1
|
Rodrigues JFB, Queiroz JVSDA, Medeiros RP, Santos RO, Fialho DA, Neto JES, dos Santos RL, Barbosa RC, Sousa WJB, Torres MDCDM, Medeiros LADM, Silva SMDL, Montazerian M, Fook MVL, Amoah SKS. Chitosan-PEG Gels Loaded with Jatropha mollissima (Pohl) Baill. Ethanolic Extract: An Efficient and Effective Biomaterial in Hemorrhage Control. Pharmaceuticals (Basel) 2023; 16:1399. [PMID: 37895870 PMCID: PMC10609772 DOI: 10.3390/ph16101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 10/29/2023] Open
Abstract
A lack of control over blood loss can have catastrophic implications, including death. Although several hemostatic medications have been employed to reduce bleeding, a vast majority of them are ineffective, expensive, or pose health risks to the patient. To overcome these constraints, chitosan-polyethylene glycol (CS-PEG) hemostatic gels loaded with ethanolic extract of Jatropha mollissima sap (EES) were prepared and their hemostatic, physicochemical, and cytotoxic properties were evaluated. The gels were produced by mixing CS with PEG (an external plasticizer) and EES. The phytochemical analysis revealed a significant concentration of total polyphenols and tannins content in the extract and catechin was identified as one of the key compounds of EES. Infrared spectroscopy analysis revealed the presence of EES in the gels, as well as the chemical interaction between CS and PEG. The gels were thermally stable between 25 and 37 °C (ambient and human body temperature range), had pseudoplastic deformation behavior (rheological properties preserved after shearing), were simple to inject (compression force 30 N), and were biocompatible. In vivo experiments showed that both CS-PEG-EES gels exhibited greater hemostatic action in preventing tail hemorrhage in Wistar rats, with decreased bleeding time and blood weight compared with unloaded CS-PEG gels (control groups) and Hemostank, a commercial product. However, the gel prepared with acetic acid was more efficient in controlling bleeding. These findings reveal that CS-PEG-EES gels can reduce hemorrhages and are a potent, simple, and safe hemostatic agent.
Collapse
Affiliation(s)
- José F. B. Rodrigues
- Materials Science and Engineering Department, Northeast Laboratory for Evaluation and Development of Biomaterials, Academic Unit of Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-000, PB, Brazil (M.d.C.d.M.T.); (S.M.d.L.S.); (M.M.); (M.V.L.F.)
| | - João V. S. de A. Queiroz
- Materials Science and Engineering Department, Northeast Laboratory for Evaluation and Development of Biomaterials, Academic Unit of Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-000, PB, Brazil (M.d.C.d.M.T.); (S.M.d.L.S.); (M.M.); (M.V.L.F.)
| | - Rebeca P. Medeiros
- Materials Science and Engineering Department, Northeast Laboratory for Evaluation and Development of Biomaterials, Academic Unit of Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-000, PB, Brazil (M.d.C.d.M.T.); (S.M.d.L.S.); (M.M.); (M.V.L.F.)
| | - Rafaela O. Santos
- Materials Science and Engineering Department, Northeast Laboratory for Evaluation and Development of Biomaterials, Academic Unit of Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-000, PB, Brazil (M.d.C.d.M.T.); (S.M.d.L.S.); (M.M.); (M.V.L.F.)
| | - Djair A. Fialho
- Materials Science and Engineering Department, Northeast Laboratory for Evaluation and Development of Biomaterials, Academic Unit of Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-000, PB, Brazil (M.d.C.d.M.T.); (S.M.d.L.S.); (M.M.); (M.V.L.F.)
| | - João E. S. Neto
- Materials Science and Engineering Department, Northeast Laboratory for Evaluation and Development of Biomaterials, Academic Unit of Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-000, PB, Brazil (M.d.C.d.M.T.); (S.M.d.L.S.); (M.M.); (M.V.L.F.)
