1
|
Sevgen S, Kara G, Kir AS, Şahin A, Boyaci E. A critical review of bioanalytical and clinical applications of solid phase microextraction. J Pharm Biomed Anal 2024; 252:116487. [PMID: 39378761 DOI: 10.1016/j.jpba.2024.116487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Studying the functions, mechanisms, and effects of drugs and other exogenous compounds on biological systems, together with investigations performed to understand biosystems better, comprises one of the most fascinating areas of research. Although classical sample preparation techniques are dominantly used to infer the relevant information from the investigated system, they fail to meet various imperative requirements, such as being environmentally friendly, applicable in-vivo, and compatible with online analysis. As a chameleon in the analytical toolbox, solid phase microextraction (SPME) is one of the best tools available for studying biological systems in unconventional ways. In this review, SPME is spotlighted, and its capability for bioanalytical applications, including drug analysis, untargeted and targeted metabolomics, in-vivo and clinical studies, is scrutinized based on studies reported in the past five years. In addition, novel extractive phases and instrumental coupling strategies developed to serve bioanalytical research are discussed to give the perspective for state-of-the-art and future developments. The literature assessment showed that SPME could act as a critical tool to investigate in-vivo biological systems and provide information about the elusive portion of the metabolome. Moreover, recently introduced miniaturized SPME probes further improved the low-invasive nature of the sampling and enabled sampling even from a single cell. The coupling of SPME directly to mass spectrometry significantly reduced the total analytical workflow and became one of the promising tools suitable for fast diagnostic purposes and drug analysis. The numerous applications and advancements reported in bioanalysis using SPME show that it will continue to be an indispensable technique in the future.
Collapse
Affiliation(s)
- Sılanur Sevgen
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Gökşin Kara
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Aysegul Seyma Kir
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Alper Şahin
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Ezel Boyaci
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye.
| |
Collapse
|
2
|
Cheng HR, van Vorstenbosch RW, Pachen DM, Meulen LW, Straathof JWA, Dallinga JW, Jonkers DM, Masclee AA, van Schooten FJ, Mujagic Z, Smolinska A. Detecting Colorectal Adenomas and Cancer Using Volatile Organic Compounds in Exhaled Breath: A Proof-of-Principle Study to Improve Screening. Clin Transl Gastroenterol 2022; 13:e00518. [PMID: 35981245 PMCID: PMC10476860 DOI: 10.14309/ctg.0000000000000518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/16/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION Early detection of colorectal cancer (CRC) by screening programs is crucial because survival rates worsen at advanced stages. However, the currently used screening method, the fecal immunochemical test (FIT), suffers from a high number of false-positives and is insensitive for detecting advanced adenomas (AAs), resulting in false-negatives for these premalignant lesions. Therefore, more accurate, noninvasive screening tools are needed. In this study, the utility of analyzing volatile organic compounds (VOCs) in exhaled breath in a FIT-positive population to detect the presence of colorectal neoplasia was studied. METHODS In this multicenter prospective study, breath samples were collected from 382 FIT-positive patients with subsequent colonoscopy participating in the national Dutch bowel screening program (n = 84 negative controls, n = 130 non-AAs, n = 138 AAs, and n = 30 CRCs). Precolonoscopy exhaled VOCs were analyzed using thermal desorption-gas chromatography-mass spectrometry, and the data were preprocessed and analyzed using machine learning techniques. RESULTS Using 10 discriminatory VOCs, AAs could be distinguished from negative controls with a sensitivity and specificity of 79% and 70%, respectively. Based on this biomarker profile, CRC and AA combined could be discriminated from controls with a sensitivity and specificity of 77% and 70%, respectively, and CRC alone could be discriminated from controls with a sensitivity and specificity of 80% and 70%, respectively. Moreover, the feasibility to discriminate non-AAs from controls and AAs was shown. DISCUSSION VOCs in exhaled breath can detect the presence of AAs and CRC in a CRC screening population and may improve CRC screening in the future.
Collapse
Affiliation(s)
- Hao Ran Cheng
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands;
- Department of Gastroenterology and Hepatology, Máxima Medical Center, Veldhoven, the Netherlands;
- GROW, School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands;
| | - Robert W.R. van Vorstenbosch
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| | - Daniëlle M. Pachen
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| | - Lonne W.T. Meulen
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands;
- GROW, School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands;
| | - Jan Willem A. Straathof
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands;
- Department of Gastroenterology and Hepatology, Máxima Medical Center, Veldhoven, the Netherlands;
| | - Jan W. Dallinga
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| | - Daisy M.A.E. Jonkers
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands;
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
| | - Ad A.M. Masclee
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands;
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
| | - Frederik-Jan van Schooten
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| | - Zlatan Mujagic
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands;
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
| | - Agnieszka Smolinska
- NUTRIM, School of Nutrition & Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands;
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
3
|
Tyagi H, Daulton E, Bannaga AS, Arasaradnam RP, Covington JA. Non-Invasive Detection and Staging of Colorectal Cancer Using a Portable Electronic Nose. SENSORS (BASEL, SWITZERLAND) 2021; 21:5440. [PMID: 34450881 PMCID: PMC8398649 DOI: 10.3390/s21165440] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022]
Abstract
Electronic noses (e-nose) offer potential for the detection of cancer in its early stages. The ability to analyse samples in real time, at a low cost, applying easy-to-use and portable equipment, gives e-noses advantages over other technologies, such as Gas Chromatography-Mass Spectrometry (GC-MS). For diseases such as cancer with a high mortality, a technology that can provide fast results for use in routine clinical applications is important. Colorectal cancer (CRC) is among the highest occurring cancers and has high mortality rates, if diagnosed late. In our study, we investigated the use of portable electronic nose (PEN3), with further analysis using GC-TOF-MS, for the analysis of gases and volatile organic compounds (VOCs) to profile the urinary metabolome of colorectal cancer. We also compared the different cancer stages with non-cancers using the PEN3 and GC-TOF-MS. Results obtained from PEN3, and GC-TOF-MS demonstrated high accuracy for the separation of CRC and non-cancer. PEN3 separated CRC from non-cancerous group with 0.81 AUC (Area Under the Curve). We used data from GC-TOF-MS to obtain a VOC profile for CRC, which identified 23 potential biomarker VOCs for CRC. Thus, the PEN3 and GC-TOF-MS were found to successfully separate the cancer group from the non-cancer group.
