1
|
Ghosh A, Muley A, Bhat S, Ainapure A. Exploring the Renoprotective Potential of Bioactive Nutraceuticals in Chronic Kidney Disease Progression: A Narrative Review. Cureus 2024; 16:e68730. [PMID: 39371767 PMCID: PMC11454842 DOI: 10.7759/cureus.68730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Chronic kidney disease (CKD) is a condition that is characterized by progressive loss of kidney function over time. A substantial increase in the burden of CKD is evident globally, attributed to multifactorial conditions like an expanding aging population, rising diabetes and hypertension rates, and more significant exposures to risk factors associated with the environment and lifestyle. Nutraceuticals are substances that are usually considered a food or an active part of a food that provides medical or health benefits, including the prevention and treatment of a disease. The aim is to review the positive role of nutraceuticals in managing CKD. A narrative review is generated, extracting the papers from databases like Web of Science, Scopus, ScienceDirect, ResearchGate, and PubMed. Animal and human trials focusing on the effect of different nutraceuticals on the initial stage of kidney disease, i.e., stages 1, 2, and 3 of CKD, were included. The review's outcome is understanding the effectiveness of nutraceuticals that have shown positive results in CKD conditions. Active compounds include ubiquinone, curcumin, nitrates, nitrites, lycopene, and resveratrol. These bioactive components are also beneficial for other comorbid conditions like diabetes, hypertension, and cardiovascular conditions that have an eminent adverse effect on CKD. Lycopene, coenzyme Q10 (CoQ10), resveratrol, curcumin, and flavonoids have positively impacted CKD complications. Nutraceuticals hold great promise for individuals with CKD in the coming years, offering diverse potential benefits. These include delivering vital antioxidant and anti-inflammatory support to alleviate oxidative stress and inflammation, helping to regulate blood pressure and lipid levels for improved cardiovascular health, promoting optimal renal function to sustain kidney health, assisting in maintaining electrolyte balance, warding off complications, influencing gut microbiota for enhanced digestive well-being, and ultimately elevating the overall quality of life, for those managing CKD.
Collapse
Affiliation(s)
- Anindita Ghosh
- Nutritional Sciences and Dietetics, Symbiosis Skills and Professional University, Pune, IND
| | - Arti Muley
- Nutrition and Dietetics, Symbiosis School of Culinary Arts, Pune, IND
| | - Sakshi Bhat
- Nutrition and Dietetics, Symbiosis International (Deemed University), Pune, IND
| | | |
Collapse
|
2
|
Oriyomi VO, Fagbohun OF, Akinola FT, Adekola MB, Oyedeji TT. Assessment of Colocasia esculenta leaf extract as a natural alternative for Sitophilus zeamais control: Toxicological, biochemical, and mechanistic insights. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105545. [PMID: 37666616 DOI: 10.1016/j.pestbp.2023.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 09/06/2023]
Abstract
The present study assessed the toxicological, biochemical, and mechanism of action of Colocasia esculenta leaf extract (CELE) on Wistar albino rat and on cholinergic, antioxidant, and antiinflammatory enzymes in Sitophilus zeamais. This was with a view to assessing the potential benefits and safety profile of CELE as a natural alternative for insect control. The bioactivity of the fraction was evaluated using insecticidal and repellent activities against colonies of Sitophilus zeamais to obtain a VLC-chromatographed fraction which was spectroscopically characterized and investigated for enzyme inhibition. The results revealed the ethyl acetate fraction (EAF) as the most potent one with LC50 6.198 μg/ml and 6.6 ± 0.5 repellency. The EAF had an LD50 > 5000 mg/kg but repeated dose >800 mg/kgbw po administration caused significant (p < 0.05) increase in liver and kidney function biomarkers accompanied with elevated atherogenic and coronary indices. Also, renal and hepatomorphological lesions increased in a dose-dependent manner. The High-Performance Liquid Chromatography analysis profiled 7 unknown compounds while the GC-qMS revealed 103 compounds in the CC6 fraction allowing for their identification, quantification, and providing insights into the biological activities and its potentials application. The CC6 fraction inhibited glutathione S-transferase (IC50 = 2265.260.60 mg/ml), superoxide dismutase (IC50 = 1485.300.78 mg/ml), catalase (IC50 = 574.471.57 mg/ml), acetyl cholinesterase (IC50 = 838.280.51 mg/ml), butyryl cholinesterase (IC50 = 1641.76 ± 1.14 mg/ml) and upregulated cyclooxygenase-2 (IC50 = 37.89 ± 0.15 mg/ml). Based on the result of the study, it could be inferred that the unidentified compounds present in the EAF exhibit strong insecticidal properties. The study concluded that the acute toxicity of the potent fraction showed no abnormal clinical toxic symptoms while a repeated dose of the extract in sub-acute studies showed a toxic effect that is dose-dependent. The mechanism of action of the purified fraction could be said to be by inhibition of cholinergic and antioxidant enzymes. However, the potent fraction also upregulated the activity of anti-inflammatory enzymes. Hence, regulated amount of CELE at a repeated dose <800 mg/kgbw could be considered for use as an anti-pest agent in Integrated Pest Management of Sitophilus zeamais.
Collapse
Affiliation(s)
- V O Oriyomi
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Oyo State, Nigeria.
| | - O F Fagbohun
- Department of Biology, Wilmington College, 1870 Quaker Way, Wilmington, OH 45177, USA.
| | - F T Akinola
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - M B Adekola
- Department of Environmental Management and Toxicology, Federal University of Agriculture, Abeokuta Nigeria.
| | - T T Oyedeji
- National Biotechnology Development Agency, Department of Cell Tissue and Culture, National Center for Genetics Resources and Biotechnology, Moor Plantation, Ibadan, Nigeria
| |
Collapse
|
3
|
Li A, Cui W, Zhao Y, Luo T, Zhang Q, Liu Y, Li K, Qin X, Zhang L. Exploration of the main effective constituent and the mechanism in Astragali Radix in the treatment for doxorubicin-induced nephropathy by integrating metabolomics and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116074. [PMID: 36577490 DOI: 10.1016/j.jep.2022.116074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragali Radix (AR) is the dried root of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or A. membranaceus (Fisch.) Bge. AR was the main medicine in a Chinese traditional prescription called Fangji Huangqi Decoction, and it has been used to treating nephrotic syndrome (NS) for thousands of years in China. In recent years, AR has been evidenced to have anti-inflammatory activity, antihyperglycemic activity, antioxidant activity, etc. There are two mainstream commodities for ARs in the market including the imitation wild AR and transplanted AR. However, it is not clear whether the imitation wild AR or transplanted AR and which kind of component, astragalus saponin, astragalus flavonoid or astragalus polysaccharide, makes a bigger contribution in treating NS. And the exact molecular mechanism is not fully understood. AIM OF THE STUDY To explore which kind of AR and which kind of component in AR makes the bigger contribution in treating NS, and exploring the molecular mechanism. MATERIALS AND METHODS Firstly, HPLC-UV/ELSD was used for quantitative determination of the constituents in different ARs. Secondly, the efficacy of different ARs treating doxorubicin-induced nephropathy (DN) was compared by metabolomics. Thirdly, the protective effects of different constituents from ARs on the damage of MPC5 cells induced by adriamycin are validated. Finally, the effective constituents and mechanism of ARs against doxorubicin-induced nephropathy were investigated by network pharmacology and molecular docking. RESULTS Quantitative determination experiment and pharmacological experiment indicated that the AR produced from Gansu province (China) (transplanted AR) with a higher proportion of total saponins, has better efficacy in the treatment for DN. And the cell experiment validated the result that astragalus saponins has the better efficacy in protecting the podocyte against injury than astragalus flavonoids and polysaccharides. The network pharmacology and molecular docking study indicated that astragalus saponins were the main constituent of AR in the treatment for DN. The mechanism may involve in GnRH signaling pathway, VEGF signaling pathway and metabolic pathways, especially of bilirubin metabolism. CONCLUSIONS Transplanted AR has better efficacy in the treatment for NS than imitation wild AR, astragalus saponins have better efficacy in the treatment for NS than astragalus flavonoids and polysaccharides.
