1
|
Gawlig C, Hirschberger R, Hanci G, Schott S, Marandi S, Hesse IR, Rühl M. Full sequencing of 100mer sgRNA via tandem mass spectrometry by targeted RNase H digestion with customized probes. Anal Bioanal Chem 2025:10.1007/s00216-025-05737-y. [PMID: 39833501 DOI: 10.1007/s00216-025-05737-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
The use of single-guide RNA (sgRNA) for gene editing using the CRISPR Cas9 system has become a powerful technique in various fields, especially with the growing interest in such molecules as therapeutic options in the last years. An important parameter for the use of these molecules is the verification of the correct sgRNA oligonucleotide sequence. Apart from next-generation sequencing protocols, mass spectrometry (MS) has been proven as a powerful technique for this purpose. The protocol and investigations presented in this work show an optimal digestion and 100% sequence coverage of sgRNA, while top-down approaches or other ribonuclease (RNase) digestion strategies obtain a sequence coverage of up to 80-90% utilizing multiple RNases. The results in this publication were obtained by utilizing DNA-RNA hybrid GAPmer-like probes and RNase H, an enzyme which specifically hydrolyzes RNA in DNA-RNA double strands. We assessed the optimal length of the DNA segment of these hybrid probes to maximize the specificity of the RNase H digestion and to achieve complete sequence confirmation by tandem MS analysis of the resulting digestion products. Furthermore, we showed that the approach is applicable for the identification of common synthesis-related impurities, like truncations and elongations. Despite the fact that the accessibility of this approach for highly modified molecules is limited to nucleotides which are not 2'-O-methylated, the optimized sequence coverage makes it a viable method.
Collapse
Affiliation(s)
- Christopher Gawlig
- Biospring Gesellschaft für Biotechnologie, Alt-Fechenheim 34, Frankfurt am Main, 60386, Germany
| | - Rebecca Hirschberger
- Biospring Gesellschaft für Biotechnologie, Alt-Fechenheim 34, Frankfurt am Main, 60386, Germany
| | - Güngör Hanci
- Biospring Gesellschaft für Biotechnologie, Alt-Fechenheim 34, Frankfurt am Main, 60386, Germany
| | - Saskia Schott
- Biospring Gesellschaft für Biotechnologie, Alt-Fechenheim 34, Frankfurt am Main, 60386, Germany
| | - Shima Marandi
- Biospring Gesellschaft für Biotechnologie, Alt-Fechenheim 34, Frankfurt am Main, 60386, Germany
| | - Ida Ronja Hesse
- Biospring Gesellschaft für Biotechnologie, Alt-Fechenheim 34, Frankfurt am Main, 60386, Germany
| | - Michael Rühl
- Biospring Gesellschaft für Biotechnologie, Alt-Fechenheim 34, Frankfurt am Main, 60386, Germany.
| |
Collapse
|
2
|
Lanzillotti MB, Brodbelt JS. Progress in Tandem Mass Spectrometry Data Analysis for Nucleic Acids. MASS SPECTROMETRY REVIEWS 2025. [PMID: 39797409 DOI: 10.1002/mas.21923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025]
Abstract
Mass spectrometry (MS) has become a critical tool in the characterization of covalently modified nucleic acids. Well-developed bottom-up approaches, where nucleic acids are digested with an endonuclease and the resulting oligonucleotides are separated before MS and MS/MS analysis, provide substantial insight into modified nucleotides in biological and synthetic nucleic. Top-down MS presents an alternative approach where the entire nucleic acid molecule is introduced to the mass spectrometer intact and then fragmented by MS/MS. Current top-down MS workflows have incorporated automated, on-line HPLC workflows to enable rapid desalting of nucleic acid samples for facile mass analysis without complication from adduction. Furthermore, optimization of MS/MS parameters utilizing collision, electron, or photon-based activation methods have enabled effective bond cleavage throughout the phosphodiester backbone while limiting secondary fragmentation, allowing characterization of progressively larger (~100 nt) nucleic acids and localization of covalent modifications. Development of software applications to perform automated identification of fragment ions has accelerated the broader adoption of mass spectrometry for analysis of nucleic acids. This review focuses on progress in tandem mass spectrometry for characterization of nucleic acids with particular emphasis on the software tools that have proven critical for advancing the field.
Collapse
|
3
|
Wei B, Dai L, Zhang K. Applications of hydrophilic interaction and mixed-mode liquid chromatography in pharmaceutical analysis. J Chromatogr A 2025; 1739:465524. [PMID: 39613506 DOI: 10.1016/j.chroma.2024.465524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024]
Abstract
Hydrophilic Interaction Liquid Chromatography (HILIC) and Mixed-Mode Chromatography (MMC) excel in separating polar, hydrophilic, and charged analytes due to unique hydrophilic or mixed-mode retention mechanisms. They represent a complementary approach to the widely used Reversed Phase Liquid Chromatography (RPLC). Often, where RPLC struggles, HILIC and MMC thrive. The applications of HILIC and MMC in pharmaceutical analysis are expanding rapidly across a variety of drug modalities. This article reviews advances in the applications of HILIC and MMC in seven major areas of pharmaceutical analysis: synthetic small molecules, counterions and salts, lipids and surfactants, carbohydrates, amino acids and peptides, proteins, and nucleic acids in the past two decades. We aim to provide comprehensive information and strategic guidance to facilitate future research, development and applications in these areas.
