exhibited 13-20% improved solubility compared to commercial Form A between pH 1.6 and 7.5 and was physically stable under stressed conditions (40 °C and 75% relative humidity) for 7.5 weeks. Overall, this work showed that supercritical CO2 processing is a valuable tool to screen for novel, and possibly viable polymorphs of pharmaceutical compounds with improved properties.
Collapse
Affiliation(s)
- Lauren MacEachern
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1, Canada; Solid State Pharma Inc., 1489 Hollis Street, Suite 300, Halifax, Nova Scotia B3J 3M5, Canada
| | - Azadeh Kermanshahi-Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1, Canada.
| | - Mahmoud Mirmehrabi
- Solid State Pharma Inc., 1489 Hollis Street, Suite 300, Halifax, Nova Scotia B3J 3M5, Canada.
| |
Collapse
|
8
|
Mechanochemical Synthesis and Physicochemical Characterization of Previously Unreported Praziquantel Solvates with 2-Pyrrolidone and Acetic Acid. Pharmaceutics 2021; 13:pharmaceutics13101606. [PMID: 34683899 PMCID: PMC8540171 DOI: 10.3390/pharmaceutics13101606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Two new solvates of the widely used anthelminthic Praziquantel (PZQ) were obtained through mechanochemical screening with different liquid additives. Specifically, 2-pyrrolidone and acetic acid gave solvates with 1:1 stoichiometry (PZQ-AA and PZQ-2P, respectively). A wide-ranging characterization of the new solid forms was carried out by means of powder X-ray diffraction, differential scanning calorimetry, FT-IR, solid-state NMR and biopharmaceutical analyses (solubility and intrinsic dissolution studies). Besides, the crystal structures of the two new solvates were solved from their Synchrotron-PXRD pattern: the solvates are isostructural, with equivalent triclinic packing. In both structures acetic acid and 2-pyrrolidone showed a strong interaction with the PZQ molecule via hydrogen bond. Even though previous studies have shown that PZQ is conformationally flexible, the same syn conformation as the PZQ Form A of the C=O groups of the piperazinone-cyclohexylcarbonyl segment is involved in these two new solid forms. In terms of biopharmaceutical properties, PZQ-AA and PZQ-2P exhibited water solubility and intrinsic dissolution rate much greater than those of anhydrous Form A.
Collapse
|
9
|
Meng Z, Boyce HJ, Sun D, Kinjo M, Raofi S, Li T. Preferential Oxycodone Loss of Physically Manipulated Abuse Deterrent Oxycodone HCl Extended Release Tablets Prepared for Nasal Insufflation Studies. Pharm Res 2021; 38:1263-1278. [PMID: 34128146 DOI: 10.1007/s11095-021-03066-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/21/2021] [Indexed: 11/24/2022]
Abstract
A method to reproducibly mill abuse deterrent oxycodone hydrochloride (HCl) extended release (ER) tablets was developed for a nasal insufflation pharmacokinetic (PK) study. Several comminution methods were explored before determining that a conical mill resulted in controlled milling of tablets to a size range equal to or below 1000 μm. However, milling resulted in significant loss of oxycodone from abuse deterrent oxycodone HCl ER tablets compared to minimal oxycodone loss from oxycodone HCl immediate release (IR) tablets. Characterization of milled tablet powder showed that loss of oxycodone was not attributed to analytical procedures or oxycodone phase change during high intensity milling processes. The content uniformity of oxycodone in the milled tablet powder varied when ER and IR tablets were milled to a particle size distribution equal to or below 500 μm but did not vary when particles were sized above 500 µm to equal to or below 1000 μm. In addition, the initial excipient weight to drug substance weight ratio impacted the amount of oxycodone lost from the respective formulation. However, dissolution demonstrated that when oxycodone HCl ER tablets are milled, differences in excipient weight to drug substance weight ratio and particle size distribution of milled tablets did not result in significantly different release of oxycodone.