Collapse
Affiliation(s)
- Aiping Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Wenbo Cui
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China; Shanxi Health Vocational College, Taiyuan, 030006, China
| | - Yirui Zhao
- Shanxi Provincial Integrated Traditional Chinese and Western Medicine Hospital, No. 13, Fudong Street, Xinghualing District, Taiyuan, 030013, Shanxi, China
| | - Tingting Luo
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Qingyu Zhang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Yuetao Liu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, China.
| | - Lichao Zhang
- Institutes of Biomedical Sciences of Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
4
|
Guo S, Yang L, Zhang Q, Zhang L, Li A. Metabolomics combined with serum pharmacochemistry discovering the potential effective compounds of Fangji Huangqi Tang against nephrotic syndrome. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1214:123532. [PMID: 36462401 DOI: 10.1016/j.jchromb.2022.123532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022]
Abstract
Fangji Huangqi Tang (FHT) was first recorded in "Jin Gui Yao Lue," invented by the archaic Chinese medical doctor Zhongjing Zhang, and is a classic medicine that tonifies qi and expels wind, invigorates spleen for diuresis. A large number of literatures indicated that FHT showed a significant effect on Nephrotic Syndrome (NS). A comprehensive strategy was proposed to discover the potential effective compounds and therapeutic targets of FHT against NS as a case study. Serum metabolomics combined with multivariate statistical analysis was employed to analysis and screen the differential endogenous metabolites in serum samples of the control and model rats induced by Adriamycin. The correlation analysis between the efficacy biomarkers and different compounds absorbed in serum of FHT was conducted to explore the potential effective compounds of FHT against NS. With the help of network pharmacology, the therapeutic targets and the possible molecular mechanisms of FHT against NS were further investigated. Fifteen metabolites, including l-phenylalanine, 3-Hydroxybutyric acid and linolenic acid, were associated with renal damage based on the serum metabolomic results. Metabolic pathway analysis indicated that phenylalanine, tyrosine and tryptophan biosynthesis and linoleic acid metabolism were the key pathways associated with NS. Among them, 6 metabolites were defined as efficacy biomarkers such as uric acid, 2-methylbutyrylcarnitine and 10-HDA. The results of correlation analysis suggested that 14 constituents such as fanGhinoline, cycloastragenol, atractylenolide III, and glycyrrhetinic acid were recognized as potential effective compounds, whose potential protein targets participated in the MAPK signaling pathway, GnRH signaling pathway and aldoaterone-regulated sodium reabsorption. This study has clarified the potential effective compounds and therapeutic targets of FHT against NS. The results provided new evidence for the pharmacological mechanism of FHT on NS.
Collapse
Affiliation(s)
- Songjia Guo
- Nephrology Department, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Liu Yang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China; Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, China
| | - Qingyu Zhang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China; Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, China
| | - Lichao Zhang
- Institutes of Biomedical Sciences of Shanxi University, Taiyuan 030006, China.
| | - Aiping Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China; Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, China.
| |
Collapse
|
5
|
Investigation of the Therapeutic Effect of Total Alkaloids of Corydalis saxicola Bunting on CCl 4-Induced Liver Fibrosis in Rats by LC/MS-Based Metabolomics Analysis and Network Pharmacology. Metabolites 2022; 13:metabo13010009. [PMID: 36676934 PMCID: PMC9866371 DOI: 10.3390/metabo13010009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Liver fibrosis is a pathological result of liver injury that usually leads to a pathophysiological wound healing response. The total alkaloids of Corydalis saxicola Bunting (TACS) have been used for hepatoprotective effects on the liver. However, its exact therapeutic mechanisms of liver fibrosis are not yet well understood. To explore the potential anti-fibrosis mechanism of TACS, metabolomics coupled with network pharmacology were applied to reveal the underlying mechanisms. Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) combined with multivariate statistical analyses were performed to estimate changes in metabolic profiles. As a result, a total of 23 metabolites in rats with liver fibrosis were altered; of these, 11 had been downregulated and 12 had been upregulated compared with the control group. After TACS treatment, the levels of 13 metabolites were significantly restored compared with the CCl4-treated group, of which 4 metabolites were up-regulated and 9 metabolites were down-regulated. Many of these metabolites are involved in the bile acid metabolism, glutathione metabolism, tryptophan metabolism and purine metabolism. Then, three key targets, including cytochrome P450 family1 subfamily A member 1 (CYP1A1), ornithine decarboxylase 1 (OCD1) and monoamine oxidase Type B (MAOB) were predicted as potential therapeutic targets of TACS against liver fibrosis through network pharmacology analysis. Finally, palmatine, tetrahydropalmatine and dehydrocavidine were screened as potential active compounds responsible for the anti-fibrosis effect of TACS by molecular docking analysis. This study reveals that TACS exerted anti-fibrosis effects by regulating the liver metabolic pathway with multiple components and multiple targets, which is helpful to further clarify the hepatoprotective mechanisms of natural plant extracts.
Collapse
|
6
|
Chi MH, Chao J, Ko CY, Huang SS. An Ethnopharmaceutical Study on the Hypolipidemic Formulae in Taiwan Issued by Traditional Chinese Medicine Pharmacies. Front Pharmacol 2022; 13:900693. [PMID: 36188612 PMCID: PMC9520573 DOI: 10.3389/fphar.2022.900693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Globally, approximately one-third of ischemic heart diseases are due to hyperlipidemia, which has been shown to cause various metabolic disorders. This study was aimed to disassemble and analyze hypolipidemic formulae sold by traditional Chinese medicine (TCM) pharmacies. Using commonly used statistical parameters in ethnopharmacology, we identified the core drug combination of the hypolipidemic formulae, thereby exploring the strategy by which the Taiwanese people select hypolipidemic drugs. Most important of all, we preserved the inherited knowledge of TCM. We visited 116 TCM pharmacies in Taiwan and collected 91 TCM formulae. The formulae were mainly disassembled by macroscopical identification, and the medicinal materials with a relative frequency of citation (RFC) >0.2 were defined as commonly used medicinal materials. Subsequently, we sorted the information of medicinal materials recorded in the Pharmacopeia, searched for modern pharmacological research on commonly used medicinal materials using PubMed database, and visualized data based on the statistical results. Finally, the core hypolipidemic medicinal materials used in folk medicine were obtained. Of the 91 TCM formulae collected in this study, 80 traditional Chinese medicinal materials were used, belonging to 43 families, predominantly Lamiaceae. Roots were the most commonly used part as a medicinal material. There were 17 commonly used medicinal materials. Based on medicinal records in Pharmacopeia, most flavors and properties were warm and pungent, the majority traditional effects were “tonifying and replenishing” and “blood-regulating.” Besides, the targeted diseases searching from modern pharmacological studies were diabetes mellitus and dyslipidemia. The core medicinal materials consisted of Astragalus mongholicus Bunge and Crataegus pinnatifida Bunge, and the core formulae were Bu-Yang-Huan-Wu-Tang and Xie-Fu-Zhu-Yu-Tang. In addition, 7 groups of folk misused medicinal materials were found. Although these TCMs have been used for a long period of time, their hypolipidemic mechanisms remain unclear, and further studies are needed to validate their safety and efficacy.
Collapse
Affiliation(s)
- Min-Han Chi
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Jung Chao
- Master Program for Food and Drug Safety, Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chien-Yu Ko
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Shyh-Shyun Huang
- School of Pharmacy, China Medical University, Taichung, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
- *Correspondence: Shyh-Shyun Huang,
| |
Collapse
|
7
|
Plasma Pharmacokinetics and Tissue Distribution of Doxorubicin in Rats following Treatment with Astragali Radix. Pharmaceuticals (Basel) 2022; 15:ph15091104. [PMID: 36145325 PMCID: PMC9505068 DOI: 10.3390/ph15091104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Doxorubicin (DOX) is an essential component in chemotherapy, and Astragali Radix (AR) is a widely used tonic herbal medicine. The combination of DOX and AR offers widespread, well-documented advantages in treating cancer, e.g., reducing the risk of adverse effects. This study mainly aims to uncover the impact of AR on DOX disposition in vivo. Rats received a single intravenous dose of 5 mg/kg DOX following a single-dose co-treatment or multiple-dose pre-treatment of AR (10 g/kg × 1 or × 10). The concentrations of DOX in rat plasma and six tissues, including heart, liver, lung, kidney, spleen, and skeletal muscle, were determined by a fully validated LC-MS/MS method. A network-based approach was further employed to quantify the relationships between enzymes that metabolize and transport DOX and the targets of nine representative AR components in the human protein−protein interactome. We found that short-term (≤10 d) AR administration was ineffective in changing the plasma pharmacokinetics of DOX in terms of the area under the concentration−time curve (AUC, 1303.35 ± 271.74 μg/L*h versus 1208.74 ± 145.35 μg/L*h, p > 0.46), peak concentrations (Cmax, 1351.21 ± 364.86 μg/L versus 1411.01 ± 368.38 μg/L, p > 0.78), and half-life (t1/2, 31.79 ± 5.12 h versus 32.05 ± 6.95 h, p > 0.94), etc. Compared to the isotype control group, DOX concentrations in six tissues slightly decreased under AR pre-administration but only showed statistical significance (p < 0.05) in the liver. Using network analysis, we showed that five of the nine representative AR components were not localized to the vicinity of the DOX disposition-associated module. These findings suggest that AR may mitigate DOX-induced toxicity by affecting drug targets rather than drug disposition.
