1
|
Magreault S, Pierredon D, Akinotcho-Relouzat J, Méchaï F, Lamy B, Jaureguy F, Jullien V. From Bed to Bench: Pre-analytical Stability of 29 Anti-infective Agents in Plasma and Whole Blood to Improve Accuracy of Therapeutic Drug Monitoring. Ther Drug Monit 2024:00007691-990000000-00248. [PMID: 38953703 DOI: 10.1097/ftd.0000000000001237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/13/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Therapeutic drug monitoring requires a validated assay and appropriate conditions for sample shipment and storage based on the stability of the compound to be analyzed. This study evaluated the stability of 29 antimicrobial compounds in whole blood (WB) and plasma samples under various storage conditions. METHODS The pre-analytical stability of 22 antibiotics (amoxicillin, aztreonam, cefazolin, cefepime, cefotaxime, cefoxitin, ceftazidime, ceftobiprole, ceftolozane, ceftriaxone, ciprofloxacin, clindamycin, cloxacillin, daptomycin, levofloxacin, linezolid, meropenem, metronidazole, moxifloxacin, piperacillin, sulfamethoxazole, and trimethoprim), 2 beta-lactamase inhibitors (avibactam, tazobactam), and 5 antituberculosis drugs (ethambutol, isoniazid, pyrazinamide, rifabutin, and rifampicin) was assessed by WB for up to 24 hours at room temperature (RT) and 72 hours at +4°C. The stability in plasma was evaluated for up to 6 hours at RT, 24 hours at +4°C, 1 month at -20°C, and 6 months at -80°C. RESULTS Concerning WB stability, all investigated compounds were stable for 24 hours at RT, except meropenem and isoniazid, which were stable for 6 hours; however, for 24 hours at +4°C, all the compounds were stable. For storage durations of 48 and 72 hours at +4°C, all compounds were stable, except for ciprofloxacin, cotrimoxazole, and isoniazid. Concerning stability in plasma, all compounds were stable for 6 hours at RT, and all except isoniazid were stable for 24 hours at +4°C. All the tested compounds were stable for 7 days at -20°C, except isoniazid, for which a degradation of approximately 20% was observed. An important degradation was observed for beta-lactam antibiotics after 1 month at -20°C. All compounds were stable at -80°C for 6 months. CONCLUSIONS The pre-analytical stabilities of several anti-infective compounds was described. The present results can be used to determine the appropriate conditions for shipping and storing samples dedicated to therapeutic drug monitoring of the investigated compounds.
Collapse
Affiliation(s)
- Sophie Magreault
- Department of Pharmacology, AP-HP, Jean Verdier Hospital, Sorbonne Paris Nord and Sorbonne Paris Cité University, IAME, Bobigny, France
| | - Dorine Pierredon
- Department of Pharmacology, AP-HP, Jean Verdier Hospital, Bondy, France
| | | | - Frédéric Méchaï
- Department of Infectious Disease, AP-HP, Avicenne Hospital, Sorbonne Paris Nord and Sorbonne Paris Cité University, IAME, Bobigny, France; and
| | - Brigitte Lamy
- Department of Microbiology, AP-HP, Avicenne Hospital, Sorbonne Paris Nord and Sorbonne Paris Cité University, IAME, Bobigny, France
| | - Françoise Jaureguy
- Department of Microbiology, AP-HP, Avicenne Hospital, Sorbonne Paris Nord and Sorbonne Paris Cité University, IAME, Bobigny, France
| | - Vincent Jullien
- Department of Pharmacology, AP-HP, Jean Verdier Hospital, Sorbonne Paris Nord and Sorbonne Paris Cité University, IAME, Bobigny, France
| |
Collapse
|
2
|
Chromatographic analysis of ciprofloxacin and metronidazole in real human plasma: green analytical chemistry perspective. Bioanalysis 2023; 15:17-30. [PMID: 36927190 DOI: 10.4155/bio-2022-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Background: Ciprofloxacin and metronidazole are beneficial for treating mixed aerobic/anaerobic infections. Methods: Following the oral administration of ciprofloxacin and metronidazole in healthy volunteers, TLC and HPLC methods were described for their analysis in plasma samples. In the first method, a stationary phase of silica gel TLC F254 plates was used using acetone/water/triethylamine/glacial acetic acid (8:2:0.25:0.1 v/v). The second approach used a C18 column and methanol/aqueous 0.05% triethylamine (25:75 v/v), with a flow rate of 1 ml/min and detection at 325 nm. Four green metrics were used to evaluate the approaches' environmental impact. Conclusion: The study provided the sensitivity required for determination of the two drugs in the collected samples. The findings showed that results were within permitted ranges with minimal environmental impact.
