1
|
Huang S, Yao D, Shan C, Du X, Pan L, Wang N, Wang Y, Duan X, Peng D. The protective mechanism of Tao Hong Si Wu decoction against breast cancer through regulation of EGFR/ERK1/2 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118339. [PMID: 38777083 DOI: 10.1016/j.jep.2024.118339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tao Hong Si Wu Decoction (THSWD), a traditional Chinese herbal medicine, is widely utilized in clinical settings, either alone or in combination with other medications, for the treatment of breast cancer. AIM OF THE STUDY The specific targeting molecule(s) of THSWD and its associated molecular mechanisms remain unclear. This research aims to elucidate the underlying molecular mechanisms of THSWD in the treatment of breast cancer. MATERIALS AND METHODS The pharmacological properties of THSWD were investigated in breast cancer cells and tumor tissues using a range of methods including Acridine Orange/Ethidium Bromide (AO/EB) staining, Transwell assay, flow cytometry, immunofluorescence assay, and breast cancer mice models. RESULTS Our findings demonstrate that THSWD induces necrosis and/or apoptosis in breast cancer cells, while significantly inhibiting cell migration. Target proteins of THSWD in anticancer activity include EGFR, RAS, and others. THSWD treatment for breast cancer is associated with the EGFR/ERK1/2 signaling pathway. CONCLUSION Our findings offer initial insights into the primary mechanism of action of THSWD in breast cancer treatment, indicating its potential as a complementary therapy deserving further investigation.
Collapse
Affiliation(s)
- Shi Huang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Dan Yao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, PR China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Chun Shan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Xiuli Du
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Linyu Pan
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, PR China
| | - Ni Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, PR China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Yongzhong Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, PR China
| | - Xianchun Duan
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, PR China.
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China.
| |
Collapse
|
2
|
Ding Z, Yu Z, Sun Z, Liu X, Chen R. Potential mechanism of Taohong Siwu Decoction in preventing and treating postoperative delirium in intertrochanteric fracture patients based on retrospective analysis and network pharmacology. J Orthop Surg Res 2024; 19:369. [PMID: 38902693 PMCID: PMC11191233 DOI: 10.1186/s13018-024-04854-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVE Elderly patients with hip fractures are at a greater risk of developing postoperative delirium (POD), which significantly impacts their recovery and overall quality of life. Neuroinflammation is a pathogenic mechanism of POD. Taohong Siwu Decoction (THSWD), known for its ability to promote blood circulation and remove blood stasis, can effectively reduce inflammation in the nervous system. Therefore, the objective of this article is to provide a comprehensive summary of the clinical efficacy of THSWD in the prevention of POD. Additionally, it aims to investigate the underlying mechanism of THSWD in the prevention and treatment of POD using network pharmacology and molecular docking. METHODS We conducted a retrospective analysis of patients with intertrochanteric fractures between January 2016 and October 2021. The patients were divided into two groups: the control and THSWD group. We performed a comparative analysis of hemoglobin (HB), albumin (ALB), C-reactive protein (CRP), blood urea nitrogen (BUN), and the blood urea nitrogen to creatinine ratio (BCR) on two different time points: the day before surgery (D0) and the third day after surgery (D3). Furthermore, we examined the incidence and duration of delirium, as well as the Harris Hip Score (HHS) at 3 months and 12 months post-surgery. Network pharmacology was employed to identify the primary targets and mechanisms of THSWD in the management of delirium. Molecular docking was employed to confirm the interaction between active ingredients and COX-2. Inflammatory cytokines, including cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor- (TNF-α), were measured using the enzyme-linked immunosorbent assay (ELISA). The cognitive status of the patients was assessed using the Mini-Mental State Examination (MMSE) scoring system. RESULTS Regardless of whether it is in D0 or D3, THSWD treatment can increase HB levels while decreasing BCR. In D3, the THSWD group demonstrated a significant reduction in the expression of CRP and BUN when compared to the control group. However, there were no significant differences in ABL levels, surgery duration, and blood loss between the two groups. Additionally, THSWD treatment requires fewer blood transfusions and can reduce the incidence and duration of POD. The results of the logistic analysis suggest that both CRP levels and BCR independently contribute to the risk of POD. Network pharmacology analysis indicates that THSWD has the potential to prevent and treat POD possibly through inflammatory pathways such as IL-17 signaling pathways and NF-kappa B signaling pathways. Molecular docking validated the interaction between the active ingredient of THSWD and COX-2. Furthermore, THSWD treatment can reduce the levels of COX-2, IL-1β, IL-6, TNF-α, BUN and CRP in the blood of patients with POD, increase HB levels, and enhance MMSE scores. The expression of COX-2 is positively associated with other inflammatory markers (IL-1β, IL-6, TNF-α, and CRP), and inversely associated with MMSE. CONCLUSION THSWD has been found to have a preventive and therapeutic effect on POD in intertrochanteric fracture patients possibly through inflammatory pathways. This effect may be attributed to its ability to increase hemoglobin levels and reduce the levels of certain detrimental factors, such as blood urea nitrogen and inflammatory factors.