Collapse
|
8
|
Wang YN, Liu HJ, Ren LL, Suo P, Zou L, Zhang YM, Yu XY, Zhao YY. Shenkang injection improves chronic kidney disease by inhibiting multiple renin-angiotensin system genes by blocking the Wnt/β-catenin signalling pathway. Front Pharmacol 2022; 13:964370. [PMID: 36059935 PMCID: PMC9432462 DOI: 10.3389/fphar.2022.964370] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022] Open
Abstract
Chronic kidney disease (CKD) is a major worldwide public health problem. The increase in the number of patients with CKD and end-stage kidney disease requesting renal dialysis or transplantation will progress to epidemic proportions in the next several decades. Although blocking the renin-angiotensin system (RAS) has been used as a first-line standard therapy in patients with hypertension and CKD, patients still progress towards end-stage kidney disease, which might be closely associated with compensatory renin expression subsequent to RAS blockade through a homeostatic mechanism. The Wnt/β-catenin signalling pathway is the master upstream regulator that controls multiple intrarenal RAS genes. As Wnt/β-catenin regulates multiple RAS genes, we inferred that this pathway might also be implicated in blood pressure control. Therefore, discovering new medications to synchronously target multiple RAS genes is necessary and essential for the effective treatment of patients with CKD. We hypothesized that Shenkang injection (SKI), which is widely used to treat CKD patients, might ameliorate CKD by inhibiting the activation of multiple RAS genes via the Wnt/β-catenin signalling pathway. To test this hypothesis, we used adenine-induced CKD rats and angiotensin II (AngII)-induced HK-2 and NRK-49F cells. Treatment with SKI inhibited renal function decline, hypertension and renal fibrosis. Mechanistically, SKI abrogated the increased protein expression of multiple RAS elements, including angiotensin-converting enzyme and angiotensin II type 1 receptor, as well as Wnt1, β-catenin and downstream target genes, including Snail1, Twist, matrix metalloproteinase-7, plasminogen activator inhibitor-1 and fibroblast-specific protein 1, in adenine-induced rats, which was verified in AngII-induced HK-2 and NRK-49F cells. Similarly, our results further indicated that treatment with rhein isolated from SKI attenuated renal function decline and epithelial-to-mesenchymal transition and repressed RAS activation and the hyperactive Wnt/β-catenin signalling pathway in both adenine-induced rats and AngII-induced HK-2 and NRK-49F cells. This study first revealed that SKI repressed epithelial-to-mesenchymal transition by synchronously targeting multiple RAS elements by blocking the hyperactive Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Yan-Ni Wang
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Hong-Jiao Liu
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Li-Li Ren
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Ping Suo
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Liang Zou
- Key Disciplines Team of Clinical Pharmacy, School of Food and Bioengineering, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, China
| | - Ya-Mei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, Shaanxi, China
| | - Ying-Yong Zhao
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
- Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, Sichuan, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Zhao C, Tang J, Li X, Yan Z, Zhao L, Lang W, Yuan C, Zhou C. Beneficial effects of procyanidin B2 on adriamycin-induced nephrotic syndrome mice: the multi-action mechanism for ameliorating glomerular permselectivity injury. Food Funct 2022; 13:8436-8464. [PMID: 35861207 DOI: 10.1039/d1fo03616e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite considerable advances in prevention, diagnosis, and therapy, nephrotic syndrome (NS) remains a significant cause of high morbidity and mortality globally. As a result, there is an urgent need to identify novel effective preventative and therapeutic agents for NS. NS is implicated in glomerular permselectivity injury, which can be attributed to oxidative distress, inflammation, lipid nephrotoxicity, podocyte apoptosis, autophagy dysfunction, and slit diaphragm (SLD) dysfunction. In addition to its well-documented antioxidant potency, procyanidin B2 (PB2) may exhibit pleiotropic effects by targeting various canonical signaling events, such as NF-κB, PPARs, PI3K/Akt, mTOR, and the caspase family. As a result, PB2 may be a promising therapeutic target against NS. To test this hypothesis, we established an Adriamycin (ADR)-induced NS mouse model to evaluate the pleiotropic renoprotective effects of PB2 on NS. Here, we demonstrated that PB2 improves podocyte injury via inhibition of NOX4/ROS and Hsp90/NF-κB to exhibit antioxidant and anti-inflammatory potency, respectively. We also show that PB2 indirectly activates the PI3K/Akt axis by regulating SLD protein levels, resulting in normalized podocyte apoptosis and autophagy function. Further, loss of albumin (ALB) induces lipid nephrotoxicity, which we found to be alleviated by PB2 via activation of PPARα/β-mediated lipid homeostasis and the cholesterol efflux axis. Interestingly, our results also suggested that PB2 reduces electrolyte abnormalities and edema. In addition, PB2 may contribute protective effects against trace element dys-homeostasis, which, through alleviating serum ALB loss, leads to a protective effect on glomerular permselectivity injury. Taken together, our results reveal that the identified mechanisms of PB2 on NS are multifactorial and involve inhibition of oxidative distress and inflammatory responses, as well as improvements in podocyte apoptosis and autophagy dysfunction, amelioration of lipid nephrotoxicity, and modulation of electrolyte abnormalities and edema. Thus, we provide a theoretical basis for the clinical application of PB2 against NS.
Collapse
Affiliation(s)
- Chuanping Zhao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China.
| | - Jiamei Tang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China.
| | - Xiaoya Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China.
| | - Zihan Yan
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China.
| | - Liangliang Zhao
- Department of Monitoring and Analysis, Baoding Environmental Monitoring Center of Hebei Province, 224 Dongfeng Road, Lianchi District, Baoding, 071000, China
| | - Wenbo Lang
- Department of Monitoring and Analysis, Baoding Environmental Monitoring Center of Hebei Province, 224 Dongfeng Road, Lianchi District, Baoding, 071000, China
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Chengyan Zhou
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, 180 WuSi Road, Lianchi District, Baoding, 071002, China.
| |
Collapse
|
10
|
Gao ZW, Zhang X, Zhuo QY, Chen MX, Yang C, Chen ZJ, Chen Y, Liao YQ, Wang LL. Metabolomics and integrated network pharmacology analysis reveal attenuates cardiac hypertrophic mechanisms of HuoXin pill. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115150. [PMID: 35304274 DOI: 10.1016/j.jep.2022.115150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiac hypertrophy (CH) is maladaptive and contributes to the pathogenesis of heart failure. Huoxin pill (HXP), a Chinese herbal prescription, is widely applied in the treatment of cardiovascular disease (CAD). Its mechanism, however, is unclear. AIM OF THE STUDY This study investigated the mechanism of action for Huoxin pill in the treatment of CH, an important stage of CAD. MATERIALS AND METHODS A total of 60 rats were injected with isoprenaline (ISO) to establish a model of CH. Echocardiography and histopathologic evaluation were performed to evaluate the disease severity, whereas ELISAs were conducted to determine the expression of oxidative stress. Network pharmacology and metabolomic analyses were conducted to identify the key compounds, core targets and pathways that mediate the effects of HXP against CH. Western blotting and immunohistochemistry were used to test apoptosis protein levels. RESULTS HXP administration in ISO-treated rats decreased hypertrophy indices, alleviated cardiac pathological damage, and downregulated oxidative stress levels when compared to those of rats subjected to ISO treatment only. Moreover, network pharmacology results suggested that the PI3K-Akt pathway is a main mechanism by which HXP inhibits cardiac hypertrophy, and experimental verification showed that HXP inhibited cardiomyocyte apoptosis via activation of the PI3K-Akt pathway. The results of metabolomic analysis identified 21 differential metabolites between the HXPH group and ISO group, which were considered to be metabolic biomarkers of HXP in the treatment of CH. Among them, 6 differential metabolites were significantly upregulated, and 15 were significantly downregulated. CONCLUSIONS The present study presents an integrated strategy for investigating the mechanisms of HXP in the treatment of CH and sheds new light on the application of HXP as a traditional Chinese medicine.