Collapse
Affiliation(s)
- Zhengjie Meng
- Department of Industrial and Physical Pharmacy, Purdue University, RHPH Building, RM 124, 575 Stadium Mall Dr, West Lafayette, Indiana, 47907, USA.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Heather J Boyce
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Building 75, RM 4692, 10903 New Hampshire Ave, Silver Spring, MD, 21231, USA.
| | - Dajun Sun
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Building 75, RM 4692, 10903 New Hampshire Ave, Silver Spring, MD, 21231, USA
| | - Minori Kinjo
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Building 75, RM 4692, 10903 New Hampshire Ave, Silver Spring, MD, 21231, USA
| | - Saeid Raofi
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Building 75, RM 4692, 10903 New Hampshire Ave, Silver Spring, MD, 21231, USA
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, Purdue University, RHPH Building, RM 124, 575 Stadium Mall Dr, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
10
|
Devogelaer JJ, Charpentier MD, Tijink A, Dupray V, Coquerel G, Johnston K, Meekes H, Tinnemans P, Vlieg E, ter Horst JH, de Gelder R. Cocrystals of Praziquantel: Discovery by Network-Based Link Prediction. CRYSTAL GROWTH & DESIGN 2021; 21:3428-3437. [PMID: 34276256 PMCID: PMC8276530 DOI: 10.1021/acs.cgd.1c00211] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/07/2021] [Indexed: 06/13/2023]
Abstract
Cocrystallization has been promoted as an attractive early development tool as it can change the physicochemical properties of a target compound and possibly enable the purification of single enantiomers from racemic compounds. In general, the identification of adequate cocrystallization candidates (or coformers) is troublesome and hampers the exploration of the solid-state landscape. For this reason, several computational tools have been introduced over the last two decades. In this study, cocrystals of Praziquantel (PZQ), an anthelmintic drug used to treat schistosomiasis, are predicted with network-based link prediction and experimentally explored. Single crystals of 12 experimental cocrystal indications were grown and subjected to a structural analysis with single-crystal X-ray diffraction. This case study illustrates the power of the link-prediction approach and its ability to suggest a diverse set of new coformer candidates for a target compound when starting from only a limited number of known cocrystals.
Collapse
Affiliation(s)
- Jan-Joris Devogelaer
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Maxime D. Charpentier
- EPSRC
Centre for Innovative Manufacturing in Continuous Manufacturing and
Crystallization (CMAC), Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Arnoud Tijink
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Valérie Dupray
- Laboratoire
Sciences et Méthodes Séparatives, Normandie Univ, UNIROUEN, SMS, 76000 Rouen, France
| | - Gérard Coquerel
- Laboratoire
Sciences et Méthodes Séparatives, Normandie Univ, UNIROUEN, SMS, 76000 Rouen, France
| | - Karen Johnston
- Department
of Chemical and Process Engineering, University
of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - Hugo Meekes
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Paul Tinnemans
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Elias Vlieg
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Joop H. ter Horst
- EPSRC
Centre for Innovative Manufacturing in Continuous Manufacturing and
Crystallization (CMAC), Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, United Kingdom
- Laboratoire
Sciences et Méthodes Séparatives, Normandie Univ, UNIROUEN, SMS, 76000 Rouen, France
| | - René de Gelder
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
11
|
Šagud I, Zanolla D, Zingone G, Perissutti B, Škorić I. Impact of mesoporous silica on the chemical degradation of Praziquantel upon grinding. CR CHIM 2021. [DOI: 10.5802/crchim.82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Gaggero A, Jurišić Dukovski B, Radić I, Šagud I, Škorić I, Cinčić D, Jug M. Co-grinding with surfactants as a new approach to enhance in vitro dissolution of praziquantel. J Pharm Biomed Anal 2020; 189:113494. [PMID: 32745904 DOI: 10.1016/j.jpba.2020.113494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022]
