1
|
Onifade OA, Yusairie FA, Abu Bakar MH, Alresheedi MT, Khoon Ng E, Mahdi MA, Muhammad Noor AS. Uricase biofunctionalized plasmonic sensor for uric acid detection with APTES-modified gold nanotopping. Biosens Bioelectron 2024; 261:116486. [PMID: 38861811 DOI: 10.1016/j.bios.2024.116486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/06/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Current uric acid detection methodologies lack the requisite sensitivity and selectivity for point-of-care applications. Plasmonic sensors, while promising, demand refinement for improved performance. This work introduces a biofunctionalized sensor predicated on surface plasmon resonance to quantify uric acid within physiologically relevant concentration ranges. The sensor employs the covalent immobilization of uricase enzyme using 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-Hydroxysuccinimide (NHS) crosslinking agents, ensuring the durable adherence of the enzyme onto the sensor probe. Characterization through atomic force microscopy and Fourier transform infrared spectroscopy validate surface alterations. The Langmuir adsorption isotherm model elucidates binding kinetics, revealing a sensor binding affinity of 298.83 (mg/dL)-1, and a maximum adsorption capacity of approximately 1.0751°. The biofunctionalized sensor exhibits a sensitivity of 0.0755°/(mg/dL), a linear correlation coefficient of 0.8313, and a limit of detection of 0.095 mg/dL. Selectivity tests against potentially competing interferents like glucose, ascorbic acid, urea, D-cystine, and creatinine showcase a significant resonance angle shift of 1.1135° for uric acid compared to 0.1853° for interferents at the same concentration. Significantly, at a low uric acid concentration of 0.5 mg/dL, a distinct shift of 0.3706° was observed, setting it apart from the lower values noticed at higher concentrations for all typical interferent samples. The uricase enzyme significantly enhances plasmonic sensors for uric acid detection, showcasing a seamless integration of optical principles and biological recognition elements. These sensors hold promise as vital tools in clinical and point-of-care settings, offering transformative potential in biosensing technologies and the potential to revolutionize healthcare outcomes in biomedicine.
Collapse
Affiliation(s)
- Olabisi Abdullahi Onifade
- Department of Computer and Communication Systems Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Wireless and Photonics Research Centre of Excellence, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang Selangor, Malaysia.
| | - Fatin Adriena Yusairie
- Department of Computer and Communication Systems Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Muhammad Hafiz Abu Bakar
- Department of Computer and Communication Systems Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Wireless and Photonics Research Centre of Excellence, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang Selangor, Malaysia.
| | - Mohammed Thamer Alresheedi
- Department of Electrical Engineering, College of Engineering, P.O. Box 800, King Saud University, Riyadh 11421, Kingdom of Saudi Arabia.
| | - Eng Khoon Ng
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom.
| | - Mohd Adzir Mahdi
- Wireless and Photonics Research Centre of Excellence, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang Selangor, Malaysia; Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Ahmad Shukri Muhammad Noor
- Department of Computer and Communication Systems Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Wireless and Photonics Research Centre of Excellence, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang Selangor, Malaysia.
| |
Collapse
|
2
|
Wang W, Thiemann S, Chen Q. Utility of SPR technology in biotherapeutic development: Qualification for intended use. Anal Biochem 2022; 654:114804. [PMID: 35839915 DOI: 10.1016/j.ab.2022.114804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 12/16/2022]
Abstract
Surface plasmon resonance (SPR) analysis provides important binding characteristic information for an antibody to its binding partner, such as binding specificity and affinity (KD). In recent years, SPR has been increasingly used in biosimilar development as part of the comparative analytical similarity assessment. Although there is no systematic study describing how to qualify SPR assays, there are various SPR result types (outputs) that have been used for assay qualification in publicly available regulatory documents. The mixed usage of SPR output can cause confusion and can be misleading when comparing binding attributes among antibody molecules. In this report, using a recombinant huIgG1 (mAb 1) antibody as an example, we performed assay qualification strictly based on the nature of the biomolecular interaction. We recommend that KD should be used as the output of assay qualification when the KD can be measured accurately by SPR. When KD cannot be accurately determined in a SPR setting, sensorgram comparison and Parallel Line Analysis (PLA) can be used to qualify the assay. We emphasize the importance of setting up appropriate SPR assay conditions for target and/or Fc receptor interactions to ensure the assay qualification parameters, such as accuracy and repeatability, to meet the criteria acceptable for regulatory filings. With increasing numbers of biotherapeutics being developed, the methods and guidelines provided here can help to align SPR application between the drug development industry and regulatory authorities which will benefit the scientific communities involved in biotherapeutic drug development.
Collapse
Affiliation(s)
- Wei Wang
- Department of Therapeutic Discovery, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| | - Sandra Thiemann
- Biosimilar Business Unit, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Qing Chen
- Department of Therapeutic Discovery, One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| |
Collapse
|