Collapse
Affiliation(s)
- Zhihong Ding
- Department of traumatic orthopedics, Xiangyang Hospital of Traditional Chinese Medicine [Xiangyang Institute of Traditional Chinese Medicine], Xiangyang, 441000, Hubei, China
| | - Zhiyong Yu
- Department of traumatic orthopedics, Xiangyang Hospital of Traditional Chinese Medicine [Xiangyang Institute of Traditional Chinese Medicine], Xiangyang, 441000, Hubei, China
| | - Zhibo Sun
- Department of traumatic orthopedics, Xiangyang Hospital of Traditional Chinese Medicine [Xiangyang Institute of Traditional Chinese Medicine], Xiangyang, 441000, Hubei, China
| | - Xinghui Liu
- School of Basic Medical Sciences, Hubei University of Arts and Science, No. 296 Longzhong Road, Xiangcheng District, Xiangyang, 441000, Hubei, China.
| | - Rong Chen
- Department of traumatic orthopedics, Xiangyang Hospital of Traditional Chinese Medicine [Xiangyang Institute of Traditional Chinese Medicine], Xiangyang, 441000, Hubei, China.
| |
Collapse
|
3
|
Zuo C, Liu Y, Wang J, Yu W, Liu Y, Zhang Y, Xu J, Peng D, Peng C. CDCT-induced nephrotoxicity in rat by apoptosis via metabolic disturbance. J Appl Toxicol 2023; 43:1499-1510. [PMID: 37127545 DOI: 10.1002/jat.4480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Compound diclofenac sodium chlorphenamine maleate tablets (CDCT) are widely used for the cold in Asia. However, CDCT can cause hematuria symptoms in clinical, and the underlying mechanism is unknown. This study aims to investigate the CDCT-induced changes of morphology in kidney and metabolites and further explore the possible mechanisms of CDCT-induced nephrotoxicity. Sprague-Dawley rats were exposed to the CDCT at a clinical equivalent dose for 6 days. CDCT exposure can induce kidney injury and death. Pathological changes, including creatinine, urea nitrogen, and histopathology, were observed in rats. Furthermore, metabolomic-driven energy and glycerophospholipid metabolism pathway disorders, accompanied by remarkably changed key metabolites, such as succinate, leukotriene B4 (LTB4 ), and cardiolipin (CL), are observed in the CDCT-induced nephrotoxicity. Functionally, succinate accumulation leads to mitochondrial damage, as evidence by the imbalance of complex I and complex II and an increase in mitochondrial reactive oxygen species (mito SOX). Meanwhile, LTB4 activated the NF-κB signaling, as shown by increased protein of p65, phosphor-p65, and decreased protein of IκBα and phosphor-IκBα. Eventually, the apoptosis pathway was triggered in response to reduced CL, inflammation, and mito SOX, as demonstrated by the expression of cyt c, Bax, Bcl-2, caspase-3, and caspase-9. This study indicated that CDCT-induced metabolic disorders triggered nephrotoxicity and provided a comprehensive information to elucidate the mechanism of CDCT induced nephrotoxicity.