Collapse
Affiliation(s)
- Bingchuan Wei
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lulu Dai
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly Zhang
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
4
|
Parr MK, Keiler AM. Oligonucleotide therapeutics in sports? An antidoping perspective. Arch Pharm (Weinheim) 2025; 358:e2400404. [PMID: 39449227 PMCID: PMC11704058 DOI: 10.1002/ardp.202400404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Within the last two decades, the European Medicines Agency and the US Food and Drug Administration have approved several gene therapies. One category is oligonucleotide therapeutics, which allow for the regulation of the expression of target genes. Besides already approved therapeutics, there are several preclinical and clinical trials ongoing. The World Anti-Doping Agency prohibits the use of "nucleic acids or nucleic acid analogs that may alter genome sequences and/or alter gene expression by any mechanism" as a nonspecified method at all times. Hence, the administration of nucleic acids or analogs by athletes would cause an Anti-Doping Rule Violation. Herein, we discuss types of oligonucleotide therapeutics, their potential to be misused in sports, and considerations to sample preparation and mass spectrometric approaches with regard to antidoping analysis.
Collapse
Affiliation(s)
- Maria K. Parr
- Institute of Pharmacy, Pharmaceutical and Medicinal ChemistryFreie Universität BerlinBerlinGermany
| | - Annekathrin M. Keiler
- Institute of Doping Analysis & Sports BiochemistryKreischaGermany
- Environmental Monitoring & Endocrinology, Faculty of BiologyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
5
|
Li J, Pan R, Yue F, Gao T, Wu X, Shi L, Wang Y, Zhao D, Lan Z, Chen H, Ye Q, Cao S. Evaluation of the Efficacy of the Vaccine Production Process in Removing Residual Host Cell DNA from the Vero Cell Rabies Vaccine. Vaccines (Basel) 2024; 12:1379. [PMID: 39772041 PMCID: PMC11680306 DOI: 10.3390/vaccines12121379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The Vero cell rabies vaccine is currently the most widely used human rabies vaccine. However, owing to the presence of residual host cell DNA (HCD) in the final product and the potential tumorigenicity of the DNA of high-passage Vero cells, the WHO not only sets a limit on the number of times cells used in production can be passaged, but also imposes strict requirements on the amount of residual HCD in the final vaccine product. OBJECTIVES To systematically reduce the HCD level in the final vaccine product, multiple purification steps are included in the vaccine production process. This study investigated the effectiveness of key production steps in antigen recovery and DNA removal. METHODS The residual HCD fragment content and size distribution were detected using fluorescence quantitative PCR (qPCR) and capillary gel electrophoresis (CGE), and the rabies virus glycoprotein antigen content was detected using enzyme-linked immunosorbent assay (ELISA). The antigen recovery rate and HCD removal rate in each key process were calculated to evaluate the scientific basis and effectiveness of each production step. Additionally, the stability of the process was studied using multiple commercial batches of the product. RESULTS The results revealed that the total antigen recovery rate in the production process described in this report was no less than 8.5%, and the effective removal rate of residual HCD was not lower than 99.99%. Moreover, the amount of residual HCD in the final product was far below the quality standard of 2 ng/dose, and most of the residual HCD fragments were smaller than 200 bp. The results of the process stability studies on multiple commercial batches showed that the bulk human rabies vaccine produced by this process had excellent safety and efficacy and that the production process was stable and thus suitable for large-scale batch production. CONCLUSIONS The production process described in this study achieved effective recovery of viral antigens and efficient removal of residual HCD, and the process was stable and controllable, enabling the continuous and stable production of vaccine products that meet WHO recommendations and the relevant requirements of the current edition of the Chinese Pharmacopeia. In addition, this study provides theoretical guidance for optimizing the vaccine production process.
Collapse
Affiliation(s)
- Jia Li
- National Institutes for Food and Drug Control, No. 31, Huatuo Road, Beijing 102629, China; (J.L.); (X.W.); (L.S.); (Y.W.); (D.Z.); (Q.Y.)
| | - Ruowen Pan
- Hualan Biological Vaccine Inc., Jia No.1-1, Hualan Ave., Xinxiang 453003, China; (R.P.); (F.Y.)
| | - Fengyi Yue
- Hualan Biological Vaccine Inc., Jia No.1-1, Hualan Ave., Xinxiang 453003, China; (R.P.); (F.Y.)
| | - Tie Gao
- SCIEX China, 5F, Building 1, 24 Yard, Jiuxianqiao Mid Road, Chaoyang District, Beijing 100015, China; (T.G.); (Z.L.); (H.C.)
