1
|
Development of Magnetic Nanobeads Modified by Artificial Fluorescent Peptides for the Highly Sensitive and Selective Analysis of Oxytocin. SENSORS 2020; 20:s20205956. [PMID: 33096804 PMCID: PMC7588987 DOI: 10.3390/s20205956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
We describe two novel fluorescent peptides (compounds 1 and 2) targeting oxytocin with a boron-dipyrromethenyl group as the fluorophore bound to an artificial peptide based on the oxytocin receptor, and their application for the analysis of oxytocin levels in human serum using nanometer-sized magnetic beads modified by fluorescent peptides (FMB-1 and FMB-2). Under the optimized experimental protocols, FMB-1 and FMB-2 emitted low levels of fluorescence but emitted much higher levels of fluorescence when associated with oxytocin. The detection limit of oxytocin by FMB-2 was 0.4 pM, which is approximately 37.5 times higher than that of conventional methods, such as ELISA. Using these fluorescent sensors, oxytocin was specifically detected over a wide linear range with high sensitivity, good reusability, stability, precision, and reproducibility. This fluorescent sensor-based detection system thus enabled the measurement of oxytocin levels in human serum, which has widespread applications for oxytocin assays across varied research fields.
Collapse
|
2
|
Hou M, Lv M, Zhang X, Wang Y, Zhao S, Wu J, Peng S, Zhao M. Discovery of novel (6S/12aS)-heptachpyridone capable of inhibiting thrombosis in vivo. Bioorg Med Chem Lett 2020; 30:127440. [PMID: 32730945 DOI: 10.1016/j.bmcl.2020.127440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 01/10/2023]
Abstract
The in vitro conversion of (1S,3S)-1-dimethoxylethyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid, (1S,3S)-DCCA, in rat plasma is monitored by HPLC-FT-ICR-MS. We show that the in vitro conversion of (1S,3S)-DCCA in rat plasma for 1 h leads to forming (6S/12aS)-bisdimethoxyethylheptachpyridone, reflecting intermolecular condensation of (1S,3S)-DCCA, and the in vitro conversion of (6S/12aS)-bisdimethoxyethylheptachpyridone in rat plasma for 1 h leads to forming (6S/12aS)-heptachpyridone, reflecting hydrolysis of (6S/12aS)-bisdimethoxyethylheptachpyridone. At a dose of 1.0 μmol/kg (6S/12aS)-heptachpyridone orally inhibits venous thrombosis and arterial thrombosis in vivo. Bleeding time, clotting time and international normalized ratio show that at this dose (6S/12aS)-heptachpyridone has no bleeding risk, does not lengthen clotting time and does not change the exogenous coagulation pathway. We also show that the reactions promoted by rat plasma are easy to practice by chemical synthesis. Thus our findings build a bridge across the in vivo conversion and the application.
Collapse
Affiliation(s)
- Mengyu Hou
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Manjie Lv
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaoyi Zhang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yaonan Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Shurui Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Shiqi Peng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| | - Ming Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Biomedical Materials and Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Beijing 100026, China.
| |
Collapse
|
3
|
Xi W, Zou Q, Ouyang P. Pharmacokinetics of cligosiban in dog plasma after oral administration by liquid chromatography electrospray ionization tandem mass spectrometry. Biomed Chromatogr 2019; 33:e4611. [DOI: 10.1002/bmc.4611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/19/2019] [Accepted: 05/24/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Wang Xi
- School of Pharmaceutical SciencesNanjing Tech University Nanjing China
| | - Qiaogen Zou
- School of Pharmaceutical SciencesNanjing Tech University Nanjing China
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech University Nanjing China
| |
Collapse
|