1
|
Zhang LP, Wang M, Li T, He YF, Li SJ, Wang L, Mao LF. Properties, evaluation and application of naringin magnetic molecularly imprinted polymer based on synergistic imprinting strategy. J Food Sci 2024; 89:5748-5762. [PMID: 39150691 DOI: 10.1111/1750-3841.17177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 08/17/2024]
Abstract
A novel and facile surface molecularly imprinted polymer coated on magnetic chitosan (Fe3O4@CS@MIP) was fabricated for the selective recognition and enrichment of naringin (NRG). The Fe3O4@CS@MIP was prepared based on covalent-noncovalent synergistic imprinting strategies, utilizing 4-vinyl phenyl boric acid as covalent functional monomer, deep eutectic solvent (choline chloride/methacrylic acid [ChCl/MAA]) as non-covalent functional monomer and Fe3O4@CS nanoparticles as the magnetic support. The obtained Fe3O4@CS@MIP exhibited a uniform morphology, excellent crystallinity, outstanding magnetic properties, and high surface area. Owing to the double recognition abilities, the resultant polymer showed exceptional binding performance and rapid mass transfer in phosphate buffer (pH 7.0). The maximum binding amount of Fe3O4@CS@MIP was found to be 15.08 mg g-1, and the equilibrium adsorption could be achieved within 180 min. Moreover, they also exhibited stronger selectivity for NRG and satisfactory reusability, with only 11.0% loss after five adsorption-desorption cycles. Additionally, the Fe3O4@CS@MIP, serving as an adsorbent, presented practical application potential in the separation and enrichment of NRG from pummelo peel, with extraction efficiency in the range of 79.53% to 84.63%. This work provided a new strategy for improving the performance of MIP and contributed an attractive option for the extraction of NRG in complex samples.
Collapse
Affiliation(s)
- Li-Ping Zhang
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, P. R. China
| | - Miao Wang
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, P. R. China
| | - Tian Li
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, P. R. China
| | - Yi-Fan He
- Institute of Cosmetic Regulatory Science, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, P. R. China
| | - Shu-Jing Li
- Institute of Cosmetic Regulatory Science, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, P. R. China
| | - Lan Wang
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, P. R. China
| | - Long-Fei Mao
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, P. R. China
| |
Collapse
|
2
|
Ahadi HM, Fardhan FM, Rahayu D, Pratiwi R, Hasanah AN. Molecularly Imprinted Microspheres in Active Compound Separation from Natural Product. Molecules 2024; 29:4043. [PMID: 39274891 PMCID: PMC11396677 DOI: 10.3390/molecules29174043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Molecularly Imprinted Microspheres (MIMs) or Microsphere Molecularly Imprinted Polymers represent an innovative design for the selective extraction of active compounds from natural products, showcasing effectiveness and cost-efficiency. MIMs, crosslinked polymers with specific binding sites for template molecules, overcome irregularities observed in traditional Molecularly Imprinted Polymers (MIPs). Their adaptability to the shape and size of target molecules allows for the capture of compounds from complex mixtures. This review article delves into exploring the potential practical applications of MIMs, particularly in the extraction of active compounds from natural products. Additionally, it provides insights into the broader development of MIM technology for the purification of active compounds. The synthesis of MIMs encompasses various methods, including precipitation polymerization, suspension polymerization, Pickering emulsion polymerization, and Controlled/Living Radical Precipitation Polymerization. These methods enable the formation of MIPs with controlled particle sizes suitable for diverse analytical applications. Control over the template-to-monomer ratio, solvent type, reaction temperature, and polymerization time is crucial to ensure the successful synthesis of MIPs effective in isolating active compounds from natural products. MIMs have been utilized to isolate various active compounds from natural products, such as aristolochic acids from Aristolochia manshuriensis and flavonoids from Rhododendron species, among others. Based on the review, suspension polymerization deposition, which is one of the techniques used in creating MIPs, can be classified under the MIM method. This is due to its ability to produce polymers that are more homogeneous and exhibit better selectivity compared to traditional MIP techniques. Additionally, this method can achieve recovery rates ranging from 94.91% to 113.53% and purities between 86.3% and 122%. The suspension polymerization process is relatively straightforward, allowing for the effective control of viscosity and temperature. Moreover, it is cost-effective as it utilizes water as the solvent.