| | - Xiaohong Wu
- National Institutes for Food and Drug Control, No. 31, Huatuo Road, Beijing 102629, China; (J.L.); (X.W.); (L.S.); (Y.W.); (D.Z.); (Q.Y.)
| | - Leitai Shi
- National Institutes for Food and Drug Control, No. 31, Huatuo Road, Beijing 102629, China; (J.L.); (X.W.); (L.S.); (Y.W.); (D.Z.); (Q.Y.)
| | - Yunpeng Wang
- National Institutes for Food and Drug Control, No. 31, Huatuo Road, Beijing 102629, China; (J.L.); (X.W.); (L.S.); (Y.W.); (D.Z.); (Q.Y.)
| | - Danhua Zhao
- National Institutes for Food and Drug Control, No. 31, Huatuo Road, Beijing 102629, China; (J.L.); (X.W.); (L.S.); (Y.W.); (D.Z.); (Q.Y.)
| | - Zhaohui Lan
- SCIEX China, 5F, Building 1, 24 Yard, Jiuxianqiao Mid Road, Chaoyang District, Beijing 100015, China; (T.G.); (Z.L.); (H.C.)
| | - Hongxu Chen
- SCIEX China, 5F, Building 1, 24 Yard, Jiuxianqiao Mid Road, Chaoyang District, Beijing 100015, China; (T.G.); (Z.L.); (H.C.)
| | - Qiang Ye
- National Institutes for Food and Drug Control, No. 31, Huatuo Road, Beijing 102629, China; (J.L.); (X.W.); (L.S.); (Y.W.); (D.Z.); (Q.Y.)
| | - Shouchun Cao
- National Institutes for Food and Drug Control, No. 31, Huatuo Road, Beijing 102629, China; (J.L.); (X.W.); (L.S.); (Y.W.); (D.Z.); (Q.Y.)
| |
Collapse
|
6
|
Chen X, Wang L, Xie J, Nowak JS, Luo B, Zhang C, Jia G, Zou J, Huang D, Glatt S, Yang Y, Su Z. RNA sample optimization for cryo-EM analysis. Nat Protoc 2024:10.1038/s41596-024-01072-1. [PMID: 39548288 DOI: 10.1038/s41596-024-01072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2024] [Indexed: 11/17/2024]
Abstract
RNAs play critical roles in most biological processes. Although the three-dimensional (3D) structures of RNAs primarily determine their functions, it remains challenging to experimentally determine these 3D structures due to their conformational heterogeneity and intrinsic dynamics. Cryogenic electron microscopy (cryo-EM) has recently played an emerging role in resolving dynamic conformational changes and understanding structure-function relationships of RNAs including ribozymes, riboswitches and bacterial and viral noncoding RNAs. A variety of methods and pipelines have been developed to facilitate cryo-EM structure determination of challenging RNA targets with small molecular weights at subnanometer to near-atomic resolutions. While a wide range of conditions have been used to prepare RNAs for cryo-EM analysis, correlations between the variables in these conditions and cryo-EM visualizations and reconstructions remain underexplored, which continue to hinder optimizations of RNA samples for high-resolution cryo-EM structure determination. Here we present a protocol that describes rigorous screenings and iterative optimizations of RNA preparation conditions that facilitate cryo-EM structure determination, supplemented by cryo-EM data processing pipelines that resolve RNA dynamics and conformational changes and RNA modeling algorithms that generate atomic coordinates based on moderate- to high-resolution cryo-EM density maps. The current protocol is designed for users with basic skills and experience in RNA biochemistry, cryo-EM and RNA modeling. The expected time to carry out this protocol may range from 3 days to more than 3 weeks, depending on the many variables described in the protocol. For particularly challenging RNA targets, this protocol could also serve as a starting point for further optimizations.
Collapse
Affiliation(s)
- Xingyu Chen
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Wang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiahao Xie
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jakub S Nowak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Bingnan Luo
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guowen Jia
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zou
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dingming Huang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Yang Yang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Pont L, Vergara-Barberán M, Carrasco-Correa EJ. A Comprehensive Review on Capillary Electrophoresis-Mass Spectrometry in Advancing Biomolecular Research. Electrophoresis 2024. [PMID: 39508247 DOI: 10.1002/elps.202400122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024]
Abstract
This review provides an in-depth exploration of capillary electrophoresis-mass spectrometry (CE-MS) in biomolecular research from 2020 to 2024. CE-MS emerges as a versatile and powerful tool due to its numerous advantages, facilitating the analysis of various biomolecules, including proteins, peptides, oligonucleotides, and other metabolites, such as lipids, carbohydrates, or amines, among others. The review extends to various CE modes and interfaces for the CE-MS coupling, offering comprehensive insights into their applications within biomolecular research. Furthermore, it effectively summarizes the conditions employed in CE-MS while also addressing critical aspects such as sample preparation requirements. Despite its advantages, the review highlights a gap between discovery and practical implementation, underscoring the need for large-scale validation and method standardization to fully realize the potential of CE-MS in biomolecular research.
