1
|
Elancheziyan M, Singh M, Won K. Gold Nanoparticle-Embedded Thiol-Functionalized Ti 3C 2T x MXene for Sensitive Electrochemical Sensing of Ciprofloxacin. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1655. [PMID: 39452991 PMCID: PMC11510598 DOI: 10.3390/nano14201655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
The unregulated use of ciprofloxacin (CIPF) has led to increased resistance in patients and has threatened human health with issues such as digestive disorders, kidney disorders, and liver complications. In order to overcome these concerns, this work introduces a portable electrochemical sensor based on a disposable integrated screen-printed carbon electrode (SPCE) coated with gold nanoparticle-embedded thiol-functionalized Ti3C2Tx MXene (AuNPs-S-Ti3C2Tx MXene) for simple, rapid, precise, and sensitive quantification of CIPF in milk and water samples. The high surface area and electrical conductivity of AuNPs are maximized thanks to the strong interaction between AuNPs and SH-Ti3C2Tx MXene, which can prevent the aggregation of AuNPs and endow larger electroactive areas. Ti3C2Tx MXene was synthesized from Ti3AlC2 MAX phases, and its thiol functionalization was achieved using 3-mercaptopropyl trimethoxysilane. The prepared AuNPs-S-Ti3C2Tx MXene nanocomposite was characterized using FESEM, EDS, XRD, XPS, FTIR, and UV-visible spectroscopy. The electrochemical behavior of the nanocomposite was examined using CV, EIS, DPV, and LSV. The AuNPs-S-Ti3C2Tx MXene/SPCE showed higher electrochemical performances towards CIPF oxidation than a conventional AuNPs-Ti3C2Tx MXene/SPCE. Under the optimized DPV and LSV conditions, the developed nonenzymatic CIPF sensor displayed a wide range of detection concentrations from 0.50 to 143 μM (DPV) and from 0.99 to 206 μM (LSV) with low detection limits of 0.124 μM (DPV) and 0.171 μM (LSV), and high sensitivities of 0.0863 μA/μM (DPV) and 0.2182 μA/μM (LSV).
Collapse
Affiliation(s)
| | | | - Keehoon Won
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea; (M.E.); (M.S.)
| |
Collapse
|
2
|
Komiyama M. Monomeric, Oligomeric, Polymeric, and Supramolecular Cyclodextrins as Catalysts for Green Chemistry. RESEARCH (WASHINGTON, D.C.) 2024; 7:0466. [PMID: 39253101 PMCID: PMC11381675 DOI: 10.34133/research.0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
This review comprehensively covers recent developments of cyclodextrin-mediated chemical transformations for green chemistry. These cyclic oligomers of glucose are nontoxic, eco-friendly, and recyclable to accomplish eminent functions in water. Their most important feature is to form inclusion complexes with reactants, intermediates, and/or catalysts. As a result, their cavities serve as sterically restricted and apolar reaction fields to promote the efficiency and selectivity of reactions. Furthermore, unstable reagents and intermediates are protected from undesired side reactions. The scope of their applications has been further widened through covalent or noncovalent modifications. Combinations of them with metal catalysis are especially successful. In terms of these effects, various chemical reactions are achieved with high selectivity and yield so that valuable chemicals are synthesized from multiple components in one-pot reactions. Furthermore, cyclodextrin units are orderly assembled in oligomers and polymers to show their cooperation for advanced properties. Recently, cyclodextrin-based metal-organic frameworks and polyoxometalate-cyclodextrin frameworks have been fabricated and employed for unique applications. Cyclodextrins fulfill many requirements for green chemistry and should make enormous contributions to this growing field.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
3
|
Weng P, Li C, Liu Q, Tang Z, Zhou Z, Chen S, Hao Y, Xu M. A ternary nucleotide-lanthanide coordination nanoprobe for ratiometric fluorescence detection of ciprofloxacin. LUMINESCENCE 2024; 39:e4667. [PMID: 38178733 DOI: 10.1002/bio.4667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Ciprofloxacin (CIP) is a widely used broad-spectrum antibiotic and has been associated with various side effects, making its accurate detection crucial for patient safety, drug quality compliance, and environmental and food safety. This study presents the development of a ternary nucleotide-lanthanide coordination nanoprobe, GMP-Tb-BDC (GMP: guanosine 5'-monophosphate, BDC: 2-amino-1,4-benzenedicarboxylic acid), for the sensitive and ratiometric detection of CIP. The GMP-Tb-BDC nanoprobe was constructed by incorporating the blue-emissive ligand BDC into the Tb/GMP coordination polymers. Upon the addition of CIP, the fluorescence of terbium ion (Tb3+ ) was significantly enhanced due to the coordination and fluorescence sensitization properties of CIP, while the emission of the BDC ligand remained unchanged. The nanoprobe demonstrated good linearity in the concentration range of 0-10 μM CIP. By leveraging mobile phone software to analyze the color signals, rapid on-site analysis of CIP was achieved. Furthermore, the nanoprobe exhibited accurate analysis of CIP in actual drug and milk samples. This study showcases the potential of the GMP-Tb-BDC nanoprobe for practical applications in CIP detection.
