1
|
Wang P, Liu C, Wei Z, Jiang W, Sun H, Wang Y, Hou J, Sun J, Huang Y, Wang H, Wang Y, He X, Wang X, Qian X, Zhai X. Nomogram for Predicting Early Mortality after Umbilical Cord Blood Transplantation in Children with Inborn Errors of Immunity. J Clin Immunol 2023:10.1007/s10875-023-01505-8. [PMID: 37155023 DOI: 10.1007/s10875-023-01505-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE Pediatric patients with inborn errors of immunity (IEI) undergoing umbilical cord blood transplantation (UCBT) are at risk of early mortality. Our aim was to develop and validate a prediction model for early mortality after UCBT in pediatric IEI patients based on pretransplant factors. METHODS Data from 230 pediatric IEI patients who received their first UCBT between 2014 and 2021 at a single center were analyzed retrospectively. Data from 2014-2019 and 2020-2021 were used as training and validation sets, respectively. The primary outcome of interest was early mortality. Machine learning algorithms were used to identify risk factors associated with early mortality and to build predictive models. The model with the best performance was visualized using a nomogram. Discriminative ability was measured using the area under the curve (AUC) and decision curve analysis. RESULTS Fifty days was determined as the cutoff for distinguishing early mortality in pediatric IEI patients undergoing UCBT. Of the 230 patients, 43 (18.7%) suffered early mortality. Multivariate logistic regression with pretransplant albumin, CD4 (absolute count), elevated C-reactive protein, and medical history of sepsis showed good discriminant AUC values of 0.7385 (95% CI, 0.5824-0.8945) and 0.827 (95% CI, 0.7409-0.9132) in predicting early mortality in the validation and training sets, respectively. The sensitivity and specificity were 0.5385 and 0.8154 for validation and 0.7667 and 0.7705 for training, respectively. The final model yielded net benefits across a reasonable range of risk thresholds. CONCLUSION The developed nomogram can predict early mortality in pediatric IEI patients undergoing UCBT.
Collapse
Affiliation(s)
- Ping Wang
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Chao Liu
- Yidu Cloud Technology Inc, Beijing, 100083, China
- Nanjing YiGenCloud Institute, Nanjing, 211899, China
| | - Zhongling Wei
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Wenjin Jiang
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Hua Sun
- Department of Gastroenterology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Yuhuan Wang
- Department of Gastroenterology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Jia Hou
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Ying Huang
- Department of Gastroenterology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Hongsheng Wang
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Yao Wang
- Yidu Cloud Technology Inc, Beijing, 100083, China
| | - Xinjun He
- Yidu Cloud Technology Inc, Beijing, 100083, China
- Nanjing YiGenCloud Institute, Nanjing, 211899, China
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Xiaowen Qian
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Xiaowen Zhai
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| |
Collapse
|
2
|
Boyarchuk O, Yarema N, Kravets V, Shulhai O, Shymanska I, Chornomydz I, Hariyan T, Volianska L, Kinash M, Makukh H. Newborn screening for severe combined immunodeficiency: The results of the first pilot TREC and KREC study in Ukraine with involving of 10,350 neonates. Front Immunol 2022; 13:999664. [PMID: 36189201 PMCID: PMC9521488 DOI: 10.3389/fimmu.2022.999664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Severe combined immunodeficiency (SCID) is a group of inborn errors of immunity (IEI) characterized by severe T- and/or B-lymphopenia. At birth, there are usually no clinical signs of the disease, but in the first year of life, often in the first months the disease manifests with severe infections. Timely diagnosis and treatment play a crucial role in patient survival. In Ukraine, the expansion of hemostatic stem cell transplantation and the development of a registry of bone marrow donors in the last few years have created opportunities for early correction of IEI and improving the quality and life expectancy of children with SCID. For the first time in Ukraine, we initiated a pilot study on newborn screening for severe combined immunodeficiency and T-cell lymphopenia by determining T cell receptor excision circles (TRECs) and kappa-deleting recombination excision circles (KRECs). The analysis of TREC and KREC was performed by real-time polymerase chain reaction (RT-PCR) followed by analysis of melting curves in neonatal dry blood spots (DBS). The DBS samples were collected between May 2020 and January 2022. In total, 10,350 newborns were screened. Sixty-five blood DNA samples were used for control: 25 from patients with ataxia-telangiectasia, 37 - from patients with Nijmegen breakage syndrome, 1 – with X-linked agammaglobulinemia, 2 – with SCID (JAK3 deficiency and DCLRE1C deficiency). Retest from the first DBS was provided in 5.8% of patients. New sample test was needed in 73 (0.7%) of newborns. Referral to confirm or rule out the diagnosis was used in 3 cases, including one urgent abnormal value. CID (TlowB+NK+) was confirmed in a patient with the urgent abnormal value. The results of a pilot study in Ukraine are compared to other studies (the referral rate 1: 3,450). Approbation of the method on DNA samples of children with ataxia-telangiectasia and Nijmegen syndrome showed a high sensitivity of TRECs (a total of 95.2% with cut-off 2000 copies per 106 cells) for the detection of these diseases. Thus, the tested method has shown its effectiveness for the detection of T- and B-lymphopenia and can be used for implementation of newborn screening for SCID in Ukraine.
Collapse
Affiliation(s)
- Oksana Boyarchuk
- Department of Children's Diseases and Pediatric Surgery, I.Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- *Correspondence: Oksana Boyarchuk,
| | - Nataliia Yarema
- Department of Children's Diseases and Pediatric Surgery, I.Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Volodymyr Kravets
- Department of the Research and Biotechnology of Scientific Medical Genetic Center "Leogene, LTD", Lviv, Ukraine
| | - Oleksandra Shulhai
- Department of Children's Diseases and Pediatric Surgery, I.Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Ivanna Shymanska
- Department of the Research and Biotechnology of Scientific Medical Genetic Center "Leogene, LTD", Lviv, Ukraine
| | - Iryna Chornomydz
- Department of Children's Diseases and Pediatric Surgery, I.Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Tetyana Hariyan
- Department of Children's Diseases and Pediatric Surgery, I.Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Liubov Volianska
- Department of Children's Diseases and Pediatric Surgery, I.Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Maria Kinash
- Department of Children's Diseases and Pediatric Surgery, I.Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Halyna Makukh
- Department of the Research and Biotechnology of Scientific Medical Genetic Center "Leogene, LTD", Lviv, Ukraine
- Department of the Diagnostics of Hereditary Pathology, Institute of Hereditary Pathology of the Ukrainian National Academy of Medical Sciences, Lviv, Ukraine
| |
Collapse
|