Collapse
Affiliation(s)
- Chijing Zuo
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yan Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jie Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Weidong Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yujie Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yanyan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jingjing Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Can Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Institute of TCM Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| |
Collapse
|
4
|
Es-haghee Ashteany S, Vahid Dastjerdi M, Tabarrai M, Nejatbakhsh F, Sadati Lamardi SN, Rahmani A, Azizkhani M, Tavoli Z. Effectiveness of Persian Golnar on Excessive Menstrual Bleeding in Women with Abnormal Uterine Bleeding, Compared to Tranexamic Acid: A Triple-Blind, Randomized Equivalence Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5355993. [PMID: 37520025 PMCID: PMC10374373 DOI: 10.1155/2023/5355993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/09/2023] [Accepted: 07/01/2023] [Indexed: 08/01/2023]
Abstract
Introduction Abnormal uterine bleeding (AUB) is a major healthcare problem in females of reproductive age and impacts women's health and quality of life (QoL). This study aimed to test the equivalence of Persian Golnar (PG) and tranexamic acid (TA) for the treatment of excessive menstrual bleeding. Method A triple-blind randomized equivalence trial with parallel design and block randomization technique was performed. A total of 80 patients with AUB were randomly allocated to receive either PG or TA for three consecutive menstrual cycles. Blood loss was measured by the Pictorial Blood Loss Assessment Chart (PBAC). Hematological evaluations were done before the intervention and after treatment. QoL and premenstrual dysphoric disorder (PMDD) as secondary outcomes were assessed using the menorrhagia questionnaire (MQ) and Premenstrual Symptoms Screening Tool (PSST). Statistical analysis was performed using an independent t-test, paired t-test, χ2 test, Mann-Whitney test, and Wilcoxon signed-rank test. Results Seventy-six women completed the 12-week follow-up. Both PG and TA groups experienced a significant reduction in blood loss. Furthermore, the serum level of hemoglobin in the PG group enhanced significantly (P < 0.001). QoL and PMDD scores were significantly improved in both groups (P< 0.001). Conclusion The findings of the current trial supposed that the Golnar product is as effective as tranexamic acid in controlling bleeding and enhancing the quality of life and premenstrual symptoms.
Collapse
Affiliation(s)
- Somayeh Es-haghee Ashteany
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Malihe Tabarrai
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Nejatbakhsh
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Azam Rahmani
- Nursing and Midwifery Care Research Center, School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Azizkhani
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Zahra Tavoli
- Department of Obstetrics and Gynecology, Ziaeian Hospital, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
5
|
Li Q, Ren J, Yang L, Sun H, Zhang X, Yan G, Han Y, Wang X. Parsing the Q-Markers of Baoyin Jian to Treat Abnormal Uterine Bleeding by High-Throughput Chinmedomics Strategy. Pharmaceuticals (Basel) 2023; 16:ph16050719. [PMID: 37242503 DOI: 10.3390/ph16050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Abnormal uterine bleeding (AUB) is a common and frequently occurring disease in gynecology, seriously threatening women's health. Baoyin Jian (BYJ) is a classical prescription for treating AUB. However, the lack of quality control standards of BYJ for AUB have limited the development and applications of BYJ. This experiment aims to explore the mechanism of action and screen the quality markers (Q-markers) of BYJ against AUB through the Chinmedomics strategy to improve the quality standards of Chinese medicine and provide scientific basis for its further development. BYJ has hemostatic effects in rats, as well as the ability to regulate the coagulation system following incomplete medical abortion. According to the results of histopathology, biochemical indexes and urine metabolomics, a total of 32 biomarkers of ABU in rats were identified, 16 of which can be significantly regulated by BYJ. Using traditional Chinese medicine (TCM) serum pharmacochemistry technology, 59 effective components were detected in vivo, of which 13 were highly correlated with efficacy, and 9 components, namely catalpol, rehmannioside D, paeoniflorin, berberine, phellodendrine, baicalin, asperosaponinVI, liquiritin, and glycyrrhizic acid, were screened out as the Q-markers of BYJ based on the "Five Principles" of Q-markers. In sum, BYJ can effectively alleviate abnormal bleeding symptoms and metabolic abnormalities in AUB rats. The study shows that Chinmedomics is an effective tool for screening Q-markers and provides scientific support for the further development and clinical use of BYJ.