Collapse
|
3
|
Palayer M, Chaussenery-Lorentz O, Boubekeur L, Urbina T, Maury E, Maubert MA, Pilon A, Bourgogne E. Quantitation of 10 antibiotics in plasma: sulfosalicylic acid combined with 2D-LC-MS/MS is a robust assay for beta-lactam therapeutic drug monitoring. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1221:123685. [PMID: 37023569 DOI: 10.1016/j.jchromb.2023.123685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
Therapeutic drug monitoring (TDM) of antibiotics is particularly important in populations with high pharmacokinetic variabilities, such as critically ill patients, leading to unpredictable plasma concentrations and clinical outcomes. Here, we i) describe an original method for the simultaneous quantification of ten antibiotics (cefepime, ceftazidime, ampicillin, piperacillin/tazobactam, cefotaxime, amoxicillin, cloxacillin, oxacillin, linezolid) using 5-sulfosalicylic acid dihydrate (SSA) solution for protein precipitation together with 2D-LC-MS/MS, and ii) evaluate its impact in a one-year retrospective study. The method involved simple dilution with an aqueous mix of deuterated internal standards and plasma protein precipitation with SSA. Twenty microliters of the supernatant was injected into a C8 SPE online cartridge (30 × 2.1 mm) without any evaporation step and back-flushed onto a C18 UHPLC (100 × 2.1 mm) analytical column. Mass spectrometry detection (Xevo TQD) was performed in positive electrospray, in scheduled MRM mode. Overall analytical runtime was 7 min. Due to analytical constraints and the physicochemical properties of the antibiotics, protein precipitation using organic solvents could not be applied. As an alternative, SSA used with 2D-LC offered various advantages: i) lack of dilution resulting in better assay sensitivity, and ii) good chromatography of hydrophilic compounds. Ten microliters of 30% SSA in water eliminated>90% of plasma proteins, including the most abundant high molecular weight proteins at 55 and 72 kDa. The assay was successfully validated according to FDA and EMA guidelines for all the antibiotics, and the coefficients of variation of the quality control (QC) run during sample analysis over one year were below 10%, whatever the QC levels or the antibiotics. The use of 2D-LC combined with SSA precipitation allowed development of a robust, sensitive and rapid quantification assay. Feedback to clinicians was reduced to 24 h, thus allowing rapid dosage adjustment. During one year, 3,304 determinations were performed in our laboratory: 41% were not in the therapeutic range, 58% of which were sub-therapeutic, underlining the importance of early TDM of antibiotics to limit therapeutic failures and the emergence of bacterial resistance.
Collapse
|
4
|
Simeoli R, Cairoli S, Decembrino N, Campi F, Dionisi Vici C, Corona A, Goffredo BM. Use of Antibiotics in Preterm Newborns. Antibiotics (Basel) 2022; 11:antibiotics11091142. [PMID: 36139921 PMCID: PMC9495226 DOI: 10.3390/antibiotics11091142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Due to complex maturational and physiological changes that characterize neonates and affect their response to pharmacological treatments, neonatal pharmacology is different from children and adults and deserves particular attention. Although preterms are usually considered part of the neonatal population, they have physiological and pharmacological hallmarks different from full-terms and, therefore, need specific considerations. Antibiotics are widely used among preterms. In fact, during their stay in neonatal intensive care units (NICUs), invasive procedures, including central catheters for parental nutrition and ventilators for respiratory support, are often sources of microbes and require antimicrobial treatments. Unfortunately, the majority of drugs administered to neonates are off-label due to the lack of clinical studies conducted on this special population. In fact, physiological and ethical concerns represent a huge limit in performing pharmacokinetic (PK) studies on these subjects, since they limit the number and volume of blood sampling. Therapeutic drug monitoring (TDM) is a useful tool that allows dose adjustments aiming to fit plasma concentrations within the therapeutic range and to reach specific drug target attainment. In this review of the last ten years’ literature, we performed Pubmed research aiming to summarize the PK aspects for the most used antibiotics in preterms.