Collapse
Affiliation(s)
- Heena Tyagi
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (H.T.); (E.D.)
| | - Emma Daulton
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (H.T.); (E.D.)
| | - Ayman S. Bannaga
- Department of Gastroenterology, University Hospital Coventry & Warwickshire, Coventry CV2 2DX, UK; (A.S.B.); (R.P.A.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Ramesh P. Arasaradnam
- Department of Gastroenterology, University Hospital Coventry & Warwickshire, Coventry CV2 2DX, UK; (A.S.B.); (R.P.A.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- School of Health Sciences, Coventry University, Coventry CV1 5FB, UK
- Leicester Cancer Centre, University of Leicester, Leicester LE1 7RH, UK
| | - James A. Covington
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (H.T.); (E.D.)
| |
Collapse
|
5
|
Emam S, Nasrollahpour M, Colarusso B, Cai X, Grant S, Kulkarni P, Ekenseair A, Gharagouzloo C, Ferris CF, Sun NX. Detection of presymptomatic Alzheimer's disease through breath biomarkers. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12088. [PMID: 33088894 PMCID: PMC7560498 DOI: 10.1002/dad2.12088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022]
Abstract
Introduction Novel sensors were developed to detect exhaled volatile organic compounds to aid in the diagnosis of mild cognitive impairment associated with early stage Alzheimer's disease (AD). The sensors were sensitive to a rat model that combined the human apolipoprotein E (APOE)4 gene with aging and the Western diet. Methods Gas sensors fabricated from molecularly imprinted polymer-graphene were engineered to react with alkanes and small fatty acids associated with lipid peroxidation. With a detection sensitivity in parts per trillion the sensors were tested against the breath of wild-type and APOE4 male rats. Resting state BOLD functional connectivity was used to assess hippocampal function. Results Only APOE4 rats, and not wild-type controls, tested positive to several small hydrocarbons and presented with reduced functional coupling in hippocampal circuitry. Discussion These results are proof-of-concept toward the development of sensors that can be used as breath detectors in the diagnosis, prognosis, and treatment of presymptomatic AD.
Collapse
Affiliation(s)
- Shadi Emam
- Department of Electrical and Computer Engineering Advanced Materials and Microsystems Laboratory Northeastern University Boston Massachusetts USA
| | - Mehdi Nasrollahpour
- Department of Electrical and Computer Engineering Advanced Materials and Microsystems Laboratory Northeastern University Boston Massachusetts USA
| | - Bradley Colarusso
- Department of Psychology Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Xuezhu Cai
- Department of Psychology Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Simone Grant
- Department of Chemical Engineering Northeastern University Boston Massachusetts USA
| | - Praveen Kulkarni
- Department of Psychology Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Adam Ekenseair
- Department of Chemical Engineering Northeastern University Boston Massachusetts USA
| | - Codi Gharagouzloo
- Imaginostics Inc. Northeastern University Cambridge Massachusetts USA
| | - Craig F Ferris
- Department of Psychology Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Nian-Xiang Sun
- Department of Electrical and Computer Engineering Advanced Materials and Microsystems Laboratory Northeastern University Boston Massachusetts USA
| |
Collapse
|
6
|
Janfaza S, Khorsand B, Nikkhah M, Zahiri J. Digging deeper into volatile organic compounds associated with cancer. Biol Methods Protoc 2019; 4:bpz014. [PMID: 32161807 PMCID: PMC6994028 DOI: 10.1093/biomethods/bpz014] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
Volatile organic compounds (VOCs), produced and emitted through the metabolism of cancer cells or the body's immune system, are considered novel cancer biomarkers for diagnostic purposes. Of late, a large number of work has been done to find a relationship between VOCs' signature of body and cancer. Cancer-related VOCs can be used to detect several types of cancers at the earlier stages which in turn provide a significantly higher chance of survival. Here we aim to provide an updated picture of cancer-related VOCs based on recent findings in this field focusing on cancer odor database.
Collapse
Affiliation(s)
- Sajjad Janfaza
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| | - Babak Khorsand
- Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| |
Collapse
|