Collapse
Affiliation(s)
- Qiuhan Li
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Junling Ren
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou 510120, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiwu Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Guangli Yan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou 510120, China
| |
Collapse
|
6
|
Taohong Siwu Decoction Promotes Osteo-Angiogenesis in Fractures by Regulating the HIF-1α Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6777447. [PMID: 36193143 PMCID: PMC9526655 DOI: 10.1155/2022/6777447] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022]
Abstract
Background Vascular damage is a major consequence of bone fracture. Taohong Siwu decoction (TSD) can raise the expression of vascular endothelial growth factor (VEGF) in fracture healing. However, its molecular mechanism in promoting angiogenesis is still unknown. The aim of this study was to investigate the potential mechanisms of TSD in the regulation of osteo-angiogenesis in fracture healing. Methods A rat tibial fracture model was established. After low- (4.5 g·kg−1), medium- (9 g·kg−1), and high-dose TSD (18 g·kg−1) and panax notoginsenoside (25 mg kg−1) treatment, hematoxylin-eosin staining was employed to visualize pathological changes in bone tissues. The levels of cytokines (interleukin (IL)-2, tumor necrosis factor-α (TNF-α), IL-6, and IL-1β), thromboxane B2 (TXB2), and 6 ketone prostaglandin F1α (6-Keto-PGF1α) were quantified by enzyme-linked immunosorbent assay (ELISA). Immunofluorescence was used to identify the rat aortic endothelial cells (RAECs). Control serum, 10% TSD-containing serum, and 10% TSD-containing serum combined with hypoxia-inducible factor-1α (HIF-1α) inhibitor were used to treat the RAECs and rat osteoblasts. Transwell migration assay was utilized to examine the migration of the RAECs. The Matrigel tubulogenesis assay was used for the assessment of angiogenesis. The expression of angiogenesis- (von Hippel-Lindau tumor suppressor (VHL), HIF-1α, VEGF, angiopoietin-2 (Ang-2), and pVHL) and osteogenesis-related (alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteopontin-1 (OPN-1)) protein and gene was detected by western blot and quantitative real-time PCR (qRT-PCR). Results Compared with the model group, TSD increased the trabecular bone areas, numbers, and thicknesses in fractured rats. In the plasma, the levels of cytokines and TXB2 in the middle- and high-dose TSD group were significantly lower than those in the model group (P < 0.01). The 6-keto-PGF1α content was increased by middle- and high-dose TSD intervention (P < 0.01). Compared to the control serum group, the angiogenesis and migration of the RAECs were enhanced in the TSD group (P < 0.001). The expression of HIF-1α, VEGF, and Ang-2 in the TSD group upregulated significantly (P < 0.001). VHL and pVHL were inhibited under TSD-containing serum treatment (P < 0.001). ALP, Runx2, and OPN-1 were increased obviously in the TSD group (P < 0.001). Nevertheless, the HIF-1α inhibitor reversed these changes (P < 0.001). Conclusion TSD promotes angiogenesis and osteogenesis by regulating the HIF-1α signaling pathway. Meanwhile, it can effectively reduce the risk of inflammation and improve blood circulation.
Collapse
|
7
|
Wang S, Gan J, Li J, Wang Y, Zhang J, Song L, Yang Z, Guo M, Jiang X. Shengmai Yin formula exerts cardioprotective effects on rats with chronic heart failure via regulating Linoleic Acid metabolism. Prostaglandins Other Lipid Mediat 2021; 158:106608. [PMID: 34958945 DOI: 10.1016/j.prostaglandins.2021.106608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
The objective of this study was to investigate the protective effects of Shengmai Yin(SMY) on rats with chronic heart failure(CHF).Sprague-Dawley rats were used to establish a CHF animal model via ligation of the left anterior descending branch of the coronary artery and exhaustive swimming.Echocardiography, serum biochemical indicators and histopathology were used to evaluate the pharmacodynamics of SMY in CHF rats.UPLC-Q-TOF/MS analysis based on serum was performed to identify the potential metabolites in the pathological process of CHF. Metabolic pathway analysis was carried out to elucidate the metabolic network associated with SMY treatment of CHF.Moreover,quantitative real-time PCR (qRT-PCR), Western blotting (WB), and Enzyme-linked immunosorbent assay (ELISA) were used to measure the RNA and protein expression levels in related pathways. Results revealed that SMY significantly restored the cardiac function of CHF rats, reduced the serum biochemical indicators, and alleviated cardiac histological damage. Metabolomics analysis shows that the therapeutic effect of SMY for CHF involves 14 biomarkers and 8 metabolic pathways, especially linoleic acid pathway, to be influenced, which implied the potential mechanism of SMY in treating CHF. Two key indicators Lipoxygenase arachidonic acid 15 lipoxygenase (ALOX15) and Cytochrome P450 1A2(CYP1A2) of linoleic acid metabolism pathway were verified by RT-PCR, WB and ELISA. Verification result showed that compared with the model group, expression levels of ALOX15 and CYP1A2 in SMY group were lower. In conclusion, SMY has cardioprotective effect on chronic heart failure rats, and its mechanism may be related to linoleic acid metabolism pathway.