Collapse
Affiliation(s)
- Zhan-Wang Gao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Xin Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Qing-Yuan Zhuo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Mei-Xian Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Chong Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Zhao-Jie Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Ying Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Yi-Qiu Liao
- Baiyunshan Pharmaceutical General Factory, Guangzhou Baiyunshan Pharmaceutical Holdings Co., Ltd., Guangzhou, 510515, PR China; Key Laboratory of Key Technology Research on Chemical Raw Materials and Preparations of Guangdong Province, Guangzhou, 510515, PR China.
| | - Ling-Li Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| |
Collapse
|
11
|
Cao YL, Lin JH, Hammes HP, Zhang C. Flavonoids in Treatment of Chronic Kidney Disease. Molecules 2022; 27:molecules27072365. [PMID: 35408760 PMCID: PMC9000519 DOI: 10.3390/molecules27072365] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic kidney disease (CKD) is a progressive systemic disease, which changes the function and structure of the kidneys irreversibly over months or years. The final common pathological manifestation of chronic kidney disease is renal fibrosis and is characterized by glomerulosclerosis, tubular atrophy, and interstitial fibrosis. In recent years, numerous studies have reported the therapeutic benefits of natural products against modern diseases. Substantial attention has been focused on the biological role of polyphenols, in particular flavonoids, presenting broadly in plants and diets, referring to thousands of plant compounds with a common basic structure. Evidence-based pharmacological data have shown that flavonoids play an important role in preventing and managing CKD and renal fibrosis. These compounds can prevent renal dysfunction and improve renal function by blocking or suppressing deleterious pathways such as oxidative stress and inflammation. In this review, we summarize the function and beneficial properties of common flavonoids for the treatment of CKD and the relative risk factors of CKD.
Collapse
Affiliation(s)
- Yi-Ling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Ji-Hong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (J.-H.L.); (H.-P.H.)
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (J.-H.L.); (H.-P.H.)
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Correspondence: ; Tel.: +86-027-85726712
| |
Collapse
|
12
|
鄢 海, 邹 纯. [Progress and prospect of application of traditional Chinese medicine fingerprint (specific chromatogram) in Chinese Pharmacopoeia (2010-2020)]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:150-155. [PMID: 35249883 PMCID: PMC8901408 DOI: 10.12122/j.issn.1673-4254.2022.01.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 06/14/2023]
Abstract
The Chinese Pharmacopoeia began to apply fingerprints (specific chromatogram) to quality control of traditional Chinese medicine in its 2010 edition, and in its 2015 and 2020 editions, new fingerprints (specific chromatogram) were added for improvement of the Pharmacopoeia-based national standards for drugs. This review analyzes the traditional Chinese medicine fingerprints (specific chromatogram) in Chinese Pharmacopoeia (2010-2020) in terms of the number of varieties listed, application of fingerprints (specific chromatogram), selection of evaluation method, determination method, the selection of extraction or preparation solvents of the test samples. With the expansion of the application of fingerprints (specific chromatogram), the evaluation indicators are constantly improving. The future development of the fingerprints (specific chromatogram) is also discussed in light of the selection of appropriate extraction or preparation solvents to obtain effective substances, which is the basis for the establishment of the fingerprints; multiple fingerprints for one drug based on different functional indications or basic sources, which expands the application of the fingerprints; addition of technical guidelines for traditional Chinese medicine fingerprints to standardize the use of the fingerprints; and the regular revision, update and application expansion of the fingerprints to ensure its essential role in quality control of traditional Chinese medicine.
Collapse
Affiliation(s)
- 海燕 鄢
- />皖南医学院药学院,安徽 芜湖 241002Pharmacy School of Wannan Medical College, Wuhu 241002, China
| | - 纯才 邹
- />皖南医学院药学院,安徽 芜湖 241002Pharmacy School of Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
13
|
Duan Y, Zhang D, Ye Y, Zheng S, Huang P, Zhang F, Mo G, Huang F, Yin Q, Li J, Han L. Integrated Metabolomics and Network Pharmacology to Establish the Action Mechanism of Qingrekasen Granule for Treating Nephrotic Syndrome. Front Pharmacol 2021; 12:765563. [PMID: 34938183 PMCID: PMC8685401 DOI: 10.3389/fphar.2021.765563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/05/2021] [Indexed: 01/09/2023] Open
Abstract
Nephrotic syndrome (NS) is a clinical syndrome resulting from abnormal glomerular permeability, mainly manifesting as edema and proteinuria. Qingrekasen granule (QRKSG), a Chinese Uyghur folk medicine, is a single-flavor preparation made from chicory (Cichorium intybus L.), widely used in treating dysuria and edema. Chicory, the main component in QRKSG, effectively treats edema and protects kidneys. However, the active components in QRKSG and its underlying mechanism for treating NS remain unclear. This study explored the specific mechanism and composition of QRKSG on an NS rat model using integrated metabolomics and network pharmacology. First, metabolomics explored the relevant metabolic pathways impacted by QRKSG in the treatment of NS. Secondly, network pharmacology further explored the possible metabolite targets. Afterward, a comprehensive network was constructed using the results from the network pharmacology and metabolomics analysis. Finally, the interactions between the active components and targets were predicted by molecular docking, and the differential expression levels of the target protein were verified by Western blotting. The metabolomics results showed “D-Glutamine and D-glutamate metabolism” and “Alanine, aspartate, and glutamate metabolism” as the main targeted metabolic pathways for treating NS in rats. AKT1, BCL2L1, CASP3, and MTOR were the core QRKSG targets in the treatment of NS. Molecular docking revealed that these core targets have a strong affinity for flavonoids, terpenoids, and phenolic acids. Moreover, the expression levels of p-PI3K, p-AKT1, p-mTOR, and CASP3 in the QRKSG group significantly decreased, while BCL2L1 increased compared to the model group. These findings established the underlying mechanism of QRKSG, such as promoting autophagy and anti-apoptosis through the expression of AKT1, CASP3, BCL2L1, and mTOR to protect podocytes and maintain renal tubular function.
Collapse
Affiliation(s)
- Yanfen Duan
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Dongning Zhang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Ye
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Sili Zheng
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Huang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Fengyun Zhang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Guoyan Mo
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, China
| | - Fang Huang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiang Yin
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Xinjiang Uygur Pharmaceutical Co., Ltd., Urumqi, China
| | - Jingjing Li
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Lintao Han
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, China
| |
Collapse
|
14
|
Qu T, Gao Y, Li A, Li Z, Qin X. Systems biology analysis of the effect and mechanism of total flavonoids of Astragali Radix against cyclophosphamide-induced leucopenia in mice. J Pharm Biomed Anal 2021; 205:114357. [PMID: 34500237 DOI: 10.1016/j.jpba.2021.114357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022]
Abstract
This study aimed to demonstrate the pharmacological mechanism of total flavonoids extracted from Astragali Radix (AR) on cyclophosphamide (Cy)-induced leucopenia in mice. First, flow cytometry, network pharmacology and plasma metabolomics were integrated to investigate the pharmacological mechanism of total flavonoids, the targets from network pharmacology and metabolites from metabolomics were analyzed by DAVID. Then, the key cytokines were validated to confirm the predicted metabolic pathway results. The results showed that total flavonoids significantly increased body weight, routine blood indices, bone marrow DNA cells, and also markedly caused lymphocyte proliferation by increasing the percentages of CD4+ and CD8+. Using network pharmacology and metabolomics methods, the study identified 13 signal-related pathways regulated by total flavonoids including PI3K-Akt signaling pathway, Jak-STAT signaling pathway, Sphingolipid signaling pathway, and so on. Total flavonoids also reversed changes in serum cytokines IL-2, IL-6, and GM-CSF. Total flavonoids exhibits protective effects against leucopenia probably by modulating immunologic functions, promoting cell proliferation, and regulating related metabolic pathways at the system level.