Abstract
This paper evaluates the process of co-grinding with a surfactant as a new approach to enhance physicochemical and biopharmaceutical properties of praziquantel (PZQ), a poorly soluble drug that is essential for the treatment of schistosomiasis, a neglected tropical disease. Surfactants used in this study were poloxamer F-127 and sucrose stearate (C-1816), selected based on their well-documented biocompatibility and solubilizing activity. A series of products were prepared by mechanochemical activation using vibrational ball-mill at different drug to surfactant ratio and milling times. The obtained products were characterised in terms of drug recovery, solubility and in vitro dissolution rates. The obtained results were correlated to solid-state properties of the products analysed by differential scanning calorimetry, powder X-ray diffraction and particle size analysis. Results of UPLC-MS analysis and 1H-NMR spectroscopy showed that the used surfactants and applied grinding procedures caused no chemical degradation of the PZQ. The physicochemical properties, solubility and the in vitro dissolution enhancement of the co-ground products were related to the drug to surfactant ratio and the grinding protocol applied. The highest enhancement of the in vitro dissolution rate was achieved at the drug to surfactant ratio of 10:3 and 10:2 for F-127 and C-1816, respectively with the milling time of 30 min. The MTT assay on Caco-2 cell line demonstrated the biocompatibility of both co-ground products. Furthermore, the surfactants used did not change intrinsically high intestinal permeability of PZQ (Papp ∼ 4.00 × 10-5 cm s-1). The presented results confirmed that the co-grinding with surfactant is a promising new approach in enhancing in vitro dissolution of poorly soluble drugs like PZQ.
Collapse
Affiliation(s)
- Alessio Gaggero
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Bisera Jurišić Dukovski
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Irena Radić
- Pliva Croatia Ltd., Teva Api R&D, Zagreb, Croatia
| | - Ivana Šagud
- Pliva Croatia Ltd., Teva Api R&D, Zagreb, Croatia
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Dominik Cinčić
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Mario Jug
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
13
|
Hao C, Chen Y, Xiong J, Yang Z, Gao L, Liu BF, Liu X, Jin J, Zhang G. Polymorphs and pharmacokinetics of an antipsychotic drug candidate. Int J Pharm 2020; 586:119600. [PMID: 32629070 DOI: 10.1016/j.ijpharm.2020.119600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/10/2020] [Accepted: 06/27/2020] [Indexed: 12/30/2022]
Abstract
A potent antipsychotic drug candidate, 7-(4-(4-(6-fluorobenzo[d]-isoxazol-3-yl)-piperidin-1-yl)butoxy)-4-methyl-8-chloro -2H-chromen-2-one mesylate(CY611), with good in vitro and in vivo antipsychotic effects was investigated for preformulation evaluation by crystallography methods. Three anhydrous polymorphs(Form I-III), a monohydrate(Form IV), and a NMP solvate(Form V) were discovered and characterized by powder X-ray diffraction, thermal analysis, attenuated total reflection-fourier transform infrared spectroscopy and scanning electron microscopy. Form I, monohydrate Form IV, and a NMP solvate Form V of the drug candidate were isolated, and their structures were determined by single crystal X-ray diffraction. IDR and relative stability experiment were performed. Although Form II has the fastest release rate in water, it easy transformed to monohydrate which has the lowest release rate. In vivo pharmacokinetic study showed that the Form III has the highest bioavailability at 35.4%. Considering the balance between the physicochemical properties, bioavailability and manufacturability of the available polymorphs, Form III may be the optimal form candidate for the eventual formulation.