| | - Rogério L. dos Santos
- Department of Dentistry, Life Science Institute, Federal University of Juiz de Fora, Governador Valadares 36036-900, MG, Brazil
| | - Rossemberg C. Barbosa
- Materials Science and Engineering Department, Northeast Laboratory for Evaluation and Development of Biomaterials, Academic Unit of Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-000, PB, Brazil (M.d.C.d.M.T.); (S.M.d.L.S.); (M.M.); (M.V.L.F.)
| | - Wladymyr J. B. Sousa
- Materials Science and Engineering Department, Northeast Laboratory for Evaluation and Development of Biomaterials, Academic Unit of Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-000, PB, Brazil (M.d.C.d.M.T.); (S.M.d.L.S.); (M.M.); (M.V.L.F.)
| | - Maria da C. de M. Torres
- Materials Science and Engineering Department, Northeast Laboratory for Evaluation and Development of Biomaterials, Academic Unit of Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-000, PB, Brazil (M.d.C.d.M.T.); (S.M.d.L.S.); (M.M.); (M.V.L.F.)
- Chemistry Department, Science and Technology Center, State University of Paraiba, Campina Grande 58429-500, PB, Brazil
| | - Luanna A. D. M. Medeiros
- Materials Science and Engineering Department, Northeast Laboratory for Evaluation and Development of Biomaterials, Academic Unit of Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-000, PB, Brazil (M.d.C.d.M.T.); (S.M.d.L.S.); (M.M.); (M.V.L.F.)
| | - Suédina M. de L. Silva
- Materials Science and Engineering Department, Northeast Laboratory for Evaluation and Development of Biomaterials, Academic Unit of Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-000, PB, Brazil (M.d.C.d.M.T.); (S.M.d.L.S.); (M.M.); (M.V.L.F.)
| | - Maziar Montazerian
- Materials Science and Engineering Department, Northeast Laboratory for Evaluation and Development of Biomaterials, Academic Unit of Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-000, PB, Brazil (M.d.C.d.M.T.); (S.M.d.L.S.); (M.M.); (M.V.L.F.)
| | - Marcus V. L. Fook
- Materials Science and Engineering Department, Northeast Laboratory for Evaluation and Development of Biomaterials, Academic Unit of Materials Science and Engineering, Federal University of Campina Grande, Campina Grande 58429-000, PB, Brazil (M.d.C.d.M.T.); (S.M.d.L.S.); (M.M.); (M.V.L.F.)
| | - Solomon K. S. Amoah
- Brazilian Association of Support Cannabis Esperança, João Pessoa 58013-130, PB, Brazil
| |
Collapse
|
2
|
Firoozbahr M, Kingshott P, Palombo EA, Zaferanloo B. Recent Advances in Using Natural Antibacterial Additives in Bioactive Wound Dressings. Pharmaceutics 2023; 15:644. [PMID: 36839966 PMCID: PMC10004169 DOI: 10.3390/pharmaceutics15020644] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Wound care is a global health issue with a financial burden of up to US $96.8 billion annually in the USA alone. Chronic non-healing wounds which show delayed and incomplete healing are especially problematic. Although there are more than 3000 dressing types in the wound management market, new developments in more efficient wound dressings will require innovative approaches such as embedding antibacterial additives into wound-dressing materials. The lack of novel antibacterial agents and the misuse of current antibiotics have caused an increase in antimicrobial resistance (AMR) which is estimated to cause 10 million deaths by 2050 worldwide. These ongoing challenges clearly indicate an urgent need for developing new antibacterial additives in wound dressings targeting microbial pathogens. Natural products and their derivatives have long been a significant source of pharmaceuticals against AMR. Scrutinising the data of newly approved drugs has identified plants as one of the biggest and most important sources in the development of novel antibacterial drugs. Some of the plant-based antibacterial additives, such as essential oils and plant extracts, have been previously used in wound dressings; however, there is another source of plant-derived antibacterial additives, i.e., those produced by symbiotic endophytic fungi, that show great potential in wound dressing applications. Endophytes represent a novel, natural, and sustainable source of bioactive compounds for therapeutic applications, including as efficient antibacterial additives for chronic wound dressings. This review examines and appraises recent developments in bioactive wound dressings that incorporate natural products as antibacterial agents as well as advances in endophyte research that show great potential in treating chronic wounds.