Collapse
Affiliation(s)
- Tingli Qu
- School of Pharmaceutical Science of Shanxi Medical University, No.56, Xinjian south Road, Taiyuan 030001, Shanxi, People's Republic of China; Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China
| | - Yao Gao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China
| | - Aiping Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China.
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China.
| |
Collapse
|
15
|
Huanglianjiedu Decoction as an effective treatment for oral squamous cell carcinoma based on network pharmacology and experimental validation. Cancer Cell Int 2021; 21:553. [PMID: 34674717 PMCID: PMC8529748 DOI: 10.1186/s12935-021-02201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/06/2021] [Indexed: 12/03/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is one of malignant tumors in oral and maxillofacial region with high fatality. Huanglianjiedu Decoction (HLJDD) is a well-known traditional Chinese medicinal prescription, which consists of Coptis chinensis Franch, Scutellaria baicalensis Georgi, Phellodendron amurense Rupr and Gardenia jasminoides J.Ellis. Some clinical studies showed HLJDD had good effectiveness on OSCC, but the mechanism is unclear. Methods In this study, potential components of HLJDD and putative targets were screened by Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Combining with potential targets of OSCC searched from Therapeutic Target Database (TTD) and Online Mendelian Inheritance in Man (OMIM), we drew protein–protein interaction (PPI) network by Cytoscape v3.2.0 software. After topological analysis we got core targets and further did Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Then we did the in vitro experiments to verify the major biological processes (cell cycle, apoptosis and proliferation) and signaling pathways (mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), protein kinase B (AKT)) on OSCC cell lines, SCC-25 and CAL-27. Results The potential component targets number of Coptis chinensis Franch, Scutellaria baicalensis Georgi, Phellodendron amurense Rupr and Gardenia jasminoides J.Ellis were 39, 93, 81and 88, respectively. Then we got 52 core targets which enriched in cell cycle, apoptosis, proliferation, MAPK activation etc. and obtained TOP30 pathways. On SCC-25 and CAL-27, HLJDD suppressed cell proliferation, induced late apoptosis and inhibited cell invasion and migration which were consistent with the results from network pharmacology analysis. Additionally, in cell cycle, we confirmed HLJDD inhibited G1 phase and arrested in S phase to reduce cell proliferation on SCC-25. In signaling pathways, HLJDD inhibited the phosphorylation of extracellular regulatory protein kinase 1/2 (ERK1/2) and NF-κB p65 (S468) on SCC-25 and CAL-27. Conclusions HLJDD played a potential therapeutic role on OSCC via inhibiting p-ERK1/2 and p-NF-κB p65 (S468). Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02201-6.
Collapse
|
16
|
Ji P, Li CC, Wei YM, Hua YL, Yao WL, Wu FL, Zhang XS, Yuan ZW, Zhao NS, Zhang YH, Wen YQ. A new method providing complementary explanation of the blood-enriching function and mechanism of unprocessed Angelica sinensis and its four kinds of processed products based on tissue-integrated metabolomics and confirmatory analysis. Biomed Chromatogr 2021; 36:e5252. [PMID: 34591996 DOI: 10.1002/bmc.5252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/05/2022]
Abstract
Angelica sinensis (AS) is a common Traditional Chinese Medicine used for tonifying blood in China. Unprocessed AS and its four kinds of processed products (ASs) are used to treat blood deficiency syndrome in the country. The different blood-tonifying mechanisms of ASs remain unclear. In this work, a novel method integrating metabolomics and hematological and biochemical parameters was established to provide a complementary explanation of blood supplementation mechanism of ASs. Our results revealed that different ASs exhibited various blood supplementation effect, and that AS parched with alcohol demonstrated the best blood supplementation effect. Eight metabolites from liver tissue and 12 metabolites from spleen tissue were considered to be potential biomarkers. These biomarkers were involved in four metabolic pathways. Correlation analysis results showed that l-aspartic acid and l-alanine (spleen tissue), linoleic acid, and l-cystathionine (liver tissue) exhibited a high positive or negative correlation with the aforesaid biochemical indicators. The blood-supplementation effect mechanism of ASs were related to four metabolic pathways. l-Aspartic acid and l-alanine (spleen tissue), linoleic acid, and l-cystathionine (liver tissue) were the four key metabolites associated with the blood supplementation effect of ASs. This study gives a complementary explanation of the blood supplementation effect and mechanism of action of ASs.
Collapse
Affiliation(s)
- Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| | - Chen-Chen Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| | - Yong-Li Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| | - Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| | - Fan-Lin Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| | - Xiao-Song Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| | - Zi-Wen Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| | - Nian-Shou Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| | - Ya-Hui Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| | - Yan-Qiao Wen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| |
Collapse
|
17
|
Qi Z, Wang Q, Wang H, Tan M. Metallothionein Attenuated Arsenic-Induced Cytotoxicity: The Underlying Mechanism Reflected by Metabolomics and Lipidomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5372-5380. [PMID: 33939412 DOI: 10.1021/acs.jafc.1c00724] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Arsenic ions (As3+) have been recognized as a hazard that threatens the health of humans. Metallothionein (MT) rich in cysteine may provide favorable binding sites for chelation of As3+. However, the influence of MT on As3+-induced toxicity and the underlying mechanism are poorly understood, especially at the metabolic level. Herein, the effects of MT on As3+-induced toxicity were evaluated. Cell viability analysis suggested that MT alleviated As3+-induced cytotoxicity. The metabolic response of PC12 cells to As3+ investigated by lipidomics and metabolomics indicated that the presence of As3+ disrupted phospholipids metabolism and induced cell membrane damage. Moreover, energy and amino acid metabolism were perturbed by As3+. The perturbation of As3+ on metabolism was further illustrated by the decrease of the mitochondrial membrane potential and the rise of cellular reactive oxygen species (ROS). On the contrary, MT rescued As3+-induced metabolic disorder and suppressed ROS accumulation. In addition, the binding process between As3+ and MT was characterized. The results proved that the As3+-MT complex was formed and chelated As3+-scavenged ROS, thus alleviating the toxic effects of As3+. These results revealed that MT would be a potential agent to reduce As3+-induced cytotoxicity.
Collapse
Affiliation(s)
- Zihe Qi
- Academy of Food Interdisciplinary Sciecne, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian, 116034 Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
| | - Qinghong Wang
- Academy of Food Interdisciplinary Sciecne, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian, 116034 Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
| | - Haitao Wang
- Academy of Food Interdisciplinary Sciecne, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian, 116034 Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Sciecne, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian, 116034 Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034 Liaoning, China
| |
Collapse
|
18
|
Li AP, Yang L, Cui T, Zhang LC, Liu YT, Yan Y, Li K, Qin XM. Uncovering the mechanism of Astragali Radix against nephrotic syndrome by intergrating lipidomics and network pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153274. [PMID: 32771537 DOI: 10.1016/j.phymed.2020.153274] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/05/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Astragali Radix (AR), a common Traditional Chinese Medicine (TCM), is commonly used for treating nephrotic syndrome (NS) in China. At present, the research on the efficacy of AR against NS is relative clearly, but there are fewer researches on the mechanism. PURPOSE The aim of this study was to evaluate the potential beneficial effects of AR in an adriamycin-induced nephropathy rat model, as well as investigate the possible mechanisms of action and potential lipid biomarkers. METHODS In this work, a rat model of NS was established by two injections of ADR (3.5 + 1 mg/kg) into the tail vein. The potential metabolites and targets involved in the anti-NS effects of AR were predicted by lipidomics coupled with the network pharmacology approach, and the crucial metabolite and protein were further validated by western blotting and ELISA. RESULTS The results showed that 22 metabolites such as l-carnitine, LysoPC (20:3), and SM (d18:1/16:0) were associated with renal injury. Moreover, SMPD1, CPT1A and LCAT were predicted as lipids linked targets of AR against NS, whilst glycerophospholipid, sphingolipid and fatty acids metabolism were involved as key pathways of AR against NS. Besides, AR could play a critical role in NS by improving oxidative stress, inhibiting apoptosis and reducing inflammation. Interestingly, our results indicated that key metabolite l-carnitine and target CPT1 were one of the important metabolites and targets for AR to exert anti-NS effects. CONCLUSION In summary, this study offered a new understanding of the protection mechanism of AR against NS by network pharmacology and lipidomic method.