Collapse
Affiliation(s)
- Shuangcui Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jingfang Li
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yuli Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jiaqi Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Lili Song
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Zhen Yang
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
8
|
Chen T, Zou L, Wang D, Li W, Yang Y, Liu X, Cao X, Chen J, Zhang Y, Fu J. Metabolomics study of Angelica sinensis (Oliv.) Diels on the abnormal uterine bleeding rats by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry analysis. Food Sci Nutr 2021; 9:6596-6609. [PMID: 34925789 PMCID: PMC8645739 DOI: 10.1002/fsn3.2605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/11/2022] Open
Abstract
The objective of this study was to explore the effects and underlying intervention mechanisms of Angelica water extract (AWE) on abnormal uterine bleeding (AUB) based on serum metabolomics. Firstly, the concentration of main active substances in AWE was determined and the chemical components were identified by UPLC-Q-Exactive Orbitrap-MS/MS. A drug-induced abortion model was established by mifepristone and misoprostol. After administration AWE (2.16 g/kg) for 7 days, the coagulation function, serum hormone levels, H&E staining, and immunohistochemistry observation of uterus were detected. In addition, serum metabolites profiles were performed on ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The contents of ferulic acid, senkyunolide A, and ligustilide in AWE were 0.7276, 0.0868, and 1.9908 mg/g, respectively. Twenty-six compounds were identified in AWE. It was found that AWE was effective in regulation of coagulation function and promoting endometrial recovery. Meanwhile, the levels of E2, Pg, and HCG and the expression of ERα, Erβ, and PR were down-regulated in AUB model and up-regulated by the treatment of AWE. Twenty-one potential biomarkers were eventually identified by multivariate statistical analysis. Study indicated that glycerophospholipid, sphingolipid, amino acids, retinol metabolism and primary bile acid biosynthesis were the main related metabolic pathways involved for the treatment of AUB by AWE. The results showed that AWE has potential therapeutic effect on AUB by altering the metabolic aberrations.
Collapse
Affiliation(s)
- Ting‐Ting Chen
- Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduChina
- School of PharmacyDali UniversityDaliChina
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural AffairsSchool of Food and Biological EngineeringChengdu UniversityChengduChina
| | - Di Wang
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wei Li
- School of Preclinical MedicineChengdu UniversityChengduChina
| | - Yong Yang
- School of Preclinical MedicineChengdu UniversityChengduChina
| | | | - Xin Cao
- School of Preclinical MedicineChengdu UniversityChengduChina
| | - Jia‐Rong Chen
- School of Preclinical MedicineChengdu UniversityChengduChina
| | - Yan Zhang
- School of Preclinical MedicineChengdu UniversityChengduChina
| | - Jia Fu
- Affiliated Hospital of Chengdu UniversityChengdu UniversityChengduChina
| |
Collapse
|
9
|
Chen L, Yao C, Li J, Wang J, Yao S, Shen S, Yang L, Zhang J, Wei W, Bi Q, Guo DA. Systematic characterization of chemical constituents in Mahuang decoction by UHPLC tandem linear ion trap-Orbitrap mass spectrometry coupled with feature-based molecular networking. J Sep Sci 2021; 44:2717-2727. [PMID: 33963673 DOI: 10.1002/jssc.202100121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022]
Abstract
Comprehensive characterization of traditional Chinese medicine prescriptions has long been a hurdle due to the chemical complexity and the lack of analytical tools. Mahuang decoction is a well-known traditional Chinese medicine prescription widely used for sweating and relieving the exterior, relieving cough and asthma, but it was insufficiently chemically scrutinized. In this study, the chemical component information of Mahuang decoction was investigated by ultrahigh-performance liquid chromatography tandem linear ion trap-Orbitrap mass spectrometry. A new data processing tool, feature-based molecular networking, was introduced for grouping and elucidating the compounds. In this way, 156 chemical components were identified or tentatively characterized, including alkaloids, triterpenoid saponins, flavanone-O-glycosides, flavone-C-glycosides, and procyanidins. Thus, this research provides a solid foundation for further development of Mahuang decoction, and the adopted method is expected to be applied to other traditional Chinese medicine prescriptions.