Collapse
Affiliation(s)
- Husna Muharram Ahadi
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Firghi Muhammad Fardhan
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Driyanti Rahayu
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Rimadani Pratiwi
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Aliya Nur Hasanah
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
- Drug Development Study Center, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| |
Collapse
|
3
|
Nazim T, Kubiak A, Cegłowski M. Quantification of 2,4-dichlorophenoxyacetic acid in environmental samples using imprinted polyethyleneimine with enhanced selectivity as a selective adsorbent in ambient plasma mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133661. [PMID: 38341890 DOI: 10.1016/j.jhazmat.2024.133661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Detection and quantification of various organic chemicals in the environment is critical to track their fate and control their levels. 2,4-Dichlorophenoxyacetic acid (2,4-D) is a widely applied phenoxy herbicide with potential toxicity to fish and other aquatic organisms. In this study, we address the need for improved detection of 2,4-D by introducing a novel analytical method for its quantification. This method relies on the selective extraction of 2,4-D using MIPs and their subsequent direct analysis using ambient plasma mass spectrometry. During the synthesis, MIPs with various degrees of glycidol (GLY) functionalization were obtained. Experimental data showed that MIPs with no GLY functionalization displayed the highest adsorption capacity. Conversely, MIPs with 30% GLY functionalization exhibited the greatest selectivity for 2,4-D, rendering them valuable for extraction of 2,4-D even in the presence of other contaminants. Finally, the obtained MIPs were applied for quantification of 2,4-D in various water samples through direct analysis using a specially designed ambient plasma mass spectrometry setup. This approach improved the detection limits by 200-fold compared to pure solution analysis. The quantification of 2,4-D in river water samples yielded highly satisfactory recoveries, demonstrating the effective utility of the proposed analytical setup for real-life water sample analysis.
Collapse
Affiliation(s)
- Tomasz Nazim
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Adam Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
4
|
He JY, Li Q, Xu HX, Zheng QY, Zhang QH, Zhou LD, Wang CZ, Yuan CS. Recognition and analysis of biomarkers in tumor microenvironments based on promising molecular imprinting strategies with high selectivity. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Phosiri P, Pongpinyo P, Santaladchaiyakit Y, Burakham R. A ternary deep eutectic solvent-modified magnetic mixed iron hydroxide@MIL-101(Cr)-NH 2 composite as a sorbent in magnetic solid phase extraction of organochlorine pesticides prior to GC-MS. RSC Adv 2023; 13:8863-8872. [PMID: 36936839 PMCID: PMC10018794 DOI: 10.1039/d2ra07704c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
A green solvent of ternary deep eutectic solvent (menthol-thymol-dodecanoic acid) was prepared and used as a functional reagent to modify a magnetic mixed iron hydroxide@MIL-101(Cr)-NH2 composite. The proposed sorbent (MIH@MIL-101(Cr)-NH2-TDES) was applied in magnetic solid phase extraction (MSPE) for the enrichment of organochlorine pesticides. The analytes were quantitively analyzed by GC-MS. The relationships of experimental parameters for preparing the proposed sorbent and the MSPE method were studied through a Box-Behnken design and a central composite design, respectively. Their optimized conditions were investigated using response surface methodology. Application of the MIH@MIL-101(Cr)-NH2-TDES sorbent in MSPE successfully enhanced the sensitivity of GC-MS analysis, giving enrichment factors in the range of 56-168. The MSPE/GC-MS method was developed using MIH@MIL-101(Cr)-NH2-TDES as a sorbent and was successfully employed for the preconcentration/determination of organochlorine residues in honey and tea samples. The satisfactory detection limits were in the ranges of 0.07-0.80 ng g-1 and 0.7-8.5 ng g-1 for honey and tea samples, respectively. Acceptable recoveries were obtained in the ranges of 81.7-107.3% and 85.4-109.3% for the spiked honey and tea samples, respectively, with RSDs lower than 10.0%.
Collapse
Affiliation(s)
- Preeyaporn Phosiri
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand +66 4320 2373 +66 4300 9700 ext. 42174
| | - Prachathipat Pongpinyo
- Agricultural Production Sciences Research and Development Office, Department of Agriculture Bangkok 10900 Thailand
| | - Yanawath Santaladchaiyakit
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus Khon Kaen 40000 Thailand
| | - Rodjana Burakham
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand +66 4320 2373 +66 4300 9700 ext. 42174
| |
Collapse
|
6
|
Xiong H, Wan Y, Fan Y, Xu M, Yan A, Zhang Y, Jiang Q, Wan H. Reshaping the imprinting strategy through the thermo-responsive moiety-derived “deep eutectic solvents” effect. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
7
|
Magnetic molecularly imprinted polymers based on eco-friendly deep eutectic solvent for recognition and extraction of three glucocorticoids in lotion. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Molecular imprinting with deep eutectic solvents: Synthesis, applications, their significance, and benefits. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
A water-compatible magnetic dual-template molecularly imprinted polymer fabricated from a ternary biobased deep eutectic solvent for the selective enrichment of organophosphorus in fruits and vegetables. Food Chem 2022; 384:132475. [DOI: 10.1016/j.foodchem.2022.132475] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 02/07/2023]
|
10
|
Pu WR, An DY, Wang Y, Zhang X, Huang YP, Liu ZS. Improving identification of molecularly imprinted monolith to benzoylated modified peptides by a deep eutectic solvents monomer-induced cooperation. Anal Chim Acta 2022; 1204:339697. [DOI: 10.1016/j.aca.2022.339697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 12/27/2022]
|
11
|
Li YJ, He JY, Li QY, Yang LL, Ma RR, Wang CZ, Zhou LD, Zhang QH, Yuan CS. An edible molecularly imprinted material prepared by a new environmentally friendly deep eutectic solvent for removing oxalic acid from vegetables and human blood. Anal Bioanal Chem 2022; 414:2481-2491. [PMID: 35048137 DOI: 10.1007/s00216-022-03889-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 12/30/2022]
Abstract
A novel deep eutectic solvent-magnetic molecularly imprinted polymer (DES-MMIP) for the specific removal of oxalic acid (OA) was prepared by an environmentally friendly deep eutectic solvent, consisting of betaine, citric acid, and glycerol, which acted as the functional monomer for polymerization. The structure and morphology of DES-MMIPs were studied by X-ray diffraction, scanning and transmission electron microscopy, thermal gravimetric analysis, Fourier transform infrared spectroscopy, and vibrating sample magnetometer. DES-MMIPs had a core-shell structure, with magnetic iron oxide as the core, and showed good thermal stability and high adsorption capacity (18.73 mg/g) for OA. The adsorption process of OA by DES-MMIPs followed the pseudo-second-order kinetic model and Langmuir isotherm model. DES-MMIPs had significant selectivity for OA and their imprinting factor was 3.26. When applied to real samples, high performance liquid chromatography analysis showed that DES-MMIPs could remove OA from both spinach and blood serum. These findings provide potential methods for removal of OA from vegetables and for specific removal of OA in renal dialysis.
