1
|
Mans JC, Dong X. The Development of Lipid-Based Sorafenib Granules to Enhance the Oral Absorption of Sorafenib. Pharmaceutics 2023; 15:2691. [PMID: 38140031 PMCID: PMC10747400 DOI: 10.3390/pharmaceutics15122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Sorafenib (SFN) is an anticancer multi-kinase inhibitor with great therapeutic potential. However, SFN has low aqueous solubility, which limits its oral absorption. Lipids and surfactants have the potential to improve the solubility of water-insoluble drugs. The aim of this study is thus to develop novel lipid-based SFN granules that can improve the oral absorption of SFN. SFN powder was coated with a stable binary lipid mixture and then absorbed on Aeroperl 300 to form dry SFN granules with 10% drug loading. SFN granules were stable at room temperature for at least three months. Compared to SFN powder, SFN granules significantly increased SFN release in simulated gastric fluid and simulated intestinal fluid with pancreatin. Pharmacokinetics and tissue distribution of SFN granules and SFN powder were measured following oral administration to Sprague Dawley rats. SFN granules significantly increased SFN absorption compared to SFN powder. Overall, the lipid-based SFN granules provide a promising approach to enhancing the oral absorption of SFN.
Collapse
Affiliation(s)
| | - Xiaowei Dong
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
2
|
Lan JS, Zeng RF, Li Z, Wu Y, Liu L, Chen LX, Liu Y, He YT, Zhang T, Ding Y. CD44-Targeted Photoactivatable Polymeric Nanosystem with On-Demand Drug Release as a "Photoactivatable Bomb" for Combined Photodynamic Therapy-Chemotherapy of Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:34554-34569. [PMID: 37462246 DOI: 10.1021/acsami.3c05645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Nowadays, the combined use of chemotherapy and photodynamic therapy (PDT) remains the most popular strategy for cancer treatment with high theraprutic efficacy. However, targeted therapy with the on-demand release of drugs is what most clinical treatments lack, leading to heavy side effects. Herein, a new CD44-targeted and red-light-activatable nanosystem, Ru-HA@DOX nanoparticles (NPs), was developed by conjugating hydrophilic biodegradable hyaluronic acid (HA) and hydrophobic photoresponsive ruthenium (Ru) complexes, which could encapsulate the chemotherapeutic drug doxrubicin (DOX). Ru-HA@DOX NPs can selectively accumulate at the tumor through the enhanced permeability and retention (EPR) effect and CD44-mediated endocytosis, thus avoiding off-target toxicity during circulation. After 660 nm of irradiation at the tumor site, Ru-HA@DOX NPs, as a "photoactivatable bomb", was split via the photocleavable Ru-N coordination bond to fast release DOX and produce singlet oxygen (1O2) for PDT. In general, Ru-HA@DOX NPs retained its integrity before irradiation and possessed minimal cytotoxicity, while under red-light irradiation, Ru-HA@DOX NPs showed significant cytotoxicity due to the release of DOX and production of 1O2 at the tumor. Chemotherapy-PDT of Ru-HA@DOX NPs resulted in a significant inhibition of tumor growth in A549-tumor-bearing mice and reduced the cardiotoxicity of DOX. Therefore, this study offers a novel CD44-targeted drug-delivery system with on-demand drug release for synergistic chemotherapy-PDT.
Collapse
Affiliation(s)
- Jin-Shuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui-Feng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ya Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li-Xia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Tian He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|