1
|
Arunachalam AK, Aboobacker FN, Sampath E, Devasia AJ, Korula A, George B, Edison ES. Molecular Heterogeneity of Osteopetrosis in India: Report of 17 Novel Variants. Indian J Hematol Blood Transfus 2024; 40:494-503. [PMID: 39011244 PMCID: PMC11246401 DOI: 10.1007/s12288-023-01732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/26/2023] [Indexed: 07/17/2024] Open
Abstract
Osteopetrosis is a clinically and genetically heterogeneous group of inherited bone disorders that is caused by defects in osteoclast formation or function. Treatment options vary with the disease severity and an accurate molecular diagnosis helps in prognostication and treatment decisions. We investigated the genetic causes of osteopetrosis in 31 unrelated patients of Indian origin. Screening for the genetic variants was done by Sanger sequencing or next generation sequencing in 48 samples that included 31 samples from index patients, 16 from parents' and 1 chorionic villus sample. A total of 30 variants, including 29 unique variants, were identified in 26 of the 31 patients in the study. TCIRG1 was the most involved gene (n = 14) followed by TNFRSF11A (n = 4) and CLCN7 (n = 3). A total of 17 novel variants were identified. Prenatal diagnosis was done in one family and the foetus showed homozygous c.807 + 2T > G variant in TCIRG1. Molecular diagnosis of osteopetrosis aids in therapeutic decisions including the need for a stem cell transplantation and gives a possible option of performing prenatal diagnosis in affected families. Further studies would help in understanding the genetic etiology in patients where no variants were identified. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-023-01732-4.
Collapse
Affiliation(s)
| | - Fouzia N. Aboobacker
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu 632517 India
| | - Eswari Sampath
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu 632517 India
| | - Anup J. Devasia
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu 632517 India
| | - Anu Korula
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu 632517 India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu 632517 India
| | | |
Collapse
|
2
|
Kahraman AB, Yaz I, Gocmen R, Aytac S, Metin A, Kilic SS, Tezcan I, Cagdas D. Clinical and Osteopetrosis-Like Radiological Findings in Patients with Leukocyte Adhesion Deficiency Type III. J Clin Immunol 2023:10.1007/s10875-023-01479-7. [PMID: 37014583 DOI: 10.1007/s10875-023-01479-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/25/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Leukocyte and platelet integrin function defects are present in leukocyte adhesion deficiency type III (LAD-III) due to mutations in FERMT3. Additionally, osteoclast/osteoblast dysfunction develops in LAD-III. AIM To discuss the distinguishing clinical, radiological, and laboratory features of LAD-III. METHODS This study included the clinical, radiological, and laboratory characteristics of twelve LAD-III patients. RESULTS The male/female ratio was 8/4. The parental consanguinity ratio was 100%. Half of the patients had a family history of patients with similar findings. The median age at presentation and diagnosis was 18 (1-60) days and 6 (1-20) months, respectively. The median leukocyte count on admission was 43,150 (30,900-75,700)/μL. The absolute eosinophil count was tested in 8/12 patients, and eosinophilia was found in 6/8 (75%). All patients had a history of sepsis. Other severe infections were pneumonia (66.6%), omphalitis (25%), osteomyelitis (16.6%), gingivitis/periodontitis (16%), chorioretinitis (8.3%), otitis media (8.3%), diarrhea (8.3%), and palpebral conjunctiva infection (8.3%). Four patients (33.3%) received hematopoietic stem cell transplantation (HSCT) from HLA-matched-related donors, and one deceased after HSCT. At initial presentation, 4 (33.3%) patients were diagnosed with other hematologic disorders, three patients (P5, P7, and P8) with juvenile myelomonocytic leukemia (JMML), and one (P2) with myelodysplastic syndrome (MDS). CONCLUSION In LAD-III, leukocytosis, eosinophilia, and bone marrow findings may mimic pathologies such as JMML and MDS. In addition to non-purulent infection susceptibility, patients with LAD-III exhibit Glanzmann-type bleeding disorder. In LAD-III, absent integrin activation due to kindlin-3 deficiency disrupts osteoclast actin cytoskeleton organization. This results in defective bone resorption and osteopetrosis-like radiological changes. These are distinctive features compared to other LAD types.
Collapse
Affiliation(s)
- Ayca Burcu Kahraman
- Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ismail Yaz
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Rahsan Gocmen
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Selin Aytac
- Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Department of Pediatrics, Division of Pediatric Hematology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ayse Metin
- Department of Pediatrics, Division of Immunology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Sara Sebnem Kilic
- Department of Pediatrics, Division of Immunology and Rheumatology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Ilhan Tezcan
- Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Deniz Cagdas
- Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey.