Collapse
Affiliation(s)
- Raffaele Simeoli
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Sara Cairoli
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Nunzia Decembrino
- Neonatal Intensive Care Unit, University Hospital “Policlinico-San Marco” Catania, Integrated Department for Maternal and Child’s Health Protection, 95100 Catania, Italy
| | - Francesca Campi
- Neonatal Intensive Care Unit, Medical and Surgical Department of Fetus-Newborn-Infant, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Carlo Dionisi Vici
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Alberto Corona
- ICU and Accident & Emergency Department, ASST Valcamonica, 25043 Breno, Italy
| | - Bianca Maria Goffredo
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: ; Tel.: +39-0668592174; Fax: + 39-0668593009
| |
Collapse
|
5
|
Methods for Determination of Meropenem Concentration in Biological Samples. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Measuring the concentration of antibiotics in biological samples allow implementation of therapeutic monitoring of these drugs and contribute to the adjustment of the dosing regimen in patients. This increases the effectiveness of antimicrobial therapy, reduces the toxicity of these drugs and prevents the development of bacterial resistance. This review article summarizes current knowledge on methods for determining concentration of meropenem, an antibiotic drug from the group of carbapenems, in different biological samples. It provides a brief discussion of the chemical structure, physicochemical and pharmacokinetic properties of meropenem, different sample preparation techniques, use of apparatus and equipment, knowledge of the advantages and limitations of available methods, as well as directions in which new methods should be developed. This review should facilitate clinical laboratories to select and apply one of the established methods for measuring of meropenem, as well as to provide them with the necessary knowledge to develop new methods for quantification of meropenem in biological samples according to their needs.
Collapse
|
6
|
Da Ruos J, Baldo MA, Daniele S. Analytical Methods for the Determination of Major Drugs Used for the Treatment of COVID-19. A Review. Crit Rev Anal Chem 2022; 53:1698-1732. [PMID: 35195461 DOI: 10.1080/10408347.2022.2039094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
At the beginning of the COVID-19 outbreak (end 2019 - 2020), therapeutic treatments based on approved drugs have been the fastest approaches to combat the new coronavirus pandemic. Nowadays several vaccines are available. However, the worldwide vaccination program is going to take a long time and its success will depend on the vaccine public's acceptance. Therefore, outside of vaccination, the repurposing of existing antiviral, anti-inflammatory and other types of drugs, have been considered an alternative medical strategy for the COVI-19 infection. Due to the broad clinical potential of the drugs, but also to their possible side effects, analytical methods are needed to monitor the drug concentrations in biological fluids and pharmaceutical products. This review deals with analytical methods developed in the period 2015 - July 2021 to detect potential drugs that, according to a literature survey, have been taken into consideration for the treatment of COVID-19. The drugs considered here have been selected on the basis of the number of articles published in the period January 2020-July 2021, using the combination of the keywords: COVID-19 and drugs or SARS-CoV-2 and drugs. A section is also devoted to monoclonal antibodies. Over the period considered, the analytical methods have been employed in a variety of real samples, such as body fluids (plasma, blood and urine), pharmaceutical products, environmental matrices and food.
Collapse
Affiliation(s)
- Jessica Da Ruos
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| | - M Antonietta Baldo
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| | - Salvatore Daniele
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| |
Collapse
|
7
|
Goh KKK, Toh WGH, Hee DKH, Ting EZW, Chua NGS, Zulkifli FIB, Sin LJ, Tan TT, Kwa ALH, Lim TP. Quantification of Fosfomycin in Combination with Nine Antibiotics in Human Plasma and Cation-Adjusted Mueller-Hinton II Broth via LCMS. Antibiotics (Basel) 2022; 11:antibiotics11010054. [PMID: 35052932 PMCID: PMC8772704 DOI: 10.3390/antibiotics11010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/05/2023] Open
Abstract
Fosfomycin-based combination therapy has emerged as an attractive option in our armamentarium due to its synergistic activity against carbapenem-resistant Gram-negative bacteria (CRGNB). The ability to simultaneously measure fosfomycin and other antibiotic drug levels will support in vitro and clinical investigations to develop rational antibiotic combination dosing regimens against CRGNB infections. We developed an analytical assay to measure fosfomycin with nine important antibiotics in human plasma and cation-adjusted Mueller–Hinton II broth (CAMHB). We employed a liquid-chromatography tandem mass spectrometry method and validated the method based on accuracy, precision, matrix effect, limit-of-detection, limit-of-quantification, specificity, carryover, and short-term and long-term stability on U.S. Food & Drug Administration (FDA) guidelines. Assay feasibility was assessed in a pilot clinical study in four patients on antibiotic combination therapy. Simultaneous quantification of fosfomycin, levofloxacin, meropenem, doripenem, aztreonam, piperacillin/tazobactam, ceftolozane/tazobactam, ceftazidime/avibactam, cefepime, and tigecycline in plasma and CAMHB were achieved within 4.5 min. Precision, accuracy, specificity, and carryover were within FDA guidelines. Fosfomycin combined with any of the nine antibiotics were stable in plasma and CAMHB up to 4 weeks at −80 °C. The assay identified and quantified the respective antibiotics administered in the four subjects. Our assay can be a valuable tool for in vitro and clinical applications.