Collapse
Affiliation(s)
- Chao Hao
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yin Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiaying Xiong
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhengge Yang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lanchang Gao
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jian Jin
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Guisen Zhang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
14
|
Zanolla D, Hasa D, Arhangelskis M, Schneider-Rauber G, Chierotti MR, Keiser J, Voinovich D, Jones W, Perissutti B. Mechanochemical Formation of Racemic Praziquantel Hemihydrate with Improved Biopharmaceutical Properties. Pharmaceutics 2020; 12:pharmaceutics12030289. [PMID: 32210129 PMCID: PMC7151222 DOI: 10.3390/pharmaceutics12030289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 11/16/2022] Open
Abstract
Praziquantel (PZQ) is the first-line drug used against schistosomiasis, one of the most common parasitic diseases in the world. A series of crystalline structures including two new polymorphs of the pure drug and a series of cocrystals of PZQ have been discovered and deposited in the Cambridge Structural Database (CSD). This work adds to the list of multicomponent forms of PZQ a relevant example of a racemic hemihydrate (PZQ-HH), obtainable from commercial PZQ (polymorphic Form A) through mechanochemistry. Noteworthy, the formation of the new hemihydrate strongly depends on the initial polymorphic form of PZQ and on the experimental conditions used. The new PZQ-HH has been fully characterized by means of HPLC, Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Hot-Stage Microscopy (SEM), Powder X-Ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), FT-IR, polarimetry, solid-state NMR (SS-NMR), solubility and intrinsic dissolution rate (IDR), and in vitro tests on Schistosoma mansoni adults. The crystal structure was solved from the powder X-ray diffraction pattern and validated by periodic-DFT calculations. The new bioactive hemihydrate was physically stable for three months and showed peculiar biopharmaceutical features including enhanced solubility and a double intrinsic dissolution rate in water in comparison to the commercially available PZQ Form A.
Collapse
Affiliation(s)
- Debora Zanolla
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy; (D.Z.); (D.H.)
| | - Dritan Hasa
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy; (D.Z.); (D.H.)
| | - Mihails Arhangelskis
- Faculty of Chemistry, University of Warsaw, 1 Pasteura Street, 02-093 Warsaw, Poland;
| | - Gabriela Schneider-Rauber
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2-1EW Cambridge, UK; (G.S.-R.); (W.J.)
| | - Michele R. Chierotti
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy;
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, CH-4002 Basel; Switzerland;
- Universität Basel, Petersplatz 1, P.O. Box, CH-4001 Basel, Switzerland
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy; (D.Z.); (D.H.)
- Correspondence: (D.V.); (B.P.); Tel.: +39-040-558-3106 (D.V. & B.P.)
| | - William Jones
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2-1EW Cambridge, UK; (G.S.-R.); (W.J.)
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy; (D.Z.); (D.H.)
- Correspondence: (D.V.); (B.P.); Tel.: +39-040-558-3106 (D.V. & B.P.)
| |
Collapse
|
15
|
Lapuk S, Mukhametzyanov T, Schick C, Gerasimov A. Kinetic stability of amorphous dipyridamole: A fast scanning calorimetry investigation. Int J Pharm 2020; 574:118890. [DOI: 10.1016/j.ijpharm.2019.118890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 01/10/2023]
|
16
|
Zanolla D, Perissutti B, Vioglio PC, Chierotti MR, Gigli L, Demitri N, Passerini N, Albertini B, Franceschinis E, Keiser J, Voinovich D. Exploring mechanochemical parameters using a DoE approach: Crystal structure solution from synchrotron XRPD and characterization of a new praziquantel polymorph. Eur J Pharm Sci 2019; 140:105084. [PMID: 31626966 DOI: 10.1016/j.ejps.2019.105084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022]
Abstract
A rotated Doehlert matrix was utilized to explore the experimental design space around the milling parameters of Praziquantel (PZQ) polymorph B formation in terms of frequency and milling time. Three experimental responses were evaluated on the resulting ground samples: two quantitative responses, i.e. median particle size by Laser Light scattering (LLS) and drug recovery by HPLC, and one qualitative dependent variable, i.e. the obtained PZQ crystalline form, characterized through X-Ray Powder Diffraction (XRPD) and confirmed by Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA). Temperature inside the jars was kept under constant control during the milling process by using temperature sensor equipped jars (thermojars), thus allowing evaluation of the obtained solid states at each experimental point, considering the specific temperature of the process. This explorative analysis led to the finding of a novel PZQ polymorph, named "Form C", produced without degradation, then fully characterized, including by means of Synchrotron XRPD, Polarimetric, FT-IR, SS-NMR, ESEM and saturation solubility. Crystal structure was solved from XRPD data and its geometry was optimized by DFT calculations (CASTEP). Finally, Form C and Form A activity against adult schistosoma mansoni were compared through in vitro testing, and Form C's physical stability checked. The new polymorph, crystallizing in space group I2/c, physically stable for approximately 2 months, showed a m.p. of 106.84 °C and displayed excellent biopharmaceutical properties (water solubility of 382.69±9.26 mg/l), while preserving excellent activity levels against adult schistosoma mansoni.