Collapse
Affiliation(s)
- Pei Weng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Chunlan Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| | - Qiuhua Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Zaichun Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, China
| |
Collapse
|
4
|
Smajdor J, Paczosa-Bator B, Piech R. Electrochemical Sensor Based on the Hierarchical Carbon Nanocomposite for Highly Sensitive Ciprofloxacin Determination. MEMBRANES 2023; 13:682. [PMID: 37505048 PMCID: PMC10385619 DOI: 10.3390/membranes13070682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
A new voltammetry method for the highly sensitive antibacterial drug ciprofloxacin (CIP) is presented using glassy carbon electrodes modified with hierarchical electrospun carbon nanofibers with NiCo nanoparticles (eCNF/CNT/NiCo-GCE). The use of a modified glassy carbon electrode in the form of hierarchical electrospun carbon nanofibers with NiCo nanoparticles (eCNF/CNT/NiCo) led to an LOD value as low as 6.0 µmol L-1 with a measurement sensitivity of 3.33 µA µmol L-1. The described procedure was successfully applied for CIP determination in samples with complex matrices, such as urine or plasma, and also in pharmaceutical products and antibiotic discs with satisfactory recovery values ranging between 94-104%. The proposed electrode was characterised by great stability, with the possibility of use for about 4 weeks without any significant change in the CIP peak current. The repeatability of the CIP response on the eCNF/CNT/NiCo/GC is also very good; its value measured and expressed as RSD is equal to 2.4% for a CIP concentration of 0.025 µmol L-1 (for 7 consecutive CIP voltammogram registrations). The procedure for electrode preparation is quick and simple and does not involve the use of expensive apparatus.
Collapse
Affiliation(s)
- Joanna Smajdor
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza, 30-059 Krakow, Poland
| | | | | |
Collapse
|
5
|
Electroanalytical application of Ag@POM@rGO nanocomposite and ionic liquid modified carbon paste electrode for the quantification of ciprofloxacin antibiotic. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
6
|
Mani A, Ramasamy P, Prabhu AAM, Rajendiran N. Investigation of Ag and Ag/Co bimetallic nanoparticles with naproxen-cyclodextrin inclusion complex. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
7
|
Tu Z, Tian F, Li X, Tian D, Li R, Wu Z. Cyclodextrin functionalization enhancement in a CA-β-CD/g-C 3N 4/Ag 2CO 3 Z-type heterojunction towards efficient photodegradation of organic pollutants. REACT CHEM ENG 2023. [DOI: 10.1039/d3re00025g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
More free radicals can be produced quickly by CA-β-CD/CN/Ag2CO3, leading to more effective and stable photocatalytic activity. The interfacial charge separation has been improved by the CA-β-CD modified CN/Ag2CO3 heterojunction.