Collapse
Affiliation(s)
- Kelvin Kau-Kiat Goh
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
- SingHealth Duke-NUS Pathology Academic Clinical Programme, 8 College Road, Singapore 169857, Singapore
| | - Wilson Ghim-Hon Toh
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
| | - Daryl Kim-Hor Hee
- Shimadzu (Asia Pacific) Pte Ltd., 79 Science Park Dr, #02-01/08 Cintech IV, Singapore 118264, Singapore; (E.Z.-W.T.); (D.K.-H.H.)
| | - Edwin Zhi-Wei Ting
- Shimadzu (Asia Pacific) Pte Ltd., 79 Science Park Dr, #02-01/08 Cintech IV, Singapore 118264, Singapore; (E.Z.-W.T.); (D.K.-H.H.)
| | - Nathalie Grace Sy Chua
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
| | - Farah Iffah Binte Zulkifli
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
| | - Li-Jiao Sin
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
| | - Thuan-Tong Tan
- SingHealth Duke-NUS Medicine Academic Clinical Programme, 8 College Road, Singapore 169857, Singapore;
- Department of Infectious Diseases, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Andrea Lay-Hoon Kwa
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
- SingHealth Duke-NUS Medicine Academic Clinical Programme, 8 College Road, Singapore 169857, Singapore;
- Emerging Infectious Diseases Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Correspondence: (A.L.-H.K.); (T.-P.L.); Tel.: +65-6321-3401 (A.L.-H.K.); +65-6326-6959 (T.-P.L.)
| | - Tze-Peng Lim
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (K.K.-K.G.); (W.G.-H.T.); (N.G.S.C.); (F.I.B.Z.); (L.-J.S.)
- SingHealth Duke-NUS Pathology Academic Clinical Programme, 8 College Road, Singapore 169857, Singapore
- SingHealth Duke-NUS Medicine Academic Clinical Programme, 8 College Road, Singapore 169857, Singapore;
- Correspondence: (A.L.-H.K.); (T.-P.L.); Tel.: +65-6321-3401 (A.L.-H.K.); +65-6326-6959 (T.-P.L.)
| |
Collapse
|
8
|
Advances in clinical antibiotic testing. Adv Clin Chem 2022; 110:73-116. [DOI: 10.1016/bs.acc.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Xie F, Liu L, Wang Y, Peng Y, Li S. An UPLC-PDA assay for simultaneous determination of seven antibiotics in human plasma. J Pharm Biomed Anal 2021; 210:114558. [PMID: 34979490 DOI: 10.1016/j.jpba.2021.114558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/02/2021] [Accepted: 12/26/2021] [Indexed: 01/19/2023]
Abstract
Appropriate antibiotic dosing in critically ill patients requires concentration monitoring due to the occurrence of pathophysiological changes and frequent extracorporeal therapy that could significantly alter the normal pharmacokinetics of drugs. Herein, we describe an ultra-performance liquid chromatography with photodiode array (UPLC-PDA) for the simultaneous concentration determination of seven frequently used antibiotics (meropenem, cefotaxime, cefoperazone, piperacillin, linezolid, moxifloxacin, and tigecycline) in plasma from critically ill patients. The analytes were extracted from 200 μL human plasma by the addition of methanol for protein precipitation. The chromatographic separation was achieved using an ACQUITY UPLC HSS T3 column (2.1 × 50 mm, 1.8 µm) with a water (containing 0.1% trifluoroacetic acid)/acetonitrile linear gradient at a flow rate of 0.5 mL/min in a 4.5 min turn-around time. PDA detection wavelength was set individually for the analytes. The method was fully validated according to the European Medicines Agency (EMA) guideline. The lower limits of quantification for the analytes were between 0.05 and 0.8 μg/mL. The method is accurate (intra/inter-assay bias -8.4 to +12.4%) and precise (intra/inter-assay coefficient of variations 0.9-10.1%) over the clinically relevant plasma concentration ranges (upper limits of quantification 5-400 µg/mL). The applicability of the method has been successfully demonstrated by analyzing plasma samples collected from critically ill patients undergoing continuous renal replacement therapy.