Collapse
Affiliation(s)
- Debora Zanolla
- University of Trieste, Dept. of Chemical and Pharmaceutical Sciences, P.le Europa 1, Trieste, Italy
| | - Beatrice Perissutti
- University of Trieste, Dept. of Chemical and Pharmaceutical Sciences, P.le Europa 1, Trieste, Italy.
| | | | - Michele R Chierotti
- University of Torino, Dept. of Chemistry and NIS Centre, V. Giuria 7, Torino, Italy
| | - Lara Gigli
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza-Trieste, Italy
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, Basovizza-Trieste, Italy
| | - Nadia Passerini
- University of Bologna Dept. of Pharmacy and BioTechnology, Via S. Donato 19/2, Bologna, Italy
| | - Beatrice Albertini
- University of Bologna Dept. of Pharmacy and BioTechnology, Via S. Donato 19/2, Bologna, Italy
| | - Erica Franceschinis
- University of Padova Dept. of Pharmaceutical and Pharmacological Sciences, via Marzolo 5, Padova, Italy
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute Helminth Drug Development Unit, Dept. Medical Parasitology and Infection Biology, Basel, Switzerland; Universität Basel, Petersplatz 1, P.O. Box, CH-4001 Basel, Switzerland
| | - Dario Voinovich
- University of Trieste, Dept. of Chemical and Pharmaceutical Sciences, P.le Europa 1, Trieste, Italy
| |
Collapse
|
17
|
Borrego-Sánchez A, Sánchez-Espejo R, Albertini B, Passerini N, Cerezo P, Viseras C, Sainz-Díaz CI. Ground Calcium Carbonate as a Low Cost and Biosafety Excipient for Solubility and Dissolution Improvement of Praziquantel. Pharmaceutics 2019; 11:pharmaceutics11100533. [PMID: 31615087 PMCID: PMC6835254 DOI: 10.3390/pharmaceutics11100533] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 01/22/2023] Open
Abstract
Calcium carbonate is an abundant mineral with several advantages to be a successful carrier to improve oral bioavailability of poorly water-soluble drugs, such as praziquantel. Praziquantel is an antiparasitic drug classified in group II of the Biopharmaceutical Classification System hence characterized by high-permeability and low-solubility. Therefore, the dissolution rate is the limiting factor for the gastrointestinal absorption that contributes to the low bioavailability. Consequently, the therapeutic dose of the praziquantel must be high and big tablets and capsules are required, which are difficult to swallow, especially for pediatric and elderly patients. Mixtures of praziquantel and calcium carbonate using solid-solid physical mixtures and solid dispersions were prepared and characterized using several techniques (X-ray diffraction differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, laser diffraction, Fourier transform infrared and Raman spectroscopies). Solubility of these formulations evidenced that the solubility of praziquantel-calcium carbonate interaction product increased in physiological media. In vitro dissolution tests showed that the interaction product increased the dissolution rate of the drug in acidic medium. Theoretical models were studied to understand this experimental behavior. Cytotoxicity and cell cycle studies were performed, showing that praziquantel-calcium carbonate physical mixture and interaction product were biocompatible with the HTC116 cells, because it did not produce a decrease in cell viability or alterations in the cell cycle.