Collapse
Affiliation(s)
- Zhuo Tu
- School of Environmental and Chemical Engineering, Xi'an Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Fei Tian
- School of Environmental and Chemical Engineering, Xi'an Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Xue Li
- School of Environmental and Chemical Engineering, Xi'an Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Duoduo Tian
- School of Environmental and Chemical Engineering, Xi'an Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Runze Li
- School of Environmental and Chemical Engineering, Xi'an Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China
| |
Collapse
|
8
|
Sethu Madhavan A, Kakkaraparambil Vijayan J, Rajith L. A Layered Electrochemical Sensor for Epinephrine Based on a Nitrogen‐Doped Reduced Graphene Oxide‐ZnFe
2
O
4
/β‐Cyclodextrin‐Modified Platinum Electrode. ChemistrySelect 2022. [DOI: 10.1002/slct.202203252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Arya Sethu Madhavan
- Department of Applied Chemistry Cochin University of Science and Technology Kochi 682022 India
| | | | - Leena Rajith
- Department of Applied Chemistry Cochin University of Science and Technology Kochi 682022 India
| |
Collapse
|
9
|
Azriouil M, Matrouf M, Ettadili FE, Laghrib F, Farahi A, Saqrane S, Bakasse M, Lahrich S, El Mhammedi MA. Recent trends on electrochemical determination of antibiotic Ciprofloxacin in biological fluids, pharmaceutical formulations, environmental resources and foodstuffs: Direct and indirect approaches. Food Chem Toxicol 2022; 168:113378. [PMID: 35987282 DOI: 10.1016/j.fct.2022.113378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
In the last few decades, pharmaceuticals, credited with saving millions of lives, have emerged as a new class of environmental contaminants. These compounds can have both chronic and acute harmful effects on aquatic ecosystems and consequently on human health. Therefore, there is an urgent need for the development of extremely sensitive, portable, and low-cost devices to perform analysis. In the present review article, recent reports on the application of various voltammetric and photo-electrochemical techniques using different electrode materials for the determination of antibiotic Ciprofloxacin (CIPRO) are reported. This review provides an insight into direct and indirect electrochemical approaches as well as the photoelectrochemical methods used for the determination of CIPRO. Emphasis is put on the applications of unmodified and modified carbon-based electrodes considering the modifier, supporting electrolytes, analytical method, concentration range, limit of detection, and real matrices. Carbon-based electrodes are the most used materials attributed to their commercial availability, reduced cost, high chemical stability, and non-toxicity.
Collapse
Affiliation(s)
- M Azriouil
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - M Matrouf
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - F E Ettadili
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - F Laghrib
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco; Sidi Mohamed Ben Abdellah University, Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of Sciences, Fez, Morocco
| | - A Farahi
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - S Saqrane
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - M Bakasse
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco; Chouaib Doukkali University, Organic Micropollutants Analysis Team, Faculty of Sciences, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, 25 000, Khouribga, Morocco.
| |
Collapse
|
10
|
Emerging optical and electrochemical biosensing approaches for detection of ciprofloxacin residues in food and environment samples: A comprehensive overview. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Cheng C, Qiao J, Zhang H, Zhao Z, Qi L. Polymer-capped gold nanoparticles as nanozymes with improved catalytic activity for the monitoring of serum ciprofloxacin. Analyst 2022; 147:1509-1514. [PMID: 35293403 DOI: 10.1039/d2an00158f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
More recently, gold nanoparticle (AuNP)-based nanozymes have become one of the burgeoning research hot topics. However, few studies have focused on these AuNP-nanozymes with polymers as ligands. A significant challenge is to reveal their catalytic mechanism and to improve their catalytic activity by changing the structures of the polymers. In this study, polyacrylamide (PAM) with different chain lengths was synthesized and used as the ligand to prepare PAM@AuNPs. The resultant nanozymes exhibited good peroxidase-like activity for catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). In particular, due to the electrostatic interaction between the negatively charged PAM@AuNPs and the positively charged drug, the addition of ciprofloxacin in the oxidation system induced the aggregation of PAM@AuNPs and produced more amount of reactive oxygen species, which greatly promoted the catalytic activity of PAM@AuNPs. Inspired by the attractive property, a highly selective and sensitive colorimetric assay for the monitoring of ciprofloxacin was created. A good linear relationship between the UV-Vis absorption intensity of PAM@AuNPs-TMB-H2O2 at 650 nm wavelength and the ciprofloxacin concentration was observed ranging from 1.0 μM to 12.0 μM (R2 = 0.998), providing the detection limit of 0.5 μM. The ciprofloxacin metabolism was further studied in rats. It reveals great potential of polymer protected AuNP-nanozymes in practical drug analysis.