Collapse
Affiliation(s)
- Meysam Firoozbahr
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Bita Zaferanloo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
3
|
da Silva Leite R, Neves do Nascimento M, Hernandéz-Navarro S, Miguel Ruiz Potosme N, Karthikeyan S. Use of ATR-FTIR spectroscopy for analysis of water deficit tolerance in Physalis peruviana L. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121551. [PMID: 35779475 DOI: 10.1016/j.saa.2022.121551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Treatments that allow plants to better tolerate water deficit become essential, such as the application of chemical priming. In addition, it is essential to use analyses capable of measuring these effects at the biomolecular level, complementing the other physiological evaluations. In view of the above, this study aimed to evaluate the use of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy for analyses of water deficit tolerance in Physalis peruviana plants. For this, samples of leaves, stems and roots of plants subjected to different pretreatments with proline (10 mM and 20 mM), sodium nitroprusside (SNP 25 μM and 50 μM) and H2O as control, aiming at increasing tolerance to water deficit, were evaluated. The chemical agents used attenuated water deficit in P. peruviana plants, influencing phenotypic characterization and spectral analyses. Analysis of FTIR spectra indicates that different functional groups present in leaves, stems and roots were influenced by water deficit and priming treatments. Changes in lipid levels contributed to reducing water losses by increasing the thickness of cuticular wax. Accumulation of proteins and carbohydrates promoted osmoregulation and maintenance of the water status of plants. Thus, water deficit causes changes in the functional groups present in the organs of P. peruviana, and the ATR-FTIR technique is able to detect these biomolecular changes, helping in the selection of priming treatments to increase tolerance to water deficit.
Collapse
Affiliation(s)
- Romeu da Silva Leite
- Biological Sciences Department, State University of Feira de Santana, 44036-900 Feira de Santana, Bahia, Brazil; Agriculture and Forestry Engineering Department, Universidad de Valladolid, 34004 Palencia, Castilla y Leon, Spain; Baiano Federal Institute of Science and Technology, Campus Xique-Xique, 47400-000 Xique-Xique, Brazil.
| | - Marilza Neves do Nascimento
- Biological Sciences Department, State University of Feira de Santana, 44036-900 Feira de Santana, Bahia, Brazil
| | - Salvador Hernandéz-Navarro
- Agriculture and Forestry Engineering Department, Universidad de Valladolid, 34004 Palencia, Castilla y Leon, Spain
| | - Norlan Miguel Ruiz Potosme
- Superior Polytechnic School, European University Miguel de Cervantes, 47012 Valladolid, Castilla y Leon, Spain
| | - Sivakumaran Karthikeyan
- Department of Physics, Dr. Ambedkar Government Arts College, 600039 Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Saifullah MD, McCullum R, Vuong QV. Phytochemicals and Bioactivities of Australian Native Lemon Myrtle ( Backhousia citriodora) and Lemon-Scented Tea Tree ( Leptospermum petersonii): A Comprehensive Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2130353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- MD Saifullah
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Ourimbah, Australia
- Department of Agro Product Processing Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Rebecca McCullum
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Ourimbah, Australia
| | - Quan Van Vuong
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Ourimbah, Australia
| |
Collapse
|
5
|
de Lima Silva ID, de Almeida Nascimento JA, de Moraes Filho LEPT, Caetano VF, de Andrade MF, de Almeida YMB, Hallwass F, Brito AMSS, Vinhas GM. Production of potential antioxidant and antimicrobial active films of poly (vinyl alcohol) incorporated with cashew tree extract. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | - Fernando Hallwass
- Department of Fundamental Chemistry Federal University of Pernambuco Recife Brazil
| | | | - Glória Maria Vinhas
- Department of Chemical Engineering Federal University of Pernambuco Recife Brazil
| |
Collapse
|
6
|