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey.
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
3
|
Alotaibi Q, Dighe M, Aldaihani S. The clinical features of OSTM1-associated malignant infantile osteopetrosis: A retrospective, single-center experience over one decade. Am J Med Genet A 2023; 191:459-468. [PMID: 36369659 DOI: 10.1002/ajmg.a.63042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022]
Abstract
Mutation in OSTM1 give rise to the rarest and most lethal subtype of malignant infantile osteopetrosis (MIOP), and an improved understanding of OSTM1-associated MIOP would help with informed decision-making regarding symptom management and early palliative care referral. This retrospective study describes the clinical and laboratory features of patients with a genetic diagnosis of OSTM1 MIOP made between January 2011 and December 2021 in the Department of Pediatrics, Al-Adan Hospital, Kuwait. Twenty-two children had confirmed homozygous deletion in OSTM1 (13 females, nine males). Consanguinity was reported in almost all parents. 72.7% were diagnosed before the age of two months, most commonly incidentally with a high clinical suspicion. All 22 patients developed upper respiratory symptoms, hepatosplenomegaly, poor feeding, and had severe developmental delay. 80% of patients developed pain and/or irritability, and 40.9% were diagnosed with primary seizures. Bone fractures developed in 27% of patients, most likely iatrogenic, and some patients had hernia and gum abnormalities. The mean survival was 10.9 months. The clinical presentation, symptomatology, and mortality of our cohort were compared with other cases of OSTM1 MIOP identified through a comperhensive search of the PubMed database. The findings conclude that OSTM1 MIOP is a multi-systemic disease with distinct clinical features, of which neurological complications are the most severe and include nociplastic pain and irritability. Although orthopedic complications influence the trajectory of most patients with other forms of osteopetrosis, OSTM1 MIOP is driven by its neurological complications. Hence, OSTM1 should be regarded as a neurodegenerative disease with osteopetrosis as a comorbidity that warrants early palliative care referral.
Collapse
Affiliation(s)
| | - Manjiri Dighe
- Pediatric Department, Aladan Hospital, Al-Masayel, Kuwait
| | - Saad Aldaihani
- Pediatric Department, Aladan Hospital, Al-Masayel, Kuwait
| |
Collapse
|
4
|
Wang X, Wang Y, Xu T, Fan Y, Ding Y, Qian J. A novel compound heterozygous mutation of the CLCN7 gene is associated with autosomal recessive osteopetrosis. Front Pediatr 2023; 11:978879. [PMID: 37168803 PMCID: PMC10165073 DOI: 10.3389/fped.2023.978879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 03/28/2023] [Indexed: 05/13/2023] Open
Abstract
Osteopetrosis is a genetic condition of the skeleton characterized by increased bone density caused by osteoclast formation and function defects. Osteopetrosis is inherited in the form of autosomal dominant and autosomal recessive manner. We report autosomal recessive osteopetrosis (ARO; OMIM 611490) in a Chinese case with a history of scarce leukocytosis, vision and hearing loss, frequent seizures, and severe intellectual and motor disability. Whole-exome sequencing (WES) followed by Sanger sequencing revealed novel compound heterozygous mutations in the chloride channel 7 (CLCN7) gene [c.982-1G > C and c.1208G > A (p. Arg403Gln)] in the affected individual, and subsequent familial segregation showed that each parent had transmitted a mutation. Our results confirmed that mutations in the CLCN7 gene caused ARO in a Chinese family. Additionally, our study expanded the clinical and allelic spectrum of the CLCN7 gene and enhanced the applications of WES technology in determining the etiology of prenatal diagnoses in fetuses with ultrasound anomalies.