Collapse
Affiliation(s)
- Ana Borrego-Sánchez
- Instituto Andaluz de Ciencias de la Tierra (CSIC-University of Granada), Av. de las Palmeras 4, 18100 Granada, Spain.
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - Rita Sánchez-Espejo
- Instituto Andaluz de Ciencias de la Tierra (CSIC-University of Granada), Av. de las Palmeras 4, 18100 Granada, Spain.
| | - Beatrice Albertini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| | - Nadia Passerini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| | - Pilar Cerezo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - César Viseras
- Instituto Andaluz de Ciencias de la Tierra (CSIC-University of Granada), Av. de las Palmeras 4, 18100 Granada, Spain.
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - C Ignacio Sainz-Díaz
- Instituto Andaluz de Ciencias de la Tierra (CSIC-University of Granada), Av. de las Palmeras 4, 18100 Granada, Spain.
| |
Collapse
|
18
|
Bertoni S, Albertini B, Passerini N. Spray Congealing: An Emerging Technology to Prepare Solid Dispersions with Enhanced Oral Bioavailability of Poorly Water Soluble Drugs. Molecules 2019; 24:E3471. [PMID: 31557815 PMCID: PMC6804277 DOI: 10.3390/molecules24193471] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
The low and variable oral bioavailability of poorly water soluble drugs remains a major concern for the pharmaceutical industry. Spray congealing is an emerging technology for the production of solid dispersion to enhance the bioavailability of poorly soluble drugs by using low-melting hydrophilic excipients. The main advantages are the absence of solvents and the possibility to obtain spherical free-flowing microparticles (MPs) by a relatively inexpensive, simple, and one-step process. This review aims to fully describe the composition, structure, physico-chemical properties, and characterization techniques of spray congealed-formulations. Moreover, the influence of these properties on the MPs performance in terms of solubility and dissolution enhancement are examined. Following, an overview of the different spray congealed systems developed to increase the oral drug bioavailability is provided, with a focus on the mechanisms underpinning the bioavailability enhancement. Finally, this work gives specific insights on the main factors to be considered for the rational formulation, manufacturing, and characterization of spray congealed solid dispersions.
Collapse
Affiliation(s)
- Serena Bertoni
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| | - Beatrice Albertini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| | - Nadia Passerini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| |
Collapse
|
19
|
Albertini B, Perissutti B, Bertoni S, Zanolla D, Franceschinis E, Voinovich D, Lombardo F, Keiser J, Passerini N. Combining Mechanochemistry and Spray Congealing for New Praziquantel Pediatric Formulations in Schistosomiasis Treatment. Int J Mol Sci 2019; 20:ijms20051233. [PMID: 30870971 PMCID: PMC6429213 DOI: 10.3390/ijms20051233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022] Open
Abstract
Praziquantel (PZQ) is the first line drug for the treatment of schistosome infections and is included in the WHO Model List of Essential Medicines for Children. In this study, the association of mechanochemical activation (MA) and the spray congealing (SC) technology was evaluated for developing a child-friendly PZQ dosage form, with better product handling and biopharmaceutical properties, compared to MA materials. A 1:1 by wt PZQ—Povidone coground—was prepared in a vibrational mill under cryogenic conditions, for favoring amorphization. PZQ was neat ground to obtain its polymorphic form (Form B), which has an improved solubility and bioactivity. Then, activated PZQ powders were loaded into microparticles (MPs) by the SC technology, using the self-emulsifying agent Gelucire® 50/13 as a carrier. Both, the activated powders and the corresponding loaded MPs were characterized for morphology, wettability, solubility, dissolution behavior, drug content, and drug solid state (Hot Stage Microscopy (HSM), Differential Scanning Calorimetry (DSC), X-Ray Powder Diffraction Studies (PXRD), and FT-IR). Samples were also in vitro tested for a comparison with PZQ against Schistosoma mansoni newly transformed schistosomula (NTS) and adults. MPs containing both MA systems showed a further increase of biopharmaceutical properties, compared to the milled powders, while maintaining PZQ bioactivity. MPs containing PZQ Form B represented the most promising product for designing a new PZQ formulation.