Dissanayake IH, Zak V, Kaur K, Jaye K, Ayati Z, Chang D, Li CG, Bhuyan DJ. Australian native fruits and vegetables: Chemical composition, nutritional profile, bioactivity and potential valorization by industries. Crit Rev Food Sci Nutr 2022; 63:8511-8544. [PMID: 35491610 DOI: 10.1080/10408398.2022.2057913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Australian native plants have adapted themselves to harsh climatic conditions enabling them to produce unique and high levels of secondary metabolites. Native fruits and vegetables have been an integral part of the Indigenous Australian diet and Bush medicine for centuries. They have recently gained popularity owing to their rich dietary fiber, minerals, polyphenolic and antioxidant contents. This review presents a comprehensive summary and critical assessment of the studies performed in the last few decades to understand the phytochemical and nutritional profiles and therapeutic properties of Australian native fruits and vegetables. Furthermore, the potential of these fruits and vegetables as functional food ingredients and in the prevention and treatment of different diseases is discussed. Research on the nutritional and phytochemical profiles and therapeutic activity of Australian vegetables is limited with most studies focused on native fruits. These fruits have demonstrated promising antioxidant, anticancer, anti-inflammatory and antimicrobial activities mostly in in vitro models. More research to a) identify novel bioactive compounds, b) define optimal post-harvest and extraction methods, and c) understand molecular mechanisms of pharmacological activity through preclinical and clinical studies is prudent for the prospective and wider use of Australian native fruits and vegetables by the food, pharmaceutical, and nutraceutical industries.
Collapse
Affiliation(s)
| | - Valeria Zak
- School of Science, Western Sydney University, Campbelltown, NSW, Australia
| | - Kirandeep Kaur
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Kayla Jaye
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Zahra Ayati
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
7
|
Chen JQ, Chen YY, Du X, Tao HJ, Pu ZJ, Shi XQ, Yue SJ, Zhou GS, Shang EX, Tang YP, Duan JA. Fuzzy identification of bioactive components for different efficacies of rhubarb by the back propagation neural network association analysis of UPLC-Q-TOF/MS E and integrated effects. Chin Med 2022; 17:50. [PMID: 35473719 PMCID: PMC9040240 DOI: 10.1186/s13020-022-00612-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/14/2022] [Indexed: 11/15/2022] Open
Abstract
Background Rhei Radix et Rhizoma (rhubarb), as one of the typical representatives of multi-effect traditional Chinese medicines (TCMs), has been utilized in the treatment of various diseases due to its multicomponent nature. However, there are few systematic investigations for the corresponding effect of individual components in rhubarb. Hence, we aimed to develop a novel strategy to fuzzily identify bioactive components for different efficacies of rhubarb by the back propagation (BP) neural network association analysis of ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry for every data (UPLC-Q-TOF/MSE) and integrated effects. Methods Through applying the fuzzy chemical identification, most components of rhubarb were classified into different chemical groups. Meanwhile the integration effect values of different efficacies can be determined by animal experiment evaluation and multi-attribute comprehensive indexes. Then the BP neural network was employed for association analysis of components and different efficacies by correlating the component contents determined from UPLC-Q-TOF/MSE profiling and the integration effect values. Finally, the effect contribution of one type of components may be totaled to demonstrate the universal and individual characters for different efficacies of rhubarb. Results It suggested that combined anthraquinones, flavanols and their polymers may be the universal character to the multi-functional properties of rhubarb. Other components contributed to the individuality of rhubarb efficacies, including stilbene glycosides, anthranones and their dimers, free anthraquinones, chromones, gallic acid and gallotannins, butyrylbenzenes and their glycosides. Conclusions Our findings demonstrated that the bioactive components for different efficacies of rhubarb were not exactly the same and can be systematically differentiated by the network-oriented strategy. These efforts will advance our knowledge and understanding of the bioactive components in rhubarb and provide scientific evidence to support the expansion of its use in clinical applications and the further development of some products based on this medicinal herb. Supplementary information The online version contains supplementary material available at 10.1186/s13020-022-00612-9.
