1
|
Khatua S, Nandi S, Nag A, Sen S, Chakraborty N, Naskar A, Gürer ES, Calina D, Acharya K, Sharifi-Rad J. Homoharringtonine: updated insights into its efficacy in hematological malignancies, diverse cancers and other biomedical applications. Eur J Med Res 2024; 29:269. [PMID: 38704602 PMCID: PMC11069164 DOI: 10.1186/s40001-024-01856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
HHT has emerged as a notable compound in the realm of cancer treatment, particularly for hematological malignancies. Its multifaceted pharmacological properties extend beyond traditional applications, warranting an extensive review of its mechanisms and efficacy. This review aims to synthesize comprehensive insights into the efficacy of HHT in treating hematological malignancies, diverse cancers, and other biomedical applications. It focuses on elucidating the molecular mechanisms, therapeutic potential, and broader applications of HHT. A comprehensive search for peer-reviewed papers was conducted across various academic databases, including ScienceDirect, Web of Science, Scopus, American Chemical Society, Google Scholar, PubMed/MedLine, and Wiley. The review highlights HHT's diverse mechanisms of action, ranging from its role in leukemia treatment to its emerging applications in managing other cancers and various biomedical conditions. It underscores HHT's influence on cellular processes, its efficacy in clinical settings, and its potential to alter pathological pathways. HHT demonstrates significant promise in treating various hematological malignancies and cancers, offering a multifaceted approach to disease management. Its ability to impact various physiological pathways opens new avenues for therapeutic applications. This review provides a consolidated foundation for future research and clinical applications of HHT in diverse medical fields.
Collapse
Affiliation(s)
- Somanjana Khatua
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Sudeshna Nandi
- Department of Botany, Molecular and Applied Mycology and Plant Pathology Laboratory, University of Calcutta, 35, Ballygung Circular Road, Kolkata, India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore Central Campus, Bangalore, Karnataka, India
| | - Surjit Sen
- Department of Botany, Fakir Chand College, Diamond Harbour, South 24-Parganas, Kolkata, India
| | | | - Arghya Naskar
- Department of Botany, Molecular and Applied Mycology and Plant Pathology Laboratory, University of Calcutta, 35, Ballygung Circular Road, Kolkata, India
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Krishnendu Acharya
- Department of Botany, Molecular and Applied Mycology and Plant Pathology Laboratory, University of Calcutta, 35, Ballygung Circular Road, Kolkata, India.
| | | |
Collapse
|
2
|
Gao J, Su X, Lei P, Liang J, Ren B, Zhang Y, Ma X, Zhang Y, Ma W. HPLC-fluorescence detection for stability of harringtonine, and identification of degradation products by UPLC-Q-TOF-MS. J Pharm Biomed Anal 2024; 240:115927. [PMID: 38141415 DOI: 10.1016/j.jpba.2023.115927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Harringtonine (HT) is an anticancer alkaloid early extracted and isolated from cephalotaxus fortunei Hook. f., also has various pharmacological activities such as antiviral, antibacterial, antimalarial, anti-inflammatory, antioxidant, herbicidal and insecticidal. However, the factors affecting the stability of HT, the main degradation sites and mechanisms involved in its disposal process in vivo have not yet been elucidated. This study utilized HPLC-fluorescence detection method to establish a simple quantitative detection method for HT with good accuracy, precision, and high sensitivity. Temperature and pH were the main factors affecting the stability of HT, which underwent significant degradation in high temperature and alkaline environments because of the occurrence of hydrolysis reactions. In isolated biological homogenates of SD rats, except gastrointestinal tract, HT was degraded in other sites, especially respiratory, mainly in airway and lungs, and systemic metabolism, mainly in livers, spleens, and kidneys. Through UPLC-Q-TOF-MS, three forced degradation products were identified as 4'-demethyl HT, cephalotaxine, and dehydrated HT, respectively. However, the degradation product in isolated biological homogenates of SD rats was only 4'-demethyl HT due to the relatively mild environment. Our findings contributed to a necessary study basis for HT in terms of structural optimization, dosage form selection, storage and transportation.
Collapse
Affiliation(s)
- Jiapan Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xinyue Su
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Panpan Lei
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jinna Liang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Bingxi Ren
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuxiu Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyu Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yongjing Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China; Department of Medical Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710061, China
| | - Weina Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
3
|
Chen G, Liu F, Zhang X, Zhang R, Cheng A, Shi D, Dong J, Liao H. Dissipation rates, residue distribution, degradation products, and degradation pathway of sulfoxaflor in broccoli. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59592-59605. [PMID: 35391643 DOI: 10.1007/s11356-022-20037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Broccoli was selected as the research object in this paper to reveal the dissipation, distribution, and degradation pathway of sulfoxaflor under greenhouse and open-field cultivation conditions for the ecological risk assessment of sulfoxaflor. Results showed that the dissipation of sulfoxaflor in broccoli leaves, flowers, stems, roots, and the whole broccoli was in accordance with the first-order kinetic equation. The sulfoxaflor concentration in broccoli roots reached the maximum value after 1 day of application and then gradually decreased. The degradation half-lives of sulfoxaflor in the roots, leaves, flowers, stems, and whole broccoli were between 2.3 and 19.8 days. The longest degradation half-life of sulfoxaflor was in Heilongjiang under greenhouse cultivation. The terminal residue of sulfoxaflor in broccoli was in the range of 0.005-0.029 mg/kg, and the proportion of sulfoxaflor residue in broccoli leaves was the largest. Thirteen transformation products were separated and identified by ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, and their kinetic evolution was studied. The cleavage of the N = S bond, C-S bond, C-O bond, and cyanide, as well as glucosylation, hydroxylation, SO extrusion, elimination, sulfhydrylation, ketonization, defluorination, and rearrangement, was inferred as the mechanism. Overall, these results can provide guidance for the supervision of the safe application of sulfoxaflor.
Collapse
Affiliation(s)
- Guofeng Chen
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Feng Liu
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xiaobo Zhang
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ruiying Zhang
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Aihua Cheng
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Dongmei Shi
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Jiannan Dong
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Hui Liao
- Safety and Quality Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| |
Collapse
|
4
|
Jahani M, Fazly Bazzaz BS, Akaberi M, Rajabi O, Hadizadeh F. Recent Progresses in Analytical Perspectives of Degradation Studies and Impurity Profiling in Pharmaceutical Developments: An Updated Review. Crit Rev Anal Chem 2022; 53:1094-1115. [PMID: 35108132 DOI: 10.1080/10408347.2021.2008226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Forced degradation studies have been used to simplify analytical methodology development and achieve a deeper knowledge about the inherent stability of active pharmaceutical ingredients (API) and drug products. This provides insight into degradation species and pathways. Identification of impurities in pharmaceutical products is closely related to the selection of the most appropriate analytical methods like HPLC-UV, LC-MS/MS, LC-NMR, GC-MS, and capillary electrophoresis. Herein, recent trends in analytical perspectives during 2018-April 14, 2021, are discussed based on forced and impurity degradation profiling of pharmaceuticals. Literature review showed that several methods have been used for experimental design and analysis conditions such as matrix type, column type, mobile phase, elution modes, detection wavelengths, and therapeutic category. Thus, since these factors influence the separation and identification of the impurities and degradation products, we attempted to perform a statistical analysis for the developed methods according to the abovementioned factors.
Collapse
Affiliation(s)
- Maryam Jahani
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Rajabi
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|