Collapse
Affiliation(s)
- Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
- Serra Húnter Program, Generalitat de Catalunya, Barcelona, Spain
| | - María Vergara-Barberán
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, Valencia, Spain
| | | |
Collapse
|
8
|
Jankech T, Gerhardtova I, Stefanik O, Chalova P, Jampilek J, Majerova P, Kovac A, Piestansky J. Current green capillary electrophoresis and liquid chromatography methods for analysis of pharmaceutical and biomedical samples (2019-2023) - A review. Anal Chim Acta 2024; 1323:342889. [PMID: 39182966 DOI: 10.1016/j.aca.2024.342889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 08/27/2024]
Abstract
Separation analytical methods, including liquid chromatography (LC) and capillary electrophoresis (CE), in combination with an appropriate detection technique, are dominant and powerful approaches preferred in the analysis of pharmaceutical and biomedical samples. Recent trends in analytical methods are focused on activities that push them to the field of greenness and sustainability. New approaches based on the implementation of greener solvents, non-hazardous chemicals, and reagents have grown exponentially. Similarly, recent trends are pushed in to the strategies based on miniaturization, reduction of wastes, avoiding derivatization procedures, or reduction of energy consumption. However, the real greenness of the analytical method can be evaluated only according to an objective and sufficient metric offering complex results taking into account all twelve rules of green analytical chemistry (SIGNIFICANCE mnemonic system). This review provides an extensive overview of papers published in the area of development of green LC and CE methods in the field of pharmaceutical and biomedical analysis over the last 5 years (2019-2023). The main focus is situated on the metrics used for greenness evaluation of the methods applied for the determination of bioactive agents. It critically evaluates and compares the demands of the real applicability of the methods in quality control and clinical environment with the requirements of the green analytical chemistry (GAC). Greenness and practicality of the summarized methods are re-evaluated or newly evaluated with the use of the dominant metrics tools, i.e., Analytical GREEnness (AGREE), Green Analytical Procedure Index (GAPI), Blue Applicability Grade Index (BAGI), and Sample Preparation Metric of Sustainability (SPMS). Moreover, general conclusions and future perspectives of the greening procedures and greenness evaluation metrics systems are presented. This paper should provide comprehensive information to analytical chemists, biochemists, and it can also represent a valuable source of information for clinicians, biomedical or quality control laboratories interested in development of analytical methods based on greenness, practicality, and sustainability.
Collapse
Affiliation(s)
- Timotej Jankech
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina, Ilkovicova 6, SK-842 15, Bratislava, Slovak Republic
| | - Ivana Gerhardtova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina, Ilkovicova 6, SK-842 15, Bratislava, Slovak Republic
| | - Ondrej Stefanik
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic; Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic
| | - Petra Chalova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic; Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic
| | - Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska Dolina, Ilkovicova 6, SK-842 15, Bratislava, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, SK-845 45, Bratislava, Slovak Republic
| | - Juraj Piestansky
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic; Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic.
| |
Collapse
|
9
|
Feng S, Chen T, Zhang Y, Lu C. mRNA Fragmentation Pattern Detected by SHAPE. Curr Issues Mol Biol 2024; 46:10249-10258. [PMID: 39329962 PMCID: PMC11431040 DOI: 10.3390/cimb46090610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
The success of messenger RNA (mRNA) vaccines in controlling COVID-19 has warranted further developments in new technology. Currently, their quality control process largely relies on low-resolution electrophoresis for detecting chain breaks. Here, we present an approach using multi-primer reverse transcription sequencing (MPRT-seq) to identify degradation fragments in mRNA products. Using this in-house-made mRNA containing two antigens and untranslated regions (UTRs), we analyzed the mRNA completeness and degradation pattern at a nucleotide resolution. We then analyzed the sensitive base sequence and its correlation with the secondary structure. Our MPRT-seq mapping shows that certain sequences on the 5' of bulge-stem-loop structures can result in preferential chain breaks. Our results agree with commonly used capillary electrophoresis (CE) integrity analysis but at a much higher resolution, and can improve mRNA stability by providing information to remove sensitive structures or sequences in the mRNA sequence design.