Collapse
Affiliation(s)
- Xia Wang
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingcan Wang
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ting Xu
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanjie Fan
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yifeng Ding
- Department of Neurology, Children's Hospital of Fudan University & National Children Medical Center, Shanghai, China
| | - Jihong Qian
- Department of Neonatology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Correspondence: Jihong Qian
| |
Collapse
|
5
|
Even-Or E, Schiesel G, Simanovsky N, NaserEddin A, Zaidman I, Elpeleg O, Mor-Shaked H, Stepensky P. Clinical presentation and analysis of genotype-phenotype correlations in patients with malignant infantile osteopetrosis. Bone 2022; 154:116229. [PMID: 34624559 DOI: 10.1016/j.bone.2021.116229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 11/02/2022]
Abstract
Malignant infantile osteopetrosis (MIOP) is the autosomal recessive, severe form of osteopetrosis. This rare genetic syndrome usually presents soon after birth and is often fatal if left untreated. Early diagnosis is key for proper management but clinical presentation is diverse, and oftentimes diagnosis may be challenging. In this study, we retrospectively collected data of genetic mutations and phenotypic characteristics at the initial presentation of 81 MIOP patients and analyzed genotype-phenotype correlations. The most common genetic mutation was in the TCIRG1 gene (n = 46, 56.8%), followed by SNX10 (n = 20, 25%). Other genetic mutations included RANK (n = 7, 8.7%), CLCN7 (n = 5, 6.2%) and CA2 (n = 3, 3.7%). More than half of the patients presented with growth retardation (n = 46, 56.8%). Twenty-one of the patients were blind (26%) and thirty-seven patients had other neurological deficits (45.7%) at the time of initial presentation. Most patients presented with hematological signs of bone marrow failure including anemia (n = 69, 85.2%) and thrombocytopenia (n = 33, 40.7%). Thrombocytopenia at initial presentation was significantly more prevalent in patients with mutations in the TCIRG1 gene (p = 0.036). Other phenotypic presenting features were not found to be significantly correlated to specific gene mutations. In conclusion, the initial presentation of MIOP is variable, but some features are common such as growth retardation, visual impairment, and cytopenias. High awareness of MIOP presenting signs is essential for prompt diagnosis of this challenging disease.
Collapse
Affiliation(s)
- Ehud Even-Or
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel; Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Kalman Ya'Akov Man Street, Jerusalem, Israel.
| | - Gali Schiesel
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel
| | - Natalia Simanovsky
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel; Department of Medical Imaging, Hadassah Medical Center, Kalman Ya'Akov Man Street, Jerusalem, Israel
| | - Adeeb NaserEddin
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel; Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Kalman Ya'Akov Man Street, Jerusalem, Israel
| | - Irina Zaidman
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel; Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Kalman Ya'Akov Man Street, Jerusalem, Israel
| | - Orly Elpeleg
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel; Department of Genetic and Metabolic Diseases, Hadassah Medical Center, Kalman Ya'Akov Man Street, Jerusalem, Israel
| | - Hagar Mor-Shaked
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel; Department of Genetic and Metabolic Diseases, Hadassah Medical Center, Kalman Ya'Akov Man Street, Jerusalem, Israel
| | - Polina Stepensky
- Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, P.O. Box 12271, Jerusalem 9112102, Israel; Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Kalman Ya'Akov Man Street, Jerusalem, Israel
| |
Collapse
|
6
|
Wintering A, Dvorak CC, Stieglitz E, Loh ML. Juvenile myelomonocytic leukemia in the molecular era: a clinician's guide to diagnosis, risk stratification, and treatment. Blood Adv 2021; 5:4783-4793. [PMID: 34525182 PMCID: PMC8759142 DOI: 10.1182/bloodadvances.2021005117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/03/2021] [Indexed: 12/03/2022] Open
Abstract
Juvenile myelomonocytic leukemia is an overlapping myeloproliferative and myelodysplastic disorder of early childhood . It is associated with a spectrum of diverse outcomes ranging from spontaneous resolution in rare patients to transformation to acute myeloid leukemia in others that is generally fatal. This unpredictable clinical course, along with initially descriptive diagnostic criteria, led to decades of productive international research. Next-generation sequencing now permits more accurate molecular diagnoses in nearly all patients. However, curative treatment is still reliant on allogeneic hematopoietic cell transplantation for most patients, and additional advances will be required to improve risk stratification algorithms that distinguish those that can be observed expectantly from others who require swift hematopoietic cell transplantation.