Collapse
Affiliation(s)
- Ling Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Jiayuan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Jing Wang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Shuai Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Shijie Shen
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Lin Yang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Jianqing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Qirui Bi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - De-An Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| |
Collapse
|
10
|
Tan Z, Jiang X, Zhou W, Deng B, Cai M, Deng S, Xu Y, Ding W, Chen G, Chen R, Zhang S, Zhou Y, Liu B, Zhang J. Taohong siwu decoction attenuates myocardial fibrosis by inhibiting fibrosis proliferation and collagen deposition via TGFBR1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113838. [PMID: 33460756 DOI: 10.1016/j.jep.2021.113838] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 05/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myocardial fibrosis after myocardial infarction (MI) leads to cardiac remodeling and loss of function. Taohong siwu decoction (THSWD), a well-known traditional Chinese medicinal prescription, has been clinically used to treat various cardiovascular and cerebrovascular diseases, but its potential functions in myocardial fibrosis after MI remain uncharacterized. AIM OF THE STUDY The purpose of current study was to explore the potential mechanism action and anti-myocardial fibrosis effects of treatment with THSWD in vivo and in vitro. MATERIALS AND METHODS Mouse underwent ligation of coronary artery to induce MI and divided equally into the sham group, model group and THSWD treatment groups. After 4 weeks, the effects of THSWD treatment on cardiac function were estimated by echocardiography. HE staining was used to detect the pathologic changes and Masson trichrome staining was used to estimate tissue fibrosis. To further explore the regulatory molecular mechanisms of THSWD, transcriptome analysis was performed. Furthermore, in vitro, we investigated the effect of THSWD on cell proliferation and collagen deposition in primary cardiac fibrosis cells and its possible mechanism of action. Overexpression of TGFBR1 was achieved by infection with an adenovirus vector encoding TGFBR1. RESULTS Treatment with THSWD significantly decreased myocardial fibrosis and recovered cardiac function in the post-MI mouse. The transcriptomics data imply that the TGF-β pathway might be a target in the anti-fibrosis effect of THSWD. THSWD inhibits TGF-β1-induced proliferation of primary cardiac fibroblasts. THSWD decreased collagen expression and TGFBR1 and Smad2/3 phosphorylation. Moreover, the inhibitory effect of THSWD on CFs proliferation and collagen deposition, as well as TGFBR1 signaling pathway-associated proteins expression was partially abrogated by overexpression of TGFBR1. CONCLUSION Collectively, the results implicate that THSWD attenuates myocardial fibrosis by inhibiting fibrosis proliferation and collagen deposition via inhibiting TGFBR1, and might be a potential therapeutic agent for treatment of myocardial fibrosis post-MI.
Collapse
Affiliation(s)
- Zhangbin Tan
- Department of Traditional Chinese Medicine (Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease), The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Xiaoli Jiang
- Department of Traditional Chinese Medicine (Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease), The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Wenyi Zhou
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Bo Deng
- Department of Traditional Chinese Medicine (Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease), The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Min Cai
- Department of Traditional Chinese Medicine (Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease), The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Suihui Deng
- Department of Traditional Chinese Medicine (Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease), The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Youcai Xu
- Department of Traditional Chinese Medicine (Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease), The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Wenjun Ding
- Department of Traditional Chinese Medicine (Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease), The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Guanghong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ruixue Chen
- Department of Traditional Chinese Medicine (Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease), The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Shuangwei Zhang
- Department of Traditional Chinese Medicine (Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease), The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yingchun Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Bin Liu
- Department of Traditional Chinese Medicine (Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease), The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Jingzhi Zhang
- Department of Traditional Chinese Medicine (Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease), The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
11
|
Xia W, Hu S, Wang M, Xu F, Han L, Peng D. Exploration of the potential mechanism of the Tao Hong Si Wu Decoction for the treatment of postpartum blood stasis based on network pharmacology and in vivo experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113641. [PMID: 33271240 DOI: 10.1016/j.jep.2020.113641] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tao Hong Si Wu Decoction (THSWD) is a traditional prescription for blood management in traditional Chinese medicine, THSWD consists of Paeoniae Radix Alba (Paeonia lactiflora Pall.), Rehmanniae Radix Praeparata (Rehmannia glutinosa (Gaertn.) DC.), Angelicae Sinensis Radix (Angelica sinensis (Oliv.) Diels), Chuanxiong Rhizoma (Conioselinum anthriscoides 'Chuanxiong'), Persicae Seman (Prunus persica (L.) Batsch) and Carthami Flos (Carthamus tinctorius L.) at a weight ratio of 3: 4: 3: 2: 3: 2. THSWD is a commonly used prescription in the treatment of postpartum blood stasis disease. AIM OF THE STUDY To explore the potential mechanism of THSWD for the treatment of postpartum blood stasis using network pharmacology and experimental research. MATERIALS AND METHODS We extracted the active ingredients and targets in THSWD from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and constructed a herbs-ingredients-targets-disease-network, devised a protein-protein interaction (PPI) network, performed GO enrichment analysis, and performed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to discover potential treatment mechanisms. A postpartum blood stasis model was established in rats, and the results of network pharmacology were verified by in vivo experiments. RESULTS The results showed that 69 potential active ingredients and 207 THSWD target genes for the treatment of postpartum blood stasis disease were obtained after ADME filtering analysis. The targets were enriched in multiple gene functions and different signaling pathways. By exploring various different signaling pathways, it was found that mitochondrial regulation of oxidative stress plays a potentially important role in the treatment of postpartum blood stasis with THSWD. Compared to model group, THSWD alleviated mitochondrial damage, decreased levels of oxidative stress in the rat model of postpartum blood stasis and reduced apoptosis in uterine cells. CONCLUSION The therapeutic effect of THSWD on postpartum blood stasis is likely related to mitochondrial regulation of oxidative stress, which paves the way for further research investigating its mechanisms.