Collapse
Affiliation(s)
- Ai-Ping Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China
| | - Liu Yang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China; College of Chemistry and Chemical Engineering of Shanxi University, Taiyuan 030006, China
| | - Ting Cui
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China
| | - Li-Chao Zhang
- Institutes of Biomedical sciences of Shanxi University, Taiyuan 030006, China.
| | - Yue-Tao Liu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China
| | - Yan Yan
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
19
|
Li AP, He SS, Zhang WN, Zhang LC, Liu YT, Li K, Qin XM. Exploration the active compounds of Astragali Radix in treatment of adriamycin nephropathy by network pharmacology combined with transcriptomic approach. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112537. [PMID: 31901455 DOI: 10.1016/j.jep.2019.112537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/29/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
PURPOSE This paper aimed to study the active compounds of Astragali Radix (AR) in the treatment of adriamycin nephropathy (AN) by a combination of network pharmacology and transcriptomics. METHODS The chemical compounds of AR were screened out by text mining and database searching. Pharm Mapper was used to predict the targets of these chemical compounds. Potential targets of AN were screened by integrating the data from network pharmacology with known transcriptomics analysis results of kidney tissue. Compound-active target-potential target interactions networks were constructed so as to illustrate the relationship between compounds and targets, and obtain the chemical compounds directly related to potential targets of AN. The formula of compound contribution index (CI) based on algorithm was used to screen the active compounds of AR in the treatment of AN. In addition, we established an adriamycin-induced cell damage model with MPC5 cell, and used MTT assay, trypan blue dyeing and western blot analyses to validate the pharmacodynamic effect of the active compounds. RESULTS 27 chemical compounds and 376 targets in AR were obtained by network pharmacology. Through Compound-active target-potential target interactions networks analysis, 22 compounds and 9 active targets as well as 130 potential targets were linked through 282 edges. The CI of every chemical compounds was further calculated by formula, the first four chemical compounds, including astragaloside IV, formononetin, quercetin and calycosin, whose cumulative contribution rate reached 87.28%, were considered to be active compounds. The results of MTT and trypan blue staining indicate that four active compounds had the significant protective effect on adriamycin-induced cell damage with MPC5 cell. Western blot result showed that four active compounds could significantly increase the expression of podocin protein in MPC5 cell. CONCLUSION The active compounds of AR in the treatment of AN were successfully identified by using a network pharmacology and transcriptomics approach. This approach is expected to be beneficial to the study of the pharmacodynamic material basis of traditional Chinese medicine (TCM) in treating specific diseases.
Collapse
Affiliation(s)
- Ai-Ping Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Sheng-Sheng He
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China; College of Chemistry and Chemical Engineering of Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Wang-Ning Zhang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Li-Chao Zhang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Yue-Tao Liu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China; College of Chemistry and Chemical Engineering of Shanxi University, Taiyuan, 030006, People's Republic of China.
| |
Collapse
|
20
|
He S, Li A, Zhang W, Zhang L, Liu Y, Li K, Qin X. An integrated transcriptomics and network pharmacology approach to exploring the mechanism of adriamycin-induced kidney injury. Chem Biol Interact 2020; 325:109096. [DOI: 10.1016/j.cbi.2020.109096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/10/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022]
|
21
|
Yang Y, Ding Z, Wang Y, Zhong R, Feng Y, Xia T, Xie Y, Yang B, Sun X, Shu Z. Systems pharmacology reveals the mechanism of activity of Physalis alkekengi L. var. franchetii against lipopolysaccharide-induced acute lung injury. J Cell Mol Med 2020; 24:5039-5056. [PMID: 32220053 PMCID: PMC7205831 DOI: 10.1111/jcmm.15126] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Acute lung injury (ALI) is an important cause of mortality of patients with sepsis, shock, trauma, pneumonia, multiple transfusions and pancreatitis. Physalis alkekengi L. var. franchetii (Mast.) Makino (PAF) has been extensively used in Chinese folk medicine because of a good therapeutic effect in respiratory diseases. Here, an integrated approach combining network pharmacology, proton nuclear magnetic resonance-based metabolomics, histopathological analysis and biochemical assays was used to elucidate the mechanism of PAF against ALI induced by lipopolysaccharide (LPS) in a mouse model. We found that the compounds present in PAF interact with 32 targets to effectively improve the damage in the lung undergoing ALI. We predicted the putative signalling pathway involved by using the network pharmacology and then used the orthogonal signal correction partial least-squares discriminant analysis to analyse the disturbances in the serum metabolome in mouse. We also used ELISA, RT-qPCR, Western blotting, immunohistochemistry and TUNEL assay to confirm the potential signalling pathways involved. We found that PAF reduced the release of cytokines, such as TNF-α, and the accumulation of oxidation products; decreased the levels of NF-κB, p-p38, ERK, JNK, p53, caspase-3 and COX-2; and enhanced the translocation of Nrf2 from the cytoplasm to the nucleus. Collectively, PAF significantly reduced oxidative stress injury and inflammation, at the same time correcting the energy metabolism imbalance caused by ALI, increasing the amount of antioxidant-related metabolites and reducing the apoptosis of lung cells. These observations suggest that PAF may be an effective candidate preparation alleviating ALI.
Collapse
Affiliation(s)
- Yanni Yang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zihe Ding
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Wang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Renxing Zhong
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanlin Feng
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tianyi Xia
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuanyuan Xie
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bingyou Yang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zunpeng Shu
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Li A, Zhang W, Zhang L, Liu Y, Li K, Du G, Qin X. Elucidating the time-dependent changes in the urinary metabolome under doxorubicin-induced nephrotoxicity. Toxicol Lett 2020; 319:204-212. [DOI: 10.1016/j.toxlet.2019.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/20/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022]
|
23
|
Cao J, Duan Y, Liu Y, Liu H, Wei C, Wang J, Qin X, Wang X, Li Z. Metabolomics coupled with SystemsDock reveal the protective effect and the potential active components of Naozhenning granule against traumatic brain injury. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112247. [PMID: 31542470 DOI: 10.1016/j.jep.2019.112247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Naozhenning granule (NZN), a widely traditional Chinese medicine (TCM) prescription with a long history of clinical, which is mainly used in the treatment of concussion, cerebral post-traumatic syndrome, consists of Di Huang (Radix of Rehmannia glutinosa (Gaertn.) DC.), Dang Gui (Radix of Angelica sinensis (Oliv.) Diels), Chen Pi (Pericarpium of Citrus reticulata Blanco), Dan shen (Radix of Salvia Miltiorrhiza Bunge.), Di Long (Pheretima aspergillum (E. Perrier)), Mu Dan Pi (Cortex of Paeonia suffruticosa Andrews), Suan Zao Ren (Semen of Ziziphus jujuba Mill.), Chuan Xiong (Rhizoma of Ligusticum striatum DC.), Zhu Ru (Phyllostachys nigra (Lodd. Ex Lindl.) Munro), Bai Zi Ren (Semen of Platycladus orientalis (L.) Franco) and Fu Ling (sclerotium of Poria cocos (Schw.)Wolf). AIM OF THE STUDY This study aimed to unravel the mechanism and material basis of NZN against traumatic brain injury. MATERIALS AND METHODS In this study, a 1H nuclear magnetic resonance (NMR) based metabolomic approach combined with systemsDock was employed to study the protective effect of NZN against traumatic brain injury using a cerebral concussion rat model. The morris water maze test and biochemical indexes were used to evaluate the efficacy of NZN. RESULTS The results of morris water maze test suggested NZN can improve the spatial learning and memory of model rats, and the superoxide dismutas (SOD) and malonyldialdehyde (MDA) level indicated that the effect of NZN was related with the regulation of oxidative stress. Multivariate analysis revealed that the effect of NZN was related with regulation of 18 brain metabolites, and the corresponding metabolic pathways were further revealed by MetPA analysis. 13 serum absorbed components were found to hit the targets both related with the metabolic regulation and cerebral trauma through systemsDock-aided molecular docking experiments, and these compounds might be served as the active compounds in NZN against cerebral trauma. CONCLUSION 1H-NMR based metabolomics and molecular docking provided the insights for the synergistic mechanisms and the potential active compounds of NZN in treating cerebral trauma. However, the bioactive compounds and their synergistic effect need to be further validated.