Collapse
Affiliation(s)
- Beatrice Albertini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy.
| | - Serena Bertoni
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| | - Debora Zanolla
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy.
| | - Erica Franceschinis
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy.
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy.
| | - Flavio Lombardo
- Helminth Drug Development Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstr.57, CH-4051 Basel, Switzerland.
- Universität Basel, Petersplatz 1, P.O. Box, CH-4001 Basel, Switzerland.
| | - Jennifer Keiser
- Helminth Drug Development Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstr.57, CH-4051 Basel, Switzerland.
- Universität Basel, Petersplatz 1, P.O. Box, CH-4001 Basel, Switzerland.
| | - Nadia Passerini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| |
Collapse
|
20
|
Censi R, Gigliobianco MR, Casadidio C, Di Martino P. Changes in the Solid State of Nicergoline, a Poorly Soluble Drug, Under Different Grinding and Environmental Conditions: Effect on Polymorphism and Dissolution. J Pharm Sci 2018; 108:929-948. [PMID: 30300621 DOI: 10.1016/j.xphs.2018.09.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Nicergoline native crystals (Form I) were subjected to different grinding methods for 15, 30, 45, and 60 min: Method A, grinding at 20°C under air atmosphere; Method B, grinding in presence of liquid nitrogen under air atmosphere; Method C, grinding at 20°C under nitrogen atmosphere; and Method D, grinding in presence of liquid nitrogen under nitrogen atmosphere. Scanning electron microscopy, differential scanning calorimetry, X-ray powder diffractometry, thermogravimetry, and infrared spectroscopy were used to follow changes in the particle size and in crystalline structures. Batches from Methods A and C underwent partial amorphization immediately after grinding; Form II was obtained by heating these partially amorphous forms or after spontaneous crystallization after 1 and 5 months storage. Method B promoted the hydration of nicergoline to a monohydrate form. Batch D was stable under grinding and neither amorphization nor hydration were observed. The best intrinsic dissolution rate was that of metastable Form II, followed by Form I, while the worst was that of the Method B monohydrate form. The slowest particle dissolution was observed for hydrated particles, because of the lowest IDR, while the most rapid was exhibited by batch D, because of the very small particle size.
Collapse
Affiliation(s)
- Roberta Censi
- University of Camerino, School of Pharmacy, Via S. Agostino, Camerino, Italy
| | | | - Cristina Casadidio
- University of Camerino, School of Pharmacy, Via S. Agostino, Camerino, Italy
| | - Piera Di Martino
- University of Camerino, School of Pharmacy, Via S. Agostino, Camerino, Italy.
| |
Collapse
|
21
|
Šagud I, Zanolla D, Perissutti B, Passerini N, Škorić I. Identification of degradation products of praziquantel during the mechanochemical activation. J Pharm Biomed Anal 2018; 159:291-295. [PMID: 30007178 DOI: 10.1016/j.jpba.2018.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 12/29/2022]
Abstract
Praziquantel (PZQ) is an inexpensive, low toxicity BCS II class anthelmintic drug used for the treatment of neglected tropical diseases. In earlier papers a mechanochemical activation has been used to induce physical transformations on the drug which would ameliorate its solubility and hence its bioavailability and a systematic study of the effects of varying temperature, frequency and time of milling on drug melting enthalpy and drug recovery was given. In this communication, the focus is on the degradation products that are formed during this mechanical treatment of Praziquantel. In the cogrinding process with povidone and crospovidone several degradation products are formed. Different degradation products are formed, which depend on the type of polymer rather than the process conditions. Two of the most prominent degradation products were identified and their structure proposed on the basis of information obtained from GC-MS, UPLC-MS and 1H NMR techniques.
Collapse
Affiliation(s)
- Ivana Šagud
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Debora Zanolla
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy
| | - Nadia Passerini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia.
| |
Collapse
|