Collapse
Affiliation(s)
- Wenwen Xia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shoushan Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Mengmeng Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Fan Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Xin'an Medicine, Key Laboratory of Chinese Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Xin'an Medicine, Key Laboratory of Chinese Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China.
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Xin'an Medicine, Key Laboratory of Chinese Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China.
| |
Collapse
|
12
|
Zhang Y, Li W, Chen TT, Yang Y, Wu MY, Luo JY, Gong Y, Zou L. Chemical Fingerprint Analysis and Ultra-Performance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry-Based Metabolomics Study of the Protective Effect of Buxue Yimu Granule in Medical-Induced Incomplete Abortion Rats. Front Pharmacol 2020; 11:578217. [PMID: 33328985 PMCID: PMC7734354 DOI: 10.3389/fphar.2020.578217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022] Open
Abstract
Medical abortion is a common method to terminate an early pregnancy and often causes serious complications such as abnormal uterine bleeding and endometritis. Buxue Yimu granule (BYG) is a well-known traditional Chinese medicine prescription composed of five kinds of drugs and is widely used in gynecology and obstetrics. The aim of the present study was to establish the quality standard of BYG and investigate its protective effect on incomplete abortion. The chemical fingerprint of BYG was established by high performance liquid chromatography (HPLC). The major compounds of BYG were determined by ultra-performance liquid chromatography with triple quadrupole mass spectrometry. An incomplete abortion rat model was induced by intragastric administration of mifepristone (8.3 mg·kg-1) combined with misoprostol (100.0 μg·kg-1) during early pregnancy. The serum levels of human chorionic gonadotrophin (HCG), estradiol (E2), and progesterone (PG) were determined. The serum endogenous metabolites were analyzed by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Multivariate analysis, including partial least squares discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant analysis (OPLS-DA), was employed to analyze the metabolic profiles, and MetaboAnalyst was used to investigate the metabolic pathways. Furthermore, hematoxylin-eosin staining (HE) was used to evaluate the histopathological changes in uterine tissue. The expression levels of VEGFA and NF-κB were detected by immunohistochemistry. The results indicated that HPLC fingerprint analysis can be successfully used to assess the quality of BYG. The medical-induced incomplete abortion rats were clearly separated from control rats, and the biochemical changes were gradually restored to normal after administration of BYG. Moreover, 19 potential biomarkers, including N-lactoylleucine, 2-piperidinone, isobutyryl-l-carnitine, eicosapentaenoylcholine, LysoPC(14:0), LysoPC(20:5), physagulin C, LysoPC(18:3), leukotriene D5, deoxycholic acid 3-glucuronide, glycine, pregnanediol 3-O-glucuronide, LysoPC(18:2), LysoPC(17:0/0:0), N-acetyl-leukotriene E4, LysoPC(18:0), platelet-activating factor, LysoPA(24:1), and LysoPC(18:1), which were mainly related to the amino acids metabolism, lipids metabolism, and bile acid biosynthesis, were identified. Consequently, BYG exerts a potential protective role in the intervention of incomplete abortion by anti-inflammatory, promote endometrial repair, and regulate the metabolic disorders.