Collapse
Affiliation(s)
- Yan-Jun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Jia-Yuan He
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Qing-Yao Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Li-Li Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Rong-Rong Ma
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| | - Lian-Di Zhou
- Basic Medical College, Chongqing Medical University, Chongqing, 400016, China.
| | - Qi-Hui Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China.
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA.
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
12
|
Li H, Xie W, Zeng L, Li W, Shi B, Lei F. Development and evaluation of a hydrogenated rosin (β-acryloxyl ethyl) ester-bonded silica stationary phase for high-performance liquid chromatography separation of paclitaxel from yew bark. J Chromatogr A 2022; 1665:462815. [PMID: 35038614 DOI: 10.1016/j.chroma.2022.462815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Paclitaxel (PTX) is a complex diterpenoid anticancer drug whose separation from yew biomass poses a significant challenge. In this study, a new stationary phase comprising hydrogenated rosin (β-acryloxyl ethyl) ester (HRE)-bonded silica (HRE@SiO2) is developed to separate and purify PTX from crude yew-bark extract using high-performance liquid chromatography. In HRE@SiO2, HRE molecules, which are functional ligands, are bonded to the surface of a silica gel matrix using a coupling agent, (3-mercaptopropyl)trimethoxysilane. The proposed HRE@SiO2 stationary phase was characterized by Fourier-transform infrared spectroscopy, elemental analysis, thermogravimetric analysis, scanning electron microscopy, laser diffraction granulometry, and nitrogen gas adsorption. The HRE@SiO2 column exhibited excellent chromatographic performance, satisfactory performance reproducibility, and typical reversed-phase chromatographic behavior. An HRE@SiO2 column was used to separate PTX and its analogs, achieving resolutions exceeding 7.43 for consecutively eluted species. Stoichiometric displacement theory for retention (SDT-R), the van Deemter equation, and van 't Hoff plots were used to analyze the separation mechanism and properties of the HRE@SiO2 column. The results showed that hydrophobic interactions determine the analyte retention and the separation of PTX and its analogs on an HRE@SiO2 column is an exothermic process driven by enthalpy. Furthermore, an HRE@SiO2 column was employed to separate and purify PTX from crude yew-bark extract, increasing PTX purity from 6% to 82%. The findings of this study provide insights for developing rosin-based stationary phases for the separation of natural products.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Wenbo Xie
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Lei Zeng
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Wen Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Boan Shi
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
| |
Collapse
|
13
|
Martín-Esteban A. Green molecularly imprinted polymers for sustainable sample preparation. J Sep Sci 2021; 45:233-245. [PMID: 34562063 DOI: 10.1002/jssc.202100581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022]
Abstract
The use of molecularly imprinted polymers in sample preparation as selective sorbent materials has received great attention during the last years leading to analytical methods with unprecedented selectivity. However, with the progressive implementation of Green Analytical Chemistry principles, it is necessary to critically review the greenness of synthesis and further use of molecularly imprinted polymers in sample preparation. Accordingly, in the present review, the different steps and strategies for the preparation of molecularly imprinted polymers, the used reagents, as well as their incorporation to microextraction techniques are reviewed from a green perspective and recent alternatives to make the use of molecularly imprinted polymers more sustainable are provided.
Collapse
Affiliation(s)
- Antonio Martín-Esteban
- Departamento de Medio Ambiente y Agronomía, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| |
Collapse
|
14
|
Ling-Tan, Yang LL, Li YJ, Jiang ZF, Li QY, Ma RR, He JY, Zhou LD, Zhang QH, Yuan CS. Investigating two distinct dummy templates molecularly imprinted polymers as paclitaxel adsorbent in synthesis system and releaser in biological samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|