Collapse
Affiliation(s)
- Cheng Cheng
- Key Lab of Analytical Chemistry for Living Bio-systems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, P.R. China. .,College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Juan Qiao
- Key Lab of Analytical Chemistry for Living Bio-systems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, P.R. China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hongyi Zhang
- College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Zhenwen Zhao
- Key Lab of Analytical Chemistry for Living Bio-systems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, P.R. China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Li Qi
- Key Lab of Analytical Chemistry for Living Bio-systems, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing 100190, P.R. China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
12
|
Wang Y, Sun X, Cai L, Wang H, Zhang B, Fang G, Wang S. A “signal on/off” biomimetic electrochemiluminescence sensor using titanium carbide nanodots as co-reaction accelerator for ultra-sensitive detection of ciprofloxacin. Anal Chim Acta 2022; 1206:339690. [DOI: 10.1016/j.aca.2022.339690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/01/2022]
|
13
|
Singh S, Numan A, Cinti S. Point-of-Care for Evaluating Antimicrobial Resistance through the Adoption of Functional Materials. Anal Chem 2022; 94:26-40. [PMID: 34802244 PMCID: PMC8756393 DOI: 10.1021/acs.analchem.1c03856] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sima Singh
- IES
Institute of Pharmacy, IES University Campus, Kalkheda, Ratibad Main Road, Bhopal 462044, Madhya Pradesh, India
| | - Arshid Numan
- Graphene
& Advanced 2D Materials Research Group (GAMRG), School of Engineering
and Technology, Sunway University, 5, Jalan University, Bandar Sunway, 47500 Petaling
Jaya, Selangor, Malaysia
| | - Stefano Cinti
- Department
of Pharmacy, University of Naples “Federico
II”, Via D. Montesano 49, 80131 Naples, Italy
- BAT
Center−Interuniversity Center for Studies on Bioinspired Agro-Environmental
Technology, University of Napoli Federico
II, 80055 Naples, Italy
| |
Collapse
|
14
|
Singh V, Kuss S. Pico-molar electrochemical detection of ciprofloxacin at composite electrodes. Analyst 2022; 147:3773-3782. [DOI: 10.1039/d2an00645f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid determination of ciprofloxacin at OCNTs-PDA-Ag sensors enables environmental monitoring and future bioelectrochemical studies.
Collapse
Affiliation(s)
- Vikram Singh
- University of Manitoba, Department of Chemistry, Winnipeg R3T 2N2, Canada
| | - Sabine Kuss
- University of Manitoba, Department of Chemistry, Winnipeg R3T 2N2, Canada
| |
Collapse
|
15
|
Raza ZA, Munim SA, Ayub A. Recent developments in polysaccharide-based electrospun nanofibers for environmental applications. Carbohydr Res 2021; 510:108443. [PMID: 34597980 DOI: 10.1016/j.carres.2021.108443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022]
Abstract
Electrospinning has become an inevitable approach to produce nanofibrous structures for diverse environmental applications. Polysaccharides, due to their variety of types, biobased origins, and eco-friendly, and renewable nature are wonderful materials for the said purpose. The present review discusses the electrospinning process, the parameters involved in the formation of electrospun nanofibers in general, and the polysaccharides in specific. The selection of materials to be electrospun depends on the processing conditions and properties deemed desirable for specific applications. Thereby, the conditions to electrospun polysaccharides-based nanofibers have been focused on for possible environmental applications including air filtration, water treatment, antimicrobial treatment, environmental sensing, and so forth. The polysaccharide-based electrospun membranes, for instance, due to their active adsorption sites could find significant potential for contaminants removal from the aqueous systems. The study also gives some recommendations to overcome any shortcomings faced during the electrospinning and environmental applications of polysaccharide-based matrices.
Collapse
Affiliation(s)
- Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan.
| | - S A Munim
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan
| | - Asif Ayub
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan
| |
Collapse
|