Collapse
Affiliation(s)
- Yan Zhang
- School of Medicine, Chengdu University, Chengdu, China
| | - Wei Li
- School of Medicine, Chengdu University, Chengdu, China
| | | | - Yong Yang
- School of Medicine, Chengdu University, Chengdu, China
| | - Meng-Yao Wu
- Department of Pharmacology, Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, China
| | - Jie-Ying Luo
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yun Gong
- Department of Pharmacology, Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, China
| | - Liang Zou
- School of Medicine, Chengdu University, Chengdu, China.,Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
13
|
Li J, Luo H, Liu X, Zhang J, Zhou W, Guo S, Chen X, Liu Y, Jia S, Wang H, Li B, Cheng G, Wu J. Dissecting the mechanism of Yuzhi Zhixue granule on ovulatory dysfunctional uterine bleeding by network pharmacology and molecular docking. Chin Med 2020; 15:113. [PMID: 33110441 PMCID: PMC7584092 DOI: 10.1186/s13020-020-00392-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background Yuzhi Zhixue Granule (YZG) is a traditional Chinese patent medicine for treating excessive menstrual flow caused by ovulatory dysfunctional uterine bleeding (ODUB) accompanied by heat syndrome. However, the underlying molecular mechanisms, potential targets, and active ingredients of this prescription are still unknown. Therefore, it is imperative to explore the molecular mechanism of YZG. Methods The active compounds in YZG were screened by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The putative targets of YZG were collected via TCMSP and Search Tool for Interacting Chemicals (STITCH) databases. The Therapeutic Target Database (TTD) and Pharmacogenomics Knowledgebase (PharmGKB) databases were used to identify the therapeutic targets of ODUB. A protein–protein interaction (PPI) network containing both the putative targets of YZG and known therapeutic targets of ODUB was built. Furthermore, bioinformatics resources from the database for annotation, visualization and integrated discovery (DAVID) were utilized for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Finally, molecular docking was performed to verify the binding effect between the YZG screened compounds and potential therapeutic target molecules. Results The study employed a network pharmacology method, mainly containing target prediction, network construction, functional enrichment analysis, and molecular docking to systematically research the mechanisms of YZG in treating ODUB. The putative targets of YZG that treat ODUB mainly involved PTGS1, PTGS2, ALOX5, CASP3, LTA4H, F7 and F10. The functional enrichment analysis suggested that the produced therapeutic effect of YZG against ODUB is mediated by synergistical regulation of several biological pathways, including apoptosis arachidonic acid (AA) metabolism, serotonergic synapse, complement and coagulation cascades and C-type lectin receptor signaling pathways. Molecular docking simulation revealed good binding affinity of the seven putative targets with the corresponding compounds. Conclusion This novel and scientific network pharmacology-based study holistically elucidated the basic pharmacological effects and the underlying mechanisms of YZG in the treatment of ODUB.
Collapse
Affiliation(s)
- Jialin Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Xiuping Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yingying Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Haojia Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| | - Bingbing Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, 276000 China
| | - Guoliang Cheng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, 276000 China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 of North Three-ring East Road, Chao Yang District, Beijing, 100102 China
| |
Collapse
|
14
|
Zhang Y, Zuo C, Han L, Liu X, Chen W, Wang J, Gui S, Peng C, Peng D. Uterine Metabolomics Reveals Protection of Taohong Siwu Decoction Against Abnormal Uterine Bleeding. Front Pharmacol 2020; 11:507113. [PMID: 33041788 PMCID: PMC7518030 DOI: 10.3389/fphar.2020.507113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Incomplete abortion, a procedure for terminating pregnancy, will lead to abnormal uterine bleeding (AUB), infections, and even death. Taohong Siwu decoction (TSD) is a traditional Chinese medicine (TCM) formula, which has been developed to treat AUB for hundreds of years. However, the mechanism of the protective effect of TSD against AUB is not clear. We performed mass spectrometry (MS) of uterine samples to observe metabolic profile resulting from the treatment with TSD. An integrated gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry based untargeted metabolomics approach combined with multivariate statistical analyses were used to investigate the metabolic profile of TSD against AUB. There was clear separation between pregnant and incomplete aborting rats as well as incomplete aborting and TSD administered rats. Based on random forest algorithm and receiver operator characteristic analysis, 12 biomarkers were optimized related to TSD administered. The effect of TSD on AUB are related to several pathways, such as AA metabolism, glyoxylate and dicarboxylate metabolism, alanine, aspartate, and glutamate metabolism. To our knowledge, this is the first uterine metabolomics study focusing on TSD on AUB and provide a new perspective for explaining the mechanism of TSD on AUB.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.,AnHui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Chijing Zuo
- AnHui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui University of Chinese Medicine, Hefei, China
| | - Lan Han
- AnHui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaochuang Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Weidong Chen
- AnHui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Education Office of Anhui Province, Hefei, China
| | - Jichen Wang
- AnHui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui University of Chinese Medicine, Hefei, China
| | - Shuangying Gui
- AnHui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Education Office of Anhui Province, Hefei, China
| | - Can Peng
- AnHui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Education Office of Anhui Province, Hefei, China
| | - Daiyin Peng
- AnHui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Institute of Pharmaceutics, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Education Office of Anhui Province, Hefei, China
| |
Collapse
|
15
|
Zeki ÖC, Eylem CC, Reçber T, Kır S, Nemutlu E. Integration of GC–MS and LC–MS for untargeted metabolomics profiling. J Pharm Biomed Anal 2020; 190:113509. [DOI: 10.1016/j.jpba.2020.113509] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022]
|