Collapse
Affiliation(s)
| | | | | | - Changrui Lu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China; (S.F.); (T.C.); (Y.Z.)
| |
Collapse
|
10
|
Son A, Kim W, Park J, Park Y, Lee W, Lee S, Kim H. Mass Spectrometry Advancements and Applications for Biomarker Discovery, Diagnostic Innovations, and Personalized Medicine. Int J Mol Sci 2024; 25:9880. [PMID: 39337367 PMCID: PMC11432749 DOI: 10.3390/ijms25189880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Mass spectrometry (MS) has revolutionized clinical chemistry, offering unparalleled capabilities for biomolecule analysis. This review explores the growing significance of mass spectrometry (MS), particularly when coupled with liquid chromatography (LC), in identifying disease biomarkers and quantifying biomolecules for diagnostic and prognostic purposes. The unique advantages of MS in accurately identifying and quantifying diverse molecules have positioned it as a cornerstone in personalized-medicine advancement. MS-based technologies have transformed precision medicine, enabling a comprehensive understanding of disease mechanisms and patient-specific treatment responses. LC-MS has shown exceptional utility in analyzing complex biological matrices, while high-resolution MS has expanded analytical capabilities, allowing the detection of low-abundance molecules and the elucidation of complex biological pathways. The integration of MS with other techniques, such as ion mobility spectrometry, has opened new avenues for biomarker discovery and validation. As we progress toward precision medicine, MS-based technologies will be crucial in addressing the challenges of individualized patient care, driving innovations in disease diagnosis, prognosis, and treatment strategies.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, San Diego, CA 92037, USA
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yongho Park
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Wonseok Lee
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sangwoon Lee
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
11
|
Yamashita T, Nakamoto K, Hitaoka S, Mizoguchi J, Watanabe T, Hasebe T. Influence of oligonucleotides structures for separation of diastereomers by capillary electrophoresis method using polyvinylpyrrolidone 1,300,000. J Chromatogr A 2024; 1725:464945. [PMID: 38688053 DOI: 10.1016/j.chroma.2024.464945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
In the field of oligonucleotides drug discovery, phosphorothioate (PS) modification has been recognized as an effective tool to overcome the nuclease digestion, and generates 2n of possible diastereomers, where n equals the number of PS linkages. However, it is also well known that differences in drug efficacy and toxicity are caused by differences in stereochemistry of oligonucleotides. Therefore, the development of a high-resolution analytical method that enables stereo discrimination of oligonucleotides is desired. Under this circumstance, capillary electrophoresis (CE) using polyvinylpyrrolidone (PVP) is considered as one of the useful tools for the separation analysis of diastereomers. In this study, we evaluated the several oligonucleotides with the structural diversities in order to understand the separation mechanism of the diastereomers by CE. Especially, five kinds of 2'-moieties were deeply examined by CE with PVP 1,300,000 polymer solution. We found that different trend of the peak shapes and the peak resolution were observed among these oligonucleotides. For example, the better peak resolution was observed in 6 mer PS3-DNA compared to the rigid structure of 6 mer PS3-LNA. As for this reason, the computational simulation revealed that difference of accessible surface area caused by the steric structure of thiophosphate in each oligonucleotide is one of the key attributes to explain the separation of the diastereomers. In addition, we achieved the separation of sixteen peak tops of the diastereomers in 6 mer PS4-DNA, and the complete separation of fifteen diastereomers in 6 mer PS4-RNA. These knowledge for the separation of the diastereomers by CE will be expected to the quality control of the oligonucleotide drugs.
Collapse
Affiliation(s)
- Taro Yamashita
- Analytical Research, Pharmaceutical Science & Technology Unit, Pharmaceutical Profiling & Development Function, Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
| | - Kosuke Nakamoto
- Analytical Research, Pharmaceutical Science & Technology Unit, Pharmaceutical Profiling & Development Function, Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Seiji Hitaoka
- Emerging Modality Generation Department, Discovery Evidence Generation Function, Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Junichi Mizoguchi
- Analytical Research, Pharmaceutical Science & Technology Unit, Pharmaceutical Profiling & Development Function, Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Tomohiro Watanabe
- Analytical Research, Pharmaceutical Science & Technology Unit, Pharmaceutical Profiling & Development Function, Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Takashi Hasebe
- Analytical Research, Pharmaceutical Science & Technology Unit, Pharmaceutical Profiling & Development Function, Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| |
Collapse
|
12
|
Yao Y, Lei X, Wang Y, Zhang G, Huang H, Zhao Y, Shi S, Gao Y, Cai X, Gao S, Lin Y. A Mitochondrial Nanoguard Modulates Redox Homeostasis and Bioenergy Metabolism in Diabetic Peripheral Neuropathy. ACS NANO 2023; 17:22334-22354. [PMID: 37782570 DOI: 10.1021/acsnano.3c04462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
As a major late complication of diabetes, diabetic peripheral neuropathy (DPN) is the primary reason for amputation. Nevertheless, there are no wonder drugs available. Regulating dysfunctional mitochondria is a key therapeutic target for DPN. Resveratrol (RSV) is widely proven to guard mitochondria, yet the unsatisfactory bioavailability restricts its clinical application. Tetrahedral framework nucleic acids (tFNAs) are promising carriers due to their excellent cell entrance efficiency, biological safety, and structure editability. Here, RSV was intercalated into tFNAs to form the tFNAs-RSV complexes. tFNAs-RSV achieved enhanced stability, bioavailability, and biocompatibility compared with tFNAs and RSV alone. With its treatment, reactive oxygen species (ROS) production was minimized and reductases were activated in an in vitro model of DPN. Besides, respiratory function and adenosine triphosphate (ATP) production were enhanced. tFNAs-RSV also exhibited favorable therapeutic effects on sensory dysfunction, neurovascular deterioration, demyelination, and neuroapoptosis in DPN mice. Metabolomics analysis revealed that redox regulation and energy metabolism were two principal mechanisms that were impacted during the process. Comprehensive inspections indicated that tFNAs-RSV inhibited nitrosation and oxidation and activated reductase and respiratory chain. In sum, tFNAs-RSV served as a mitochondrial nanoguard (mito-guard), representing a viable drilling target for clinical drug development of DPN.