Collapse
Affiliation(s)
- Astrid Wintering
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA; and
| | - Christopher C. Dvorak
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA; and
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA; and
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Mignon L. Loh
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA; and
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| |
Collapse
|
7
|
Liang H, Li N, Yao RE, Yu T, Ding L, Chen J, Wang J. Clinical and molecular characterization of five Chinese patients with autosomal recessive osteopetrosis. Mol Genet Genomic Med 2021; 9:e1815. [PMID: 34545712 PMCID: PMC8606217 DOI: 10.1002/mgg3.1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/27/2021] [Accepted: 09/07/2021] [Indexed: 11/08/2022] Open
Abstract
Background Osteopetrosis is characterized by increased bone density and bone marrow cavity stenosis due to a decrease in the number of osteoclasts or the dysfunction of their differentiation and absorption properties usually caused by biallelic variants of the TCIRG1 and CLCN7 genes. Methods In this study, we describe five Chinese children who presented with anemia, thrombocytopenia, hepatosplenomegaly, repeated infections, and increased bone density. Whole‐exome sequencing identified five compound heterozygous variants of the CLCN7 and TCIRG1 genes in these patients. Results Patient 1 had a novel variant c.1555C>T (p.L519F) and a previously reported pathogenic variant c.2299C>T (p.R767W) in CLCN7. Patient 2 harbored a novel missense variant (c.1025T>C; p.L342P) and a novel splicing variant (c.286‐9G>A) in CLCN7. Patients 3A and 3B from one family displayed the same compound heterozygous TCIRG1 variant, including a novel frameshift variant (c.1370del; p.T457Tfs*71) and a novel splicing variant (c.1554+2T>C). In Patient 4, two novel variants were identified in the TCIRG1 gene: c.676G>T; p.E226* and c.1191del; p.P398Sfs*5. Patient 5 harbored two known pathogenic variants, c.909C>A (p.Y303*) and c.2008C>T (p.R670*), in TCIRG1. Analysis of the products obtained from the reverse transcription‐polymerase chain reaction revealed that the c.286‐9G>A variant in CLCN7 of patient 2 leads to intron 3 retention, resulting in the formation of a premature termination codon (p.E95Vfs*8). These five patients were eventually diagnosed with autosomal recessive osteopetrosis, and the three children with TCIRG1 variants received hematopoietic stem cell transplantation. Conclusions Our results expand the spectrum of variation of genes related to osteopetrosis and deepen the understanding of the relationship between the genotype and clinical characteristics of osteopetrosis.
Collapse
Affiliation(s)
- Huanhuan Liang
- Key Laboratory of Pediatric Hematology and Oncology, Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China
| | - Ru-En Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China
| | - Lixia Ding
- Key Laboratory of Pediatric Hematology and Oncology, Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Chen
- Key Laboratory of Pediatric Hematology and Oncology, Ministry of Health, Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China
| |
Collapse
|
8
|
Chang YH. Myelodysplastic syndromes and overlap syndromes. Blood Res 2021; 56:S51-S64. [PMID: 33935036 PMCID: PMC8094000 DOI: 10.5045/br.2021.2021010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematological neoplasms characterized by ineffective hematopoiesis, morphologic dysplasia, and cytopenia. MDS overlap syndromes include various disorders, such as myelodysplastic/myeloproliferative neoplasms and hypoplastic MDS with aplastic anemia characteristics. MDS overlap syndromes share the characteristics of other diseases, which make differential diagnoses challenging. Advances in genomic studies have led to the discovery of frequent mutations in MDS and overlap syndromes; however, most of the mutations are not specific for the diagnosis of these diseases. The molecular characteristics of the overlap syndromes usually do not show a just "in-between" form but rather heterogeneous features. Established diagnostic criteria for these diseases based on clinical, morphologic, and laboratory features are still useful when combined with genomic data. It is expected that further studies for MDS and overlap syndromes will place emphasis on the roles of mutations as therapeutic targets and prognostic indicators.
Collapse
Affiliation(s)
- Yoon Hwan Chang
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
9
|
Even-Or E, Stepensky P. How we approach malignant infantile osteopetrosis. Pediatr Blood Cancer 2021; 68:e28841. [PMID: 33314591 DOI: 10.1002/pbc.28841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
Malignant infantile osteopetrosis (MIOP) is a rare hereditary disorder characterized by excessive bone overgrowth due to a defect in bone marrow resorption by osteoclasts. In most cases, hematopoietic stem cell transplantation (HSCT) may correct bone metabolism but the rapidly progressing nature of this condition necessitates early diagnosis and prompt treatment to minimize irreversible cranial nerve damage. The management of patients with MIOP presents many unique challenges. In this review, the clinical management of patients with MIOP is discussed, including diagnosis, preparation for HSCT and special transplant considerations, management of unique HSCT complications, and long-term follow-up.