Collapse
Affiliation(s)
- Feifan Xie
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Lanyu Liu
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yan Wang
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yaru Peng
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Sanwang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Institute of Clinical Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
10
|
Development and validation of a UHPLC-MS/MS method to measure cefotaxime and metabolite desacetylcefotaxime in blood plasma: a pilot study suitable for capillary microsampling in critically ill children. Anal Bioanal Chem 2021; 413:4483-4491. [PMID: 34041575 DOI: 10.1007/s00216-021-03411-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Critical illness has been shown to affect the pharmacokinetics of antibiotics, which can lead to ineffective antibiotic exposure and the potential emergence of resistant bacteria. The lack of studies describing antibiotic pharmacokinetics in critically ill children has led to significant off-label dosing. This is, in part, due to the ethical and physiological challenges of removing frequent, large-volume samples from children. Capillary microsampling facilitates the collection of small volumes of blood samples to conduct clinical pharmacokinetic studies. A sensitive, rapid, and accurate ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) bioanalytical method to measure cefotaxime and desacetylcefotaxime in 2.8 μL of plasma was developed and validated. Plasma samples were treated with acetonitrile and analytes were separated using a Kinetex C8 (100 × 2.1 mm) column. The chromatographic separation was established using a gradient method, with the mobile phases consisting of acetonitrile and ammonium acetate. An electrospray ionization source interface operated in a positive mode for the multiple reaction monitoring MS/MS analysis of cefotaxime, desacetylcefotaxime, and deuterated cefotaxime (internal standard). The bioanalytical method using microsample volumes met requirements for method validation for both analytes. Cefotaxime had precision within ± 7.3% and accuracy within ± 5% (concentration range of 0.5 to 500 mg/L). Desacetylcefotaxime had precision within ± 9.5% and accuracy within ± 3.5% (concentration range of 0.2 to 10 mg/L). The bioanalytical method was applied for the quantification of cefotaxime and its metabolite to 20 capillary microsamples collected at five time points in one dosing interval from five critically ill children.
Collapse
|
11
|
Rehm S, Rentsch KM. LC-MS/MS method for nine different antibiotics. Clin Chim Acta 2020; 511:360-367. [PMID: 33159947 DOI: 10.1016/j.cca.2020.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS TDM of antibiotics can bring benefits to patients and healthcare systems by providing better treatment and saving healthcare resources. We aimed to develop a multi-analyte method for several diverse antibiotics using LC-MS/MS. MATERIALS AND METHODS Sample preparation consisted of protein precipitation with methanol, dilution and online extraction using a Turboflow Cyclone column. Separation was performed on a Synergi 4 µm Max RP column and deuterated forms of three antibiotics were used as internal standards. RESULTS We present a LC-MS/MS method for the quantitative determination of nine antibiotics, including five cephalosporins, the carbapenem ertapenem, the fluoroquinolone ciprofloxacin as well as the combination drug trimethoprim-sulfamethoxazole from plasma. Additionally, unbound ertapenem and cefazolin were analyzed in plasma water after ultrafiltration using plasma calibrators. Results from routine TDM show the applicability of the method. CONCLUSION The presented method is precise and accurate and was introduced in a university hospital, permitting fast TDM of all nine analytes. It was also used in a clinical study for measuring cefazolin free and total concentrations.
Collapse
Affiliation(s)
- Sophia Rehm
- Laboratory Medicine, University Hospital Basel, University Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Katharina M Rentsch
- Laboratory Medicine, University Hospital Basel, University Basel, Petersgraben 4, 4031 Basel, Switzerland.