Collapse
Affiliation(s)
- Jianhua Cao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, 030006, China; College of Chemistry and Chemical Engineering of Shanxi University, Taiyuan, 030006, China
| | - Yahui Duan
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, 030006, China; College of Chemistry and Chemical Engineering of Shanxi University, Taiyuan, 030006, China
| | - Yanzhi Liu
- Shanxi Zhendong Ante Biological Pharmaceutical Co, Ltd, Jinzhong, 030600, China
| | - Haixia Liu
- Shanxi Zhendong Ante Biological Pharmaceutical Co, Ltd, Jinzhong, 030600, China
| | - Chunhong Wei
- Shanxi Zhendong Ante Biological Pharmaceutical Co, Ltd, Jinzhong, 030600, China
| | - Jiang Wang
- Shanxi Zhendong Ante Biological Pharmaceutical Co, Ltd, Jinzhong, 030600, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, 030006, China
| | - Xuwen Wang
- Shanxi Zhendong Ante Biological Pharmaceutical Co, Ltd, Jinzhong, 030600, China.
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
24
|
Li AP, Yang L, Zhang LC, He SS, Jia JP, Qin XM. Evaluation of Injury Degree of Adriamycin-Induced Nephropathy in Rats Based on Serum Metabolomics Combined with Proline Marker. J Proteome Res 2020; 19:2575-2584. [PMID: 31887047 DOI: 10.1021/acs.jproteome.9b00785] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nephrotic syndrome (NS) is one of the leading causes of end-stage renal failure. Unfortunately, reliable surrogate markers for early diagnosing and monitoring the entire progression of NS are as yet absent. A method using UPLC-Q exactive HR-MS was established for the serum metabolomic study of adriamycin-induced nephropathy in rats. Two rat nephropathy models induced by adriamycin were adopted to reflect different degrees of renal damage of early and advanced stages. Then two MPC5 cell models were used to verify the role of proline in the progression of kidney injury. The results showed that seven metabolites such as 14S-HDHA, DPA, and DHA were associated with early renal injury, while 12 metabolites such as tryptophan, linoleyl carnitine, and LysoPC (18:3) reflected the advanced renal disease. At the same time, metabolites including LPE (22:6), LysoPC (22:5), and proline that changed during the whole process of NS were defined as progressive markers. Pathway analysis results showed that fatty acid metabolism, glycerophospholipid metabolism, and amino acids metabolism participated in the occurrence and development of NS. In addition, the change trend of intracellular proline content was consistent with that in serum, and the results were further supported by the detection of the crucial gene PYCRL. This study provides an important basis for searching for diagnostic markers of NS and also provides a methodological reference for early diagnosing and monitoring the pathogenesis of other progressive diseases.
Collapse
Affiliation(s)
- Ai-Ping Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China
| | - Liu Yang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China.,College of Chemistry and Chemical Engineering of Shanxi University, Taiyuan 030006, China
| | - Li-Chao Zhang
- Institutes of Biomedical Sciences of Shanxi University, Taiyuan 030006, China
| | - Sheng-Sheng He
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China.,College of Chemistry and Chemical Engineering of Shanxi University, Taiyuan 030006, China
| | - Jin-Ping Jia
- Scientific Instrument Center of Shanxi University, Taiyuan 030006, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, China
| |
Collapse
|
25
|
Chemical Discrimination of Astragalus mongholicus and Astragalus membranaceus Based on Metabolomics Using UHPLC-ESI-Q-TOF-MS/MS Approach. Molecules 2019; 24:molecules24224064. [PMID: 31717584 PMCID: PMC6891664 DOI: 10.3390/molecules24224064] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
Astragalus mongholicus (MG) and Astragalus membranaceus (MJ), both generally known as Huangqi in China, are two perennial herbals widely used in variety diseases. However, there were still some differences in the chemical ingredients between MG and MJ. In this paper, metabolomics combined with the ultra-high performance liquid chromatography coupled with electrospray ionization/quadrupole time-of-flight mass spectrometry (UHPLC-ESI-Q-TOF-MS/MS) was employed to contrastively analyze the chemical constituents between MG and MJ. As a result, principal component analysis showed that MG and MJ were separated clearly. A total of 53 chemical markers were successfully identified for the discrimination of MG and MJ. Of them, the contents of 36 components including Astragaloside I~III, Astragaloside IV, Agroastragaloside I, etc. in MJ were significantly higher than those in MG. On the contrary, the contents of 17 other components including coumaric acid, formononetin, sophoricoside, etc. in MG were obviously higher than those in MJ. The results showed that the distinctive constituents in MG and MJ were remarkable, and MJ may own stronger pharmacological activities than MG. In a word, MG and MJ may be treated as two different herbs. This paper demonstrated that metabolomics was a vitally credible technology to rapidly screen the characteristic chemical composition of traditional Chinese medicine.
Collapse
|
26
|
Liu X, Zhou QG, Zhu XC, Xie L, Cai BC. Screening for Potential Active Components of Fangji Huangqi Tang on the Treatment of Nephrotic Syndrome by Using Integrated Metabolomics Based on "Correlations Between Chemical and Metabolic Profiles". Front Pharmacol 2019; 10:1261. [PMID: 31695617 PMCID: PMC6817620 DOI: 10.3389/fphar.2019.01261] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
As for traditional Chinese medicine (TCM) prescription, what puzzled researchers most was how to select proper chemical markers to represent the whole pharmacological action system. In this paper, an integrated metabolomic method was presented for a systematic discovery of potential active components in Fangji Huangqi Tang (FHT), a well-known TCM prescription for nephrotic syndrome treatment, based on “correlations between chemical and metabolic profiles.” Firstly, a metabolomics study was carried out to select representative biomarkers of nephrotic syndrome. Then, after drug administration, the dynamic process of serum composition was investigated by the ultra-high performance liquid chromatography coupled with electrospray ionization–quadrupole–time of flight–mass spectrometry (UHPLC-ESI-Q-TOF-MS) technique to detect the prototypes and related metabolites of relative components from FHT. Pearson correlation analysis was finally used to find out the correlations between the endogenous metabolic spectrums and the chemical serum spectrums. As a result, 17 biomarkers for nephrotic syndrome indication were identified, and the main metabolic pathways of their concern included linoleic acid metabolism; cyanoamino acid metabolism; alpha-linolenic acid metabolism; glycine, serine, and threonine metabolism; arachidonic acid metabolism; and glycerophospholipid metabolism. Meanwhile, active components in FHT for nephrotic syndrome treatment were screened out, including (+)-tetrandrine demethylation, fenfangjine G hydrogenation, tetrandrine, N-methylfangchinoline, tetrandrine demethylation, fangchinoline, glycyrrhetic acid, astragaloside II alcohol dehydration, atractylenolide III demethylation + hydrogenation, atractylenolide III demethylation + hydrogenation, and licoricone-N-acetylcysteine conjugation. This study demonstrated a promising way to elucidate the active chemical material basis of TCM prescription.
Collapse
Affiliation(s)
- Xiao Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi-Gang Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xiao-Chai Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bao-Chang Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
27
|
Wang EB, Liu T, Lu XL, Xu JF, Zheng Q, Zhao ZB, Qu TL. Comparison of aerial parts of Astragalus membranaceus and Astragali Radix based on chemical constituents and pharmacological effects. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1663154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Er-Bing Wang
- Institute of Chemical and Biological Technology, Taiyuan University of Science and Technology, Taiyuan, People’s Republic of China
| | - Teng Liu
- School of Pharmaceutical Science of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiao-Lin Lu
- School of Pharmaceutical Science of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jin-Fang Xu
- School of Pharmaceutical Science of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Qian Zheng
- School of Pharmaceutical Science of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Zheng-Bao Zhao
- School of Pharmaceutical Science of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ting-Li Qu
- School of Pharmaceutical Science of Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
28
|
Zhang WN, Yang L, He SS, Qin XM, Li AP. Metabolomics coupled with integrative pharmacology reveal the protective effect of FangjiHuangqi Decoction against adriamycin-induced rat nephropathy model. J Pharm Biomed Anal 2019; 174:525-533. [PMID: 31252309 DOI: 10.1016/j.jpba.2019.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/16/2019] [Accepted: 05/11/2019] [Indexed: 01/23/2023]
Abstract
With the development of the society, the number of people who got the nephrotic syndrome (NS) is going up roughly. Therefore, finding a better way to treat NS is becoming a major global public health issue. As we all know, traditional Chinese medicine (TCM), especially Fangji Huangqi Decoction (FHD), has a long history and has good curative effects on NS. However, the mechanism of FHD treating NS has not been clearly elucidated. To address this problem, a feasible system was developed by metabolomics and integrative pharmacology approach. To study the mechanisms of Chinese medical formula FHD treating NS based on metabolomics and integrative pharmacology. In this study, a NMR based metabolomics approach coupled with biochemical assay and Western Blot had been employed to study the protective effect of FHD against adriamycin-induced nephropathy using rat model. And we proposed a integrative pharmacology-based method, which combined chemical ingredients database building, target identification and network analysis. These were aimed to decipher the mechanisms of action for the FHD in NS treatment. Multivariate analysis revealed that 13 of 16 perturbed metabolites could be reversed by FHD, and the MetaboAnalyst analysis revealed that the anti-nephrotic syndrome effect of FHD was probably related with regulation of alanine, aspartate and glutamate metabolism, citrate cycle, pyruvate metabolism, cysteine and methionine metabolism and glyoxylate and dicarboxylate metabolism. The integrative pharmacology analysis revealed 93 potential targets for FHD, and suggested that the protective effect of FHD on the nephrotic syndrome was probably related with the regulation of immune, and energy metabolic and fatty acid metabolic. In addition, both the metabolomics and the integrative pharmacology are focus together on the alanine, aspartate and glutamate metabolism pathway. These metabolites changes and the core targets changes, as well as the metabolite-target pathway network provide insights into the mechanisms of FHD treating nephrotic syndrome, and further studies are needed to validate the bioactive compounds responsible for the anti-nephrotic syndrome effect of FHD.
Collapse
Affiliation(s)
- Wang-Ning Zhang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Liu Yang
- College of Chemistry and Chemical Engineering of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Sheng-Sheng He
- College of Chemistry and Chemical Engineering of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China.
| | - Ai-Ping Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China.
| |
Collapse
|
29
|
Cui J, Zheng X, Yang D, Hu Y, An C, Bo Y, Li H, Zhang Y, Niu M, Xue X, Lu Y, Tang Y, Yin H, Li Z, Gao W, Wu Y. Astragali radix total flavonoid synergizes cisplatin to inhibit proliferation and enhances the chemosensitivity of laryngeal squamous cell carcinoma. RSC Adv 2019; 9:24471-24482. [PMID: 35527911 PMCID: PMC9069756 DOI: 10.1039/c9ra04701h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/19/2019] [Indexed: 01/26/2023] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is the most common head and neck cancer. Astragali radix extracts play crucial roles in the regulation of cancer progression. However, the role of Astragali radix extracts in LSCC and the related mechanisms remains unclear. Here, we evaluated the inhibitory effects of the combined use of Astragali radix total flavonoid (TFA) and cisplatin (CDDP) on an LSCC mouse model by pharmacodynamics. Ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was employed to define the prototype of TFA in vivo. The potential drug targets were identified through the integrative analysis of LSCC microarrays, RNA sequencing data and the main bioactive component of TFA. Furthermore, a protein–protein interaction network, compound–target network and target–pathway network were constructed based on the prototype and potential drug targets to identify the main targets and pathways. Animal experiments showed that TFA has significant synergistic antitumor activity with cisplatin and attenuates the nephrotoxicity caused by CDDP chemotherapy, improving the survival of LSCC-bearing mice. Using UPLC-MS/MS, we identified 8 constituents of TFA in experimental mice serum: formononetin, ononin, calycosin, calycosin-7-O-β-D-glucoside, 7,2′-dihydroxy-3′,4′-dimethoxyisoflavan, 7,2′-dihydroxy-3′,4′-dimethoxyisoflavaneglucoside, 3-hydroxy-9,10-dimethoxypterocarpan and 9,10-dimethoxyptercarpan-3-O-β-d-glucoside. Integrative analysis predicted 19 target genes for TFA constituents, and the target genes were mainly involved in the EGFR-related cancer signaling, metabolism and oxidative stress. Collectively, these findings highlight the role of TFA in the regulation of LSCC and provide potential targets for a high-efficiency and low-toxicity therapeutic strategy of LSCC. Astragali radix total flavonoid synergizes with cisplatin to inhibit tumorigenesis of laryngeal squamous cell carcinoma.![]()
Collapse
|
30
|
Chen R, Liao C, Guo Q, Wu L, Zhang L, Wang X. Combined systems pharmacology and fecal metabonomics to study the biomarkers and therapeutic mechanism of type 2 diabetic nephropathy treated with Astragalus and Leech. RSC Adv 2018; 8:27448-27463. [PMID: 35540008 PMCID: PMC9083881 DOI: 10.1039/c8ra04358b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/19/2018] [Indexed: 02/05/2023] Open
Abstract
In our study, systems pharmacology was used to predict the molecular targets of Astragalus and Leech, and explore the therapeutic mechanism of type 2 diabetic nephropathy (T2DN) treated with Astragalus and Leech. Simultaneously, to reveal the systemic metabolic changes and biomarkers associated with T2DN, we performed 1H NMR-based metabonomics and multivariate analysis to analyze fecal samples obtained from model T2DN rats. In addition, ELISA kits and histopathological studies were used to examine biochemical parameters and kidney tissue, respectively. Striking differences in the Pearson's correlation of 22 biomarkers and 9 biochemical parameters were also observed among control, T2DN and treated rats. Results of systems pharmacology analysis revealed that 9 active compounds (3,9-di-O-methylnissolin; (6aR,11aR)-9,10-dimethoxy-6a,11a-dihydro-6H-benzofurano[3,2-c]chromen-3-ol; hirudin; l-isoleucine; phenylalanine; valine; hirudinoidine A-C) and 9 target proteins (l-serine dehydratase; 3-hydroxyacyl-CoA dehydrogenase; tyrosyl-tRNA synthetase; tryptophanyl-tRNA synthetase; branched-chain amino acid aminotransferase; acetyl-CoA C-acetyltransferase; isovaleryl-CoA dehydrogenase; pyruvate dehydrogenase E1 component alpha subunit; hydroxyacylglutathione hydrolase) of Astragalus and Leech were closely associated with the treatment of T2DN. Using fecal metabonomics analysis, 22 biomarkers were eventually found to be closely associated with the occurrence of T2DN. Combined with systems pharmacology and fecal metabonomics, these biomarkers were found to be mainly associated with 6 pathways, involving amino acid metabolism (leucine, valine, isoleucine, alanine, lysine, glutamate, taurine, phenylalanine, tryptophan); energy metabolism (lactate, succinate, creatinine, α-glucose, glycerol); ketone body and fatty acid metabolism (3-hydroxybutyrate, acetate, n-butyrate, propionate); methylamine metabolism (dimethylamine, trimethylamine); and secondary bile acid metabolism and urea cycle (deoxycholate, citrulline). The underlying mechanisms of action included protection of the liver and kidney, enhancement of insulin sensitivity and antioxidant activity, and improvement of mitochondrial function. To the best of our knowledge, this is the first time that systems pharmacology combined with fecal metabonomics has been used to study T2DN. 6 metabolites (n-butyrate, deoxycholate, propionate, tryptophan, taurine and glycerol) associated with T2DN were newly discovered in fecal samples. These 6 metabolites were mainly derived from the intestinal flora, and related to amino acid metabolism, fatty acid metabolism, and secondary bile acid metabolism. We hope the results of this study could be inspirational and helpful for further exploration of T2DN treatment. Meanwhile, our results highlighted that exploring the biomarkers of T2DN and therapeutic mechanisms of Traditional Chinese Medicine (TCM) formulas on T2DN by combining systems pharmacology and fecal metabonomics methods was a promising strategy.
Collapse
Affiliation(s)
- Ruiqun Chen
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Chengbin Liao
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Qian Guo
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Lirong Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China
| | - Lei Zhang
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| | - Xiufeng Wang
- School of Basic Courses, Guangdong Pharmaceutical University Guangzhou 510006 P. R. China +86-20-39352186 +86-20-39352195
| |
Collapse
|