Collapse
Affiliation(s)
- Jia-Qian Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi Province, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu Province, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi Province, China
| | - Xia Du
- Shaanxi Academy of Traditional Chinese Medicine, 710003, Xi'an, Shaanxi Province, China
| | - Hui-Juan Tao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu Province, China
| | - Zong-Jin Pu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu Province, China
| | - Xu-Qin Shi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu Province, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi Province, China
| | - Gui-Sheng Zhou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu Province, China
| | - Er-Xin Shang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi Province, China.
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu Province, China
| |
Collapse
|
8
|
Recent Advances in Sampling and Sample Preparation for Effect-Directed Environmental Analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Encapsulation with HDPAF-WP of the hexane fraction of sea grape (Coccoloba uvifera L.) leaf extract by electrospraying. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Odukoya JO, Odukoya JO, Mmutlane EM, Ndinteh DT. Phytochemicals and Amino Acids Profiles of Selected sub-Saharan African Medicinal Plants' Parts Used for Cardiovascular Diseases' Treatment. Pharmaceutics 2021; 13:1367. [PMID: 34575444 PMCID: PMC8472700 DOI: 10.3390/pharmaceutics13091367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
For years, the focus on the lipid-atherosclerosis relationship has limited the consideration of the possible contribution of other key dietary components, such as amino acids (AAs), to cardiovascular disease (CVD) development. Notwithstanding, the potential of plant-based diets, some AAs and phytochemicals to reduce CVDs' risk has been reported. Therefore, in this study, the phytochemical and AA profiles of different medicinal plants' (MPs) parts used for CVDs' treatment in sub-Saharan Africa were investigated. Fourier-transform infrared analysis confirmed the presence of hydroxyl, amino and other bioactive compounds' functional groups in the samples. In most of them, glutamic and aspartic acids were the most abundant AAs, while lysine was the most limiting. P. biglobosa leaf, had the richest total branched-chain AAs (BCAAs) level, followed by A. cepa bulb. However, A. cepa bulb had the highest total AAs content and an encouraging nutraceutical use for adults based on its amino acid score. Principal component analysis revealed no sharp distinction between the AAs composition of MPs that have found food applications and those only used medicinally. Overall, the presence of medicinally important phytochemicals and AAs levels in the selected MPs' parts support their use for CVDs treatment as they might not add to the AAs (e.g., the BCAAs) burden in the human body.
Collapse
Affiliation(s)
- Johnson Oluwaseun Odukoya
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
- Department of Chemistry, The Federal University of Technology, Akure PMB 704, Ondo State, Nigeria
| | - Julianah Olayemi Odukoya
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
- Department of Food Science and Technology, Kwara State University, Malete, Ilorin PMB 1530, Kwara State, Nigeria
| | - Edwin Mpoh Mmutlane
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
| | - Derek Tantoh Ndinteh
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
| |
Collapse
|
11
|
Šegan S, Živković-Radovanović V, Tosti T, Ristivojević P, Milojković-Opsenica D. Thin-layer chromatography in bioassays of antimicrobial compounds from plants. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2021.1968429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sandra Šegan
- Institute of Chemistry, Technology, and Metallurgy, University of Belgrade, Belgrade, Serbia
| | | | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | | | | |
Collapse
|
12
|
Perucini‐Avendaño M, Nicolás‐García M, Jiménez‐Martínez C, Perea‐Flores MDJ, Gómez‐Patiño MB, Arrieta‐Báez D, Dávila‐Ortiz G. Cladodes: Chemical and structural properties, biological activity, and polyphenols profile. Food Sci Nutr 2021; 9:4007-4017. [PMID: 34262754 PMCID: PMC8269681 DOI: 10.1002/fsn3.2388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/01/2023] Open
Abstract
The nopal cactus is an essential part of the Mexican diet and culture. The per capita consumption of young cladodes averages annually to 6.4 kg across the nation. In addition to contributing to the country's food culture, the nopal is considered a food with functional characteristics since, in addition to providing fiber, an important group of polyphenolic compounds is present, which has given cladodes to be considered a healthy food, for what they have been incorporated into the diet of Mexican people and many other countries worldwide. Research suggests that polyphenols from cladodes act as antioxidants and antidiabetics. This review studies the main phenolic components in cladodes and summarizes both conventional and novel methods to identify them.