Collapse
Affiliation(s)
- Ehud Even-Or
- Faculty of Medicine, Hebrew University of Jerusalem, Israel, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| | - Polina Stepensky
- Faculty of Medicine, Hebrew University of Jerusalem, Israel, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
10
|
Greenmyer JR, Kohorst M. Pediatric Neoplasms Presenting with Monocytosis. Curr Hematol Malig Rep 2021; 16:235-246. [PMID: 33630234 DOI: 10.1007/s11899-021-00611-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Juvenile myelomonocytic leukemia (JMML) is a rare but severe pediatric neoplasm with hematopoietic stem cell transplant as its only established curative option. The development of targeted therapeutics for JMML is being guided by an understanding of the pathobiology of this condition. Here, we review JMML with an emphasis on genetics in order to (i) demonstrate the relationship between JMML genotype and clinical phenotype and (ii) explore potential genetic targets of novel JMML therapies. RECENT FINDINGS DNA hypermethylation studies have demonstrated consistently that methylation is related to disease severity. Increasing understanding of methylation in JMML may open the door to novel therapies, such as DNA methyltransferase inhibitors. The PI3K/AKT/MTOR, JAK/STAT, and RAF/MEK/ERK pathways are being investigated as therapeutic targets for JMML. Future therapy for JMML will be driven by an increased understanding of pathobiology. Targeted therapeutic approaches hold potential for improving outcomes in patients with JMML.
Collapse
Affiliation(s)
| | - Mira Kohorst
- Pediatric Hematology and Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
11
|
Juvenile myelomonocytic leukemia: who's the driver at the wheel? Blood 2019; 133:1060-1070. [PMID: 30670449 DOI: 10.1182/blood-2018-11-844688] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/10/2019] [Indexed: 01/16/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a unique clonal hematopoietic disorder of early childhood. It is classified as an overlap myeloproliferative/myelodysplastic neoplasm by the World Health Organization and shares some features with chronic myelomonocytic leukemia in adults. JMML pathobiology is characterized by constitutive activation of the Ras signal transduction pathway. About 90% of patients harbor molecular alterations in 1 of 5 genes (PTPN11, NRAS, KRAS, NF1, or CBL), which define genetically and clinically distinct subtypes. Three of these subtypes, PTPN11-, NRAS-, and KRAS-mutated JMML, are characterized by heterozygous somatic gain-of-function mutations in nonsyndromic children, whereas 2 subtypes, JMML in neurofibromatosis type 1 and JMML in children with CBL syndrome, are defined by germline Ras disease and acquired biallelic inactivation of the respective genes in hematopoietic cells. The clinical course of the disease varies widely and can in part be predicted by age, level of hemoglobin F, and platelet count. The majority of children require allogeneic hematopoietic stem cell transplantation for long-term leukemia-free survival, but the disease will eventually resolve spontaneously in ∼15% of patients, rendering the prospective identification of these cases a clinical necessity. Most recently, genome-wide DNA methylation profiles identified distinct methylation signatures correlating with clinical and genetic features and highly predictive for outcome. Understanding the genomic and epigenomic basis of JMML will not only greatly improve precise decision making but also be fundamental for drug development and future collaborative trials.
Collapse
|
12
|
Niemeyer CM. JMML genomics and decisions. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:307-312. [PMID: 30504325 PMCID: PMC6245977 DOI: 10.1182/asheducation-2018.1.307] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Juvenile myelomonocytic leukemia (JMML) is a unique clonal hematopoietic disorder of early childhood characterized by hyperactivation of the RAS signal transduction pathway. Approximately 90% of patients harbor molecular alteration in 1 of 5 genes (PTPN11, NRAS, KRAS, NF1, CBL), which define genetically and clinically distinct JMML subtypes. Three subtypes, PTPN11- , NRAS-, and KRAS-mutated JMML, are characterized by heterozygous somatic gain-of-function mutations in non syndromic children, while two subtypes, JMML in neurofibromatosis type 1 and in JMML in children with CBL syndrome, are characterized by germ line RAS disease and acquired biallelic inactivation of the respective tumor suppressor genes in hematopoietic cells. In addition to the initiating RAS pathway lesion, secondary genetic alterations within and outside of the RAS pathway are detected in about half the patients. Most recently, genome-wide DNA methylation profiles identified distinct methylation signatures correlating with clinical and genetic features and highly predictive of outcome. JMML is a stem cell disorder, and most JMML patients require allogeneic stem cell transplantation for long-term survival. However, spontaneous disease regression is noted in the majority of children with CBL-mutated JMML and in some NRAS-mutated cases. In the absence of 1 of the 5 canonical RAS pathway alteration, rare mutations in other RAS genes and non-JMML myeloproliferative disorders need to be excluded. Understanding the genetic basis of myeloproliferative disorders in early childhood will greatly improve clinical decision making.
Collapse
MESH Headings
- Allografts
- Child
- DNA Methylation
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Decision Making
- Genome-Wide Association Study
- Humans
- Leukemia, Myelomonocytic, Juvenile/genetics
- Leukemia, Myelomonocytic, Juvenile/metabolