1
|
Miolo G, Buonadonna A, Lombardi D, Scalone S, Lauretta A, Della Puppa L, Corona G. Trabectedin may be a valuable treatment option for elderly patients with metastatic soft tissue sarcomas. Front Oncol 2024; 14:1437732. [PMID: 39119092 PMCID: PMC11306058 DOI: 10.3389/fonc.2024.1437732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Background In the landscape of metastatic soft tissue sarcoma (mSTS) treatment, anthracyclines have shown efficacy; however, their associated toxicity imposes significant limitations, especially in frail elderly patients with mSTS who are highly susceptible to severe adverse effects. In this context, trabectedin, due to its distinct pharmacological profile and safety profile, may represent an interesting alternative being demonstrated to be active in treating mSTS. These features hold particular significance for elderly and unfit patients with mSTS, where balancing treatment benefits with potential adverse effects represents the pivotal objective. Methods The investigation was focused on a specific group of 11 elderly patients with mSTS aged ≥70, all undergoing first-line treatment with trabectedin, and it was supported by comprehensive pharmacokinetic and pharmacodynamic studies. Among these patients, 9 out of 11 started the treatment at a dose of 1.5 mg/m2. Results The primary objective of this investigation is to highlight trabectedin as a valuable first-line treatment option for elderly and unfit patients with mSTS. Additionally, this investigation seeks to explore whether higher administered doses of trabectedin can enhance clinical outcomes while maintaining the same toxicity profiles. The median progression-free survival (PFS) was 77 days (95% CI, 53-89), the median overall survival (OS) was 397 days (95% CI, 66-2,102), while the overall toxicity of grade 3-4 severity amounted to 43%. Conclusion These findings provide new insights into the clinical outcomes and toxicity associated with trabectedin in an elderly patient population, enhancing our understanding of better treatment approaches for a specific population of patients with mSTS.
Collapse
Affiliation(s)
- Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Angela Buonadonna
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Davide Lombardi
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Simona Scalone
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Andrea Lauretta
- Unit of General Oncologic Surgery, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Lara Della Puppa
- Oncogenetics and Functional Oncogenomics Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| |
Collapse
|
2
|
Briki M, Murisier A, Guidi M, Seydoux C, Buclin T, Marzolini C, Girardin FR, Thoma Y, Carrara S, Choong E, Decosterd LA. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) methods for the therapeutic drug monitoring of cytotoxic anticancer drugs: An update. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1236:124039. [PMID: 38490042 DOI: 10.1016/j.jchromb.2024.124039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 03/17/2024]
Abstract
In the era of precision medicine, there is increasing evidence that conventional cytotoxic agents may be suitable candidates for therapeutic drug monitoring (TDM)- guided drug dosage adjustments and patient's tailored personalization of non-selective chemotherapies. To that end, many liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) assays have been developed for the quantification of conventional cytotoxic anticancer chemotherapies, that have been comprehensively and critically reviewed. The use of stable isotopically labelled internal standards (IS) of cytotoxic drugs was strikingly uncommon, accounting for only 48 % of the methods found, although their use could possible to suitably circumvent patients' samples matrix effects variability. Furthermore, this approach would increase the reliability of cytotoxic drug quantification in highly multi-mediated cancer patients with complex fluctuating pathophysiological and clinical conditions. LC-MS/MS assays can accommodate multiplexed analyses of cytotoxic drugs with optimal selectivity and specificity as well as short analytical times and, when using stable-isotopically labelled IS for quantification, provide concentrations measurements with a high degree of certainty. However, there are still organisational, pharmacological, and medical constraints to tackle before TDM of cytotoxic drugs can be more largely adopted in the clinics for contributing to our ever-lasting quest to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- M Briki
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; Bio/CMOS Interfaces Laboratory, École Polytechnique Fédérale de Lausanne-EPFL, 2002 Neuchâtel, Switzerland
| | - A Murisier
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - M Guidi
- Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, 1206 Geneva, Switzerland; Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - C Seydoux
- Internal Medicine Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - T Buclin
- Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - C Marzolini
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - F R Girardin
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Y Thoma
- School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, 1401 Yverdon-les-Bains, Switzerland
| | - S Carrara
- Bio/CMOS Interfaces Laboratory, École Polytechnique Fédérale de Lausanne-EPFL, 2002 Neuchâtel, Switzerland
| | - E Choong
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - L A Decosterd
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|
3
|
Casagrande N, Borghese C, Corona G, Aldinucci D. In ovarian cancer maraviroc potentiates the antitumoral activity and further inhibits the formation of a tumor-promoting microenvironment by trabectedin. Biomed Pharmacother 2024; 172:116296. [PMID: 38382330 DOI: 10.1016/j.biopha.2024.116296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024] Open
Abstract
Ovarian cancer (OC) is the fifth most frequent cause of cancer-related death in women. Chemotherapy agent trabectedin, affecting cancer cells and tumor microenvironment, has been approved for the treatment of relapsed platinum-sensitive OC patients. CCR5-antagonist maraviroc inhibits tumor growth, metastasis, and enhances the antitumoral activity of DNA-damaging drugs. Here, we found that OC cells expressed CCR5 receptor but did not secret CCR5-ligands. Maraviroc treatment did not affect OC cell viability, but strongly potentiated the antiproliferative activity, apoptosis induction, cell cycle blockage, DNA damage, and ROS formation by trabectedin. In A2780cis cisplatin-resistant cells, the cross-resistance to trabectedin was overcame by the combination with maraviroc. Maraviroc enhanced trabectedin cytotoxicity in OC 3Dimensional spheroids and THP-1-monocytes. Both maraviroc and trabectedin interact with drug efflux pump MDR1/P-gp, overexpressed in recurrent OC patients. Maraviroc increased trabectedin intracellular accumulation and the MDR1-inhibitor verapamil, like maraviroc, increased trabectedin cytotoxicity. In OC tumor xenografts the combination with maraviroc further reduced tumor growth, angiogenesis, and monocyte infiltration by trabectedin. In conclusion, this study offers a preclinical rationale for the use of maraviroc as new option to improve trabectedin activity in relapsed chemoresistant OC patients.
Collapse
Affiliation(s)
- Naike Casagrande
- Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, PN 33081, Italy.
| | - Cinzia Borghese
- Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, PN 33081, Italy
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, PN 33081, Italy
| | - Donatella Aldinucci
- Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, PN 33081, Italy
| |
Collapse
|
4
|
Corona G, Di Gregorio E, Buonadonna A, Lombardi D, Scalone S, Steffan A, Miolo G. Pharmacometabolomics of trabectedin in metastatic soft tissue sarcoma patients. Front Pharmacol 2023; 14:1212634. [PMID: 37637412 PMCID: PMC10450632 DOI: 10.3389/fphar.2023.1212634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
Objective: Trabectedin is an anti-cancer drug commonly used for the treatment of patients with metastatic soft tissue sarcoma (mSTS). Despite its recognized efficacy, significant variability in pharmacological response has been observed among mSTS patients. To address this issue, this pharmacometabolomics study aimed to identify pre-dose plasma metabolomics signatures that can explain individual variations in trabectedin pharmacokinetics and overall clinical response to treatment. Methods: In this study, 40 mSTS patients treated with trabectedin administered by 24 h-intravenous infusion at a dose of 1.5 mg/m2 were enrolled. The patients' baseline plasma metabolomics profiles, which included derivatives of amino acids and bile acids, were analyzed using multiple reaction monitoring LC-MS/MS together with their pharmacokinetics profile of trabectedin. Multivariate Partial least squares regression and univariate statistical analyses were utilized to identify correlations between baseline metabolite concentrations and trabectedin pharmacokinetics, while Partial Least Squares-Discriminant Analysis was employed to evaluate associations with clinical response. Results: The multiple regression model, derived from the correlation between the AUC of trabectedin and pre-dose metabolomics, exhibited the best performance by incorporating cystathionine, hemoglobin, taurocholic acid, citrulline, and the phenylalanine/tyrosine ratio. This model demonstrated a bias of 4.6% and a precision of 17.4% in predicting drug AUC, effectively accounting for up to 70% of the inter-individual pharmacokinetic variability. Through the use of Partial least squares-Discriminant Analysis, cystathionine and hemoglobin were identified as specific metabolic signatures that effectively distinguish patients with stable disease from those with progressive disease. Conclusions: The findings from this study provide compelling evidence to support the utilization of pre-dose metabolomics in uncovering the underlying causes of pharmacokinetic variability of trabectedin, as well as facilitating the identification of patients who are most likely to benefit from this treatment.
Collapse
Affiliation(s)
- Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Emanuela Di Gregorio
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Angela Buonadonna
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Davide Lombardi
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Simona Scalone
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| |
Collapse
|