Collapse
Affiliation(s)
- Yangxue Yao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoyu Lei
- Research Center for Nano Biomaterials, and Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Yun Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Geru Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Hongxiao Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yuxuan Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yang Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
13
|
Goyon A, Blevins MS, Napolitano JG, Nguyen D, Goel M, Scott B, Wang J, Koenig SG, Chen T, Zhang K. Characterization of antisense oligonucleotide and guide ribonucleic acid diastereomers by hydrophilic interaction liquid chromatography coupled to mass spectrometry. J Chromatogr A 2023; 1708:464327. [PMID: 37660562 DOI: 10.1016/j.chroma.2023.464327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Oligonucleotides have become an essential modality for a variety of therapeutic approaches, including cell and gene therapies. Rapid progress in the field has attracted significant research in designing novel oligonucleotide chemistries and structures. Beyond their polar nature, the length of large RNAs and presence of numerous diastereomers for phosphorothioate (PS)-modified RNAs pose heightened challenges for their characterization. In this study, the stereochemistry of a fully-modified antisense oligonucleotide (ASO) and partially-modified guide RNAs (gRNAs) was investigated using HILIC and orthogonal techniques. The profiles of three lots of a fully-modified ASO with PS linkages were compared using ion-pairing RPLC (IPRP) and HILIC. Interestingly, three isomer peaks were partially resolved by HILIC for two lots while only one peak was observed on the IPRP profile. Model oligonucleotides having the same sequence of the five nucleotides incorporated to the 3'-end of the gRNA but differing in their number and position of PS linkages were investigated by HILIC, IPRP, ion mobility spectrometry-mass spectrometry (IM-MS) and nuclear magnetic resonance (NMR). An strategy was ultimately designed to aid in the characterization of gRNA stereochemistry. Ribonuclease (RNase) T1 digestion enabled the characterization of gRNA diastereomers by reducing their number from 32 at the gRNA intact level to 4 or 8 at the fragment level. To our knowledge, this is the first time that HILIC has successfully been utilized for the profiling of diastereomers for various oligonucleotide formats and chemical modifications.
Collapse
Affiliation(s)
- Alexandre Goyon
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Molly S Blevins
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - José G Napolitano
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Daniel Nguyen
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Meenakshi Goel
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Brandon Scott
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jenny Wang
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stefan G Koenig
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tao Chen
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly Zhang
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
14
|
Hutanu A, Ferreiro ML, van Haasteren J, Höcker O, Montealegre C, Mäser M, Keresztfalvi A, Monti J, Schwarz MA. Electrophoretic characterization of LNP/AAV-encapsulated nucleic acids: Strengths and weaknesses. Electrophoresis 2023; 44:1595-1606. [PMID: 37625008 DOI: 10.1002/elps.202300127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023]
Abstract
The use of nucleic acids (NAs) has revolutionized medical approaches and ushered in a new era of combating various diseases. Accordingly, there is an increasing demand for accurate identification, localization, quantification, and characterization of NAs encapsulated in nonviral or viral vectors. The vast spectrum of molecular dimensions and intra- and intermolecular interactions presents a formidable obstacle for NA analytical development. Typically, the comprehensive analysis of encapsulated NAs, free NAs, and their spatial distribution poses a challenge that is seldom tackled in its complete complexity. The identification of appropriate physicochemical methodologies for large nonencapsulated or encapsulated NAs is particularly intricate and necessitates an evaluation of the analytical outcomes and their appropriateness in addressing critical quality attributes. In this work, we examine the analytics of non-encapsulated or encapsulated large NAs (>500 nucleotides) utilizing capillary electrophoresis (CE) and liquid chromatography (LC) methodologies such as free zone CE, gel CE, affinity CE, and ion pair high-performance liquid chromatography (HPLC). These methodologies create a complete picture of the NA's critical quality attributes, including quantity, identity, purity, and content ratio.
Collapse
Affiliation(s)
- Andrei Hutanu
- Pharma Technical Development, Cell and Gene Therapy Unit, F. Hoffmann-La Roche AG, Basel, Switzerland
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Miriam López Ferreiro
- Pharma Technical Development, Cell and Gene Therapy Unit, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Joost van Haasteren
- Pharma Technical Development, Cell and Gene Therapy Unit, F. Hoffmann-La Roche AG, Basel, Switzerland
| | | | | | | | | | | | - Maria Anna Schwarz
- Department of Chemistry, University of Basel, Basel, Switzerland
- Solvias AG, Kaiseraugst, Switzerland
| |
Collapse
|
15
|
Lee KH, Song J, Kim S, Han SR, Lee SW. Real-time monitoring strategies for optimization of in vitro transcription and quality control of RNA. Front Mol Biosci 2023; 10:1229246. [PMID: 37771458 PMCID: PMC10523567 DOI: 10.3389/fmolb.2023.1229246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/16/2023] [Indexed: 09/30/2023] Open
Abstract
RNA-based therapeutics and vaccines are opening up new avenues for modern medicine. To produce these useful RNA-based reagents, in vitro transcription (IVT) is an important reaction that primarily determines the yield and quality of the product. Therefore, IVT condition should be well optimized to achieve high yield and purity of transcribed RNAs. To this end, real-time monitoring of RNA production during IVT, which allows for fine tuning of the condition, would be required. Currently, light-up RNA aptamer and fluorescent dye pairs are considered as useful strategies to monitor IVT in real time. Fluorophore-labeled antisense probe-based methods can also be used for real-time IVT monitoring. In addition, a high-performance liquid chromatography (HPLC)-based method that can monitor IVT reagent consumption has been developed as a powerful tool to monitor IVT reaction in near real-time. This mini-review briefly introduces some strategies and examples for real-time IVT monitoring and discusses pros and cons of IVT monitoring methods.
Collapse
Affiliation(s)
| | - Jaehwi Song
- R&D Center, Rznomics Inc., Seongnam, Republic of Korea
| | | | | | - Seong-Wook Lee
- R&D Center, Rznomics Inc., Seongnam, Republic of Korea
- Department of Bioconvergence Engineering, Research Institute of Advanced Omics, Dankook University, Yongin, Republic of Korea
| |
Collapse
|
16
|
Sorensen MJ, Paulines MJ, Maloney TD. Evaluating orthogonality between ion-pair reversed phase, anion exchange, and hydrophilic interaction liquid chromatography for the separation of synthetic oligonucleotides. J Chromatogr A 2023; 1705:464184. [PMID: 37419013 DOI: 10.1016/j.chroma.2023.464184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
The orthogonality of separation between ion-pair reversed phase (IP-RP), anion exchange (AEX), and hydrophilic interaction liquid chromatography (HILIC) was evaluated for oligonucleotides. A polythymidine standard ladder was first used to evaluate the three methods and showed zero orthogonality, where retention and selectivity were based on oligonucleotide charge/size under all three conditions. Next, a model 23-mer synthetic oligonucleotide containing 4 phosphorothioate bonds with 2' fluoro and 2'-O-methyl ribose modifications typical of small interfering RNA was used for evaluating orthogonality. The resolution and orthogonality were evaluated between the three modes of chromatography in terms of selectivity differences for nine common impurities, including truncations (n-1, n-2), addition (n + 1), oxidation, and de-fluorination. We first evaluated different ion-pairing reagents that provided the best separation of the key impurities while suppressing diastereomer separation due to phosphorothioate linkages. Although different ion-pairing reagents affected resolution, very little orthogonality was observed. We then compared the retention times between IP-RP, HILIC, and AEX for each impurity of the model oligonucleotide and observed various selectivity changes. The results suggest that coupling HILIC with either AEX or IP-RP provide the highest degree of orthogonality due to the differences in retention for hydrophilic nucleobases and modifications under HILIC conditions. IP-RP provided the highest overall resolution for the impurity mixture, whereas more co-elution was observed with HILIC and AEX. The unique selectivity patterns offered by HILIC provides an interesting alternative to IP-RP or AEX, in addition to the potential for coupling with multidimensional separations. Future work should explore orthogonality for oligonucleotides with subtle sequence differences such as nucleobase modifications and base flip isomers, longer strands such as guide RNA and messenger RNA, and other biotherapeutic modalities such as peptides, antibodies, and antibody-drug-conjugates.
Collapse
Affiliation(s)
- Matthew J Sorensen
- Synthetic Molecule Design and Development, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN 46285, United States
| | - Mellie June Paulines
- Synthetic Molecule Design and Development, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN 46285, United States
| | - Todd D Maloney
- Synthetic Molecule Design and Development, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN 46285, United States.