| |
Collapse
|
12
|
Zhang C, Zeng J, Xiong W, Zeng Z. Rapid determination of amoxicillin in porcine tissues by UPLC-MS/MS with internal standard. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Cairoli S, Simeoli R, Tarchi M, Dionisi M, Vitale A, Perioli L, Dionisi-Vici C, Goffredo BM. A new HPLC-DAD method for contemporary quantification of 10 antibiotics for therapeutic drug monitoring of critically ill pediatric patients. Biomed Chromatogr 2020; 34:e4880. [PMID: 32396238 DOI: 10.1002/bmc.4880] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 11/09/2022]
Abstract
The common practice of therapeutic drug monitoring (TDM) involves the quantification of drug plasma concentrations at a specific time in a dosing window. Although TDM for antibiotics is not considered mandatory, it may represent a valid tool for clinicians in order to limit antibiotic resistance and avoid therapeutic failures. The aim of our study was to develop and validate a high-performance liquid chromatography-diode array detection method for simultaneous quantification of 10 antibiotics in plasma. This method has a fast analytical procedure that uses the same chromatographic conditions to quantify ceftazidime, ceftriaxone, meropenem, ertapenem, ciprofloxacin, tigecycline, ampicillin, levofloxacin and piperacillin, plus the β-lactamase inhibitor tazobactam. Method validation was ensured by testing selectivity, accuracy, precision, limits of detection and quantification, recovery and stability. The calibration ranges, established accordingly to the expected plasma concentration in patients, showed a coefficient of determination >0.996 for all compounds. Within- and between-days precisions reported a coefficient of variation >15%. Similarly, the accuracy evaluation reported a relative standard deviation of <10% for each antibiotic. The recovery ranged between 97 and 103% for all compounds. This method could represent a useful tool for TDM of antibiotics.
Collapse
Affiliation(s)
- Sara Cairoli
- Department of Pediatric Medicine, Laboratory of Metabolic Biochemistry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Raffaele Simeoli
- Department of Pediatric Medicine, Laboratory of Metabolic Biochemistry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Tarchi
- Department of Pediatric Medicine, Laboratory of Metabolic Biochemistry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Dionisi
- Department of Pediatric Medicine, Laboratory of Metabolic Biochemistry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessia Vitale
- Department of Pediatric Medicine, Laboratory of Metabolic Biochemistry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luana Perioli
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | - Carlo Dionisi-Vici
- Department of Pediatric Medicine, Laboratory of Metabolic Biochemistry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Bianca Maria Goffredo
- Department of Pediatric Medicine, Laboratory of Metabolic Biochemistry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
14
|
Lian X, Wang N, Ma L, Jiang H, Bai D, Xue H, Ma Q. Determination of aucubin by supramolecular solvent-based dispersive liquid-liquid microextraction and UPLC-MS/MS: Application to a pharmacokinetic study in rats with type 1 diabetes. J Pharm Biomed Anal 2020; 186:113301. [DOI: 10.1016/j.jpba.2020.113301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/24/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
|
15
|
Liu Y, Feng M, Wang B, Zhao X, Guo R, Bu Y, Zhang S, Chen J. Distribution and potential risk assessment of antibiotic pollution in the main drinking water sources of Nanjing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21429-21441. [PMID: 32274694 DOI: 10.1007/s11356-020-08516-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
The distribution character of 41 antibiotics belonging to 6 groups, sulfonamides (SAs), quinolones (QUs), tetracyclines (TCs), macrolides (MLs), penicillins (PLs), and chloramphenicol (CHL), was investigated in drinking water sources of Nanjing during 2017-2019. MLs (42.98%) were the most abundant category, followed by SAs (25.94%) and QUs (22.52%). The dominant antibiotic was ofloxacin (OFX) in Dec. 2017 (average concentration, 3.14 ng/L; range, ND-35.20 ng/L) and Nov. 2018 (2.16 ng/L, ND-12.26 ng/L), and sulfadiazine (SDZ) in Mar. 2019 (16.37 ng/L, ND-25.90 ng/L). For Dec. 2017, the total concentrations in Zhongshan Waterworks (S15) and Jinniushan Reservoir (S16) were significantly higher than the other sampling sites, which may be attributed to point source pollution. The ecological and human risk of the main antibiotics was assessed by risk quotients (RQs) and target hazard quotient (THQ), respectively. Most of the RQ values were below 0.1, except enrofloxacin (ERX, 0.11) and enoxacin (ENX, 0.62) in Dec. 2017, lomefloxacin (LOM, 0.14) in Nov. 2018, and LOM (0.28) and ERX (0.10) in Mar. 2019. This indicated that the risk of the target antibiotics to aquatic organisms in the 3 years was moderate or low level. Meanwhile, results of the THQ values showed that antibiotic exposure caused no risk to human health. This research provides scientific information for antibiotic pollution control and enriches environmental monitoring data in the drinking water sources.
Collapse
Affiliation(s)
- Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Mengjuan Feng
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Bo Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanqing Bu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
16
|
Pauter K, Szultka-Młyńska M, Buszewski B. Determination and Identification of Antibiotic Drugs and Bacterial Strains in Biological Samples. Molecules 2020; 25:E2556. [PMID: 32486359 PMCID: PMC7321139 DOI: 10.3390/molecules25112556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022] Open
Abstract
Antibiotics were initially natural substances. However, nowadays, they also include synthetic drugs, which show their activity against bacteria, killing or inhibiting their growth and division. Thanks to these properties, many antibiotics have quickly found practical application in the fight against infectious diseases such as tuberculosis, syphilis, gastrointestinal infections, pneumonia, bronchitis, meningitis and septicemia. Antibiotic resistance is currently a detrimental problem; therefore, in addition to the improvement of antibiotic therapy, attention should also be paid to active metabolites in the body, which may play an important role in exacerbating the existing problem. Taking into account the clinical, cognitive and diagnostic purposes of drug monitoring, it is important to select an appropriate analytical method that meets all the requirements. The detection and identification of the microorganism responsible for the infection is also an essential factor in the implementation of appropriate antibiotic therapy. In recent years, clinical microbiology laboratories have experienced revolutionary changes in the way microorganisms are identified. The MALDI-TOF MS technique may be interesting, especially in some areas where a quick analysis is required, as is the case with clinical microbiology. This method is not targeted, which means that no prior knowledge of the infectious agent is required, since identification is based on a database match.
Collapse
Affiliation(s)
- Katarzyna Pauter
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland; (K.P.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland; (K.P.); (B.B.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Torun, Poland; (K.P.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| |
Collapse
|
17
|
Ates HC, Roberts JA, Lipman J, Cass AEG, Urban GA, Dincer C. On-Site Therapeutic Drug Monitoring. Trends Biotechnol 2020; 38:1262-1277. [PMID: 33058758 DOI: 10.1016/j.tibtech.2020.03.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Recent technological advances have stimulated efforts to bring personalized medicine into practice. Yet, traditional application fields like therapeutic drug monitoring (TDM) have remained rather under-appreciated. Owing to clear dose-response relationships, TDM could improve patient outcomes and reduce healthcare costs. While chromatography-based routine practices are restricted due to high costs and turnaround times, biosensors overcome these limitations by offering on-site analysis. Nevertheless, sensor-based approaches have yet to break through for clinical TDM applications, due to the gap between scientific and clinical communities. We provide a critical overview of current TDM practices, followed by a TDM guideline to establish a common ground across disciplines. Finally, we discuss how the translation of sensor systems for TDM can be facilitated, by highlighting the challenges and opportunities.
Collapse
Affiliation(s)
- H Ceren Ates
- Freiburg Centre for Interactive Materials and Bioinspired Technologies - FIT, University of Freiburg, 79110 Freiburg, Germany; Department of Microsystems Engineering - IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany
| | - Jason A Roberts
- Centre of Clinical Research, Faculty of Medicine, The University of Queensland, 4072, Brisbane, Queensland, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, 4029, Brisbane, Queensland, Australia; Department of Pharmacy, Royal Brisbane and Women's Hospital, 4029, Brisbane, Queensland, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, 4102, Brisbane, Queensland, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, University of Montpellier, Nîmes University Hospital, 34090, Nîmes, France
| | - Jeffrey Lipman
- Centre of Clinical Research, Faculty of Medicine, The University of Queensland, 4072, Brisbane, Queensland, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, 4029, Brisbane, Queensland, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, University of Montpellier, Nîmes University Hospital, 34090, Nîmes, France
| | - Anthony E G Cass
- Department of Chemistry and Institute of Biomedical Engineering, Imperial College London, SW7 2AZ, London, UK
| | - Gerald A Urban
- Freiburg Centre for Interactive Materials and Bioinspired Technologies - FIT, University of Freiburg, 79110 Freiburg, Germany; Freiburg Materials Research Centre - FMF, University of Freiburg, 79104 Freiburg, Germany
| | - Can Dincer
- Freiburg Centre for Interactive Materials and Bioinspired Technologies - FIT, University of Freiburg, 79110 Freiburg, Germany; Department of Microsystems Engineering - IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany. @imtek.de
| |
Collapse
|