Collapse
Affiliation(s)
- Madeleine Perucini‐Avendaño
- Departamento de Ingeniería BioquímicaEscuela Nacional de Ciencias BiológicasInstituto Politécnico Nacional (IPN)Unidad Profesional Adolfo López MateosZacatencoDelegación Gustavo A. MaderoCiudad de MéxicoMéxico
| | - Mayra Nicolás‐García
- Departamento de Ingeniería BioquímicaEscuela Nacional de Ciencias BiológicasInstituto Politécnico Nacional (IPN)Unidad Profesional Adolfo López MateosZacatencoDelegación Gustavo A. MaderoCiudad de MéxicoMéxico
| | - Cristian Jiménez‐Martínez
- Departamento de Ingeniería BioquímicaEscuela Nacional de Ciencias BiológicasInstituto Politécnico Nacional (IPN)Unidad Profesional Adolfo López MateosZacatencoDelegación Gustavo A. MaderoCiudad de MéxicoMéxico
| | - María de Jesús Perea‐Flores
- Centro de Nanociencias y Micro y NanotecnologíasInstituto Politécnico Nacional (IPN)Unidad Profesional Adolfo López MateosZacatencoDelegación Gustavo A. MaderoCiudad de MéxicoMéxico
| | - Mayra Beatriz Gómez‐Patiño
- Centro de Nanociencias y Micro y NanotecnologíasInstituto Politécnico Nacional (IPN)Unidad Profesional Adolfo López MateosZacatencoDelegación Gustavo A. MaderoCiudad de MéxicoMéxico
| | - Daniel Arrieta‐Báez
- Centro de Nanociencias y Micro y NanotecnologíasInstituto Politécnico Nacional (IPN)Unidad Profesional Adolfo López MateosZacatencoDelegación Gustavo A. MaderoCiudad de MéxicoMéxico
| | - Gloria Dávila‐Ortiz
- Departamento de Ingeniería BioquímicaEscuela Nacional de Ciencias BiológicasInstituto Politécnico Nacional (IPN)Unidad Profesional Adolfo López MateosZacatencoDelegación Gustavo A. MaderoCiudad de MéxicoMéxico
| |
Collapse
|
13
|
Rodríguez-Valdovinos KY, Salgado-Garciglia R, Vázquez-Sánchez M, Álvarez-Bernal D, Oregel-Zamudio E, Ceja-Torres LF, Medina-Medrano JR. Quantitative Analysis of Rutin by HPTLC and In Vitro Antioxidant and Antibacterial Activities of Phenolic-Rich Extracts from Verbesina sphaerocephala. PLANTS 2021; 10:plants10030475. [PMID: 33802461 PMCID: PMC8001813 DOI: 10.3390/plants10030475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 11/27/2022]
Abstract
Verbesina sphaerocephala A. Gray, like other wild plants of the genus Verbesina, has been used in herbal medicine. There is information for other species of the genus related to their phenolic content, antioxidant capacity, and isolation of bioactive compounds with antimicrobial activity. However, there are no reports for V. sphaerocephala, although it has an important presence in the state of Michoacán, México. In this study, the phenolic composition, quantification of rutin, and in vitro antioxidant and antibacterial activities of methanolic extracts from V. sphaerocephala leaves and flowers were determined. The results showed that all the investigated extracts have high phenolic and flavonoid contents. The flavonoid rutin was identified in all the extracts from V. sphaerocephala by high-performance thin-layer chromatography (HPTLC). The V. sphaerocephala extracts showed scavenging activity against DPPH• and ABTS•+ radicals (IC50 and 5.83 ± 0.50 and 0.93 ± 0.01 mg/mL, respectively) as well as relevant antioxidant capacity (51.05 ± 0.36 mg of ascorbic acid/g of dry tissue). The experimental results show that V. sphaerocephala extracts possessed a strong antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. This research indicates that V. sphaerocephala could be considered as a potential source of natural compounds from the point of ethnopharmacological usage.
Collapse
Affiliation(s)
- Kathia Yanelly Rodríguez-Valdovinos
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Michoacán, Instituto Politécnico Nacional, Jiquilpan 59510, Michoacan, Mexico; (K.Y.R.-V.); (D.Á.-B.); (E.O.-Z.); (L.F.C.-T.)
| | - Rafael Salgado-Garciglia
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacan, Mexico;
| | - Monserrat Vázquez-Sánchez
- Programa de Posgrado en Botánica, Colegio de Postgraduados Campus Montecillo, Texcoco 56230, Estado de Mexico, Mexico;
| | - Dioselina Álvarez-Bernal
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Michoacán, Instituto Politécnico Nacional, Jiquilpan 59510, Michoacan, Mexico; (K.Y.R.-V.); (D.Á.-B.); (E.O.-Z.); (L.F.C.-T.)
| | - Ernesto Oregel-Zamudio
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Michoacán, Instituto Politécnico Nacional, Jiquilpan 59510, Michoacan, Mexico; (K.Y.R.-V.); (D.Á.-B.); (E.O.-Z.); (L.F.C.-T.)
- Programa de Doctorado en Ciencias en Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología (UPIBI), Instituto Politécnico Nacional, Ticomán 07340, Ciudad de Mexico, Mexico
| | - Luis Fernando Ceja-Torres
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Michoacán, Instituto Politécnico Nacional, Jiquilpan 59510, Michoacan, Mexico; (K.Y.R.-V.); (D.Á.-B.); (E.O.-Z.); (L.F.C.-T.)
| | - José Roberto Medina-Medrano
- CONACYT—Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Michoacán, Instituto Politécnico Nacional, Jiquilpan 59510, Michoacan, Mexico
- Correspondence: ; Tel.: +52-(353)-533-0218 (ext. 82951)
| |
Collapse
|
14
|
The Power of HPTLC-ATR-FTIR Hyphenation in Bioactivity Analysis of Plant Extracts. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Given the simplicity in sample preparation and application, thin-layer chromatography (TLC) and high-performance thin-layer chromatography (HPTLC) as its most enhanced form are commonly used to separate and identify complex mixtures in solution [...]
Collapse
|
15
|
Legerská B, Chmelová D, Ondrejovič M, Miertuš S. The TLC-Bioautography as a Tool for Rapid Enzyme Inhibitors detection - A Review. Crit Rev Anal Chem 2020; 52:275-293. [PMID: 32744081 DOI: 10.1080/10408347.2020.1797467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microorganisms and plants can be important sources of many compounds with potential pharmaceutical applications. Extraction of these matrices is one of the ways of identifying the presence of inhibitory active substances against enzymes whose high activity leads to serious human diseases including cancer, Parkinson's or Crohn's diseases. The isolation and purification of inhibitors are time-consuming and expensive steps in the analysis of the crude extract and therefore, it is necessary to find a fast, efficient, and inexpensive method for screening extracts of interest. TLC-Bioautography combines the separation of the extract on a thin layer with its subsequent biological analysis. TLC-Bioautography methods have been developed for several classes of enzymes including oxidoreductases, hydrolases and isomerases, and there is a potential for developing functional methods for other classes of enzymes. This review summarizes known TLC-Bioautography methods and their applications for determining the presence of enzyme inhibitors in extracts and compares the effectiveness of different methodological approaches. It also indicates the current state and perspective of the development of TLC-Bioautography and its possible future applications.
Collapse
Affiliation(s)
- Barbora Legerská
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia.,ICARST n.o., Bratislava, Slovakia
| |
Collapse
|