| |
Collapse
|
17
|
Hutanu A, Signori C, Moritz B, Gregoritza M, Rohde A, Schwarz MA. Using Peptide Nucleic Acid Hybridization Probes for Qualitative and Quantitative Analysis of Nucleic Acid Therapeutics by Capillary Electrophoresis. Anal Chem 2023; 95:4914-4922. [PMID: 36888566 PMCID: PMC10034743 DOI: 10.1021/acs.analchem.2c04813] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The space of advanced therapeutic modalities is currently evolving in rapid pace necessitating continuous improvement of analytical quality control methods. In order to evaluate the identity of nucleic acid species in gene therapy products, we propose a capillary electrophoresis-based gel free hybridization assay in which fluorescently labeled peptide nucleic acids (PNAs) are applied as affinity probes. PNAs are engineered organic polymers that share the base pairing properties with DNA and RNA but have an uncharged peptide backbone. In the present study, we conduct various proof-of-concept studies to identify the potential of PNA probes for advanced analytical characterization of novel therapeutic modalities like oligonucleotides, plasmids, mRNA, and DNA released by recombinant adeno-associated virus. For single-stranded nucleic acids up to 1000 nucleotides, the method is an excellent choice that proved to be highly specific by detecting DNA traces in complex samples, while having a limit of quantification in the picomolar range when multiple probes are used. For double-stranded samples, only fragments that are similar in size to the probe could be quantified. This limitation can be circumvented when target DNA is digested and multiple probes are used opening an alternative to quantitative PCR.
Collapse
Affiliation(s)
- Andrei Hutanu
- Analytical Development and Quality Control, Pharma Technical Development Europe, F. Hoffmann-La Roche AG, Basel 4070, Switzerland
- University of Basel, Basel 4056, Switzerland
| | - Chiara Signori
- Analytical Development and Quality Control, Pharma Technical Development Europe, F. Hoffmann-La Roche AG, Basel 4070, Switzerland
| | - Bernd Moritz
- Analytical Development and Quality Control, Pharma Technical Development Europe, F. Hoffmann-La Roche AG, Basel 4070, Switzerland
| | - Manuel Gregoritza
- Analytical Development and Quality Control, Pharma Technical Development Europe, F. Hoffmann-La Roche AG, Basel 4070, Switzerland
| | - Adelheid Rohde
- Analytical Development and Quality Control, Pharma Technical Development Europe, F. Hoffmann-La Roche AG, Basel 4070, Switzerland
| | - Maria A Schwarz
- University of Basel, Basel 4056, Switzerland
- Solvias AG, Kaiseraugst 4303, Switzerland
| |
Collapse
|
18
|
Wang W, Gao T, Luo J, Guo L, Li X, Li Y, Chen H. Size distribution analysis of residual host cell DNA fragments in lentivirus by CGE-LIF. Electrophoresis 2023; 44:462-471. [PMID: 36353919 DOI: 10.1002/elps.202200218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022]
Abstract
During the production of cell and gene therapy products, residual host cell DNA (HCD) could cause safety risks of the biological products, and the longer the residual HCD fragment, the greater the risk to the human body. For this reason, it was necessary to develop an effective method for the size distribution analysis of residual HCD fragments with high accuracy and sensitivity. In this study, capillary gel electrophoresis with laser-induced fluorescence detector (CGE-LIF) was used to analyze the size distribution of residual HCD fragments in lentivirus products. The results confirmed that lentiviral RNA genome could interfere with the size distribution analysis of residual HCD fragments. By optimizing the amount of RNase I and digestion time in sample pretreatment process, the interfere of RNA genome could be avoided. The specificity, precision, accuracy, linear range, the detection of limit (LOD), and the quantification of limit (LOQ) of CGE-LIF method were also validated. The results showed that the CGE-LIF method had a good performance both in terms of specificity and reproducibility. The intra- and inter-day relative standard deviations of migration time and corrected peak area were all less than 1% and 2%, respectively. The 200 bp DNA marker had a good linearity between 50 and 1000 pg/ml. The LOD and LOQ of 200 bp DNA marker were 2.59 and 8.64 pg/ml, respectively. In addition, this method was successfully used to analyze the size distribution analysis of residual HCD fragments in lentivirus products with different production processes.
Collapse
Affiliation(s)
| | | | - Ji Luo
- SCIEX, Beijing, P. R. China
| | | | - Xiang Li
- Division of Recombinant Biological Products, National Institutes for Food and Drug Control (NIFDC), Beijing, P. R. China
| | - Yan Li
- National Medical Products Administration (NMPA), Key Laboratory for Quality Control and Evaluation of Vaccines and Biological Products, SiChuan Institute for Drug Control, Chengdu, P. R. China
| | | |
Collapse
|
19
|
Host mRNA Analysis of Periodontal Disease Patients Positive for Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and Tannerella forsythia. Int J Mol Sci 2022; 23:ijms23179915. [PMID: 36077312 PMCID: PMC9456077 DOI: 10.3390/ijms23179915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Periodontal disease is a frequent pathology worldwide, with a constantly increasing prevalence. For the optimal management of periodontal disease, there is a need to take advantage of actual technology to understand the bacterial etiology correlated with the pathogenic mechanisms, risk factors and treatment protocols. We analyzed the scientific literature published in the last 5 years regarding the recent applications of mRNA analysis in periodontal disease for the main known bacterial species considered to be the etiological agents: Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and Tannerella forsythia. We identified new pathogenic mechanisms, therapeutic target genes and possible pathways to prevent periodontal disease. The mRNA analysis, as well as the important technological progress in recent years, supports its implementation in the routine management of periodontal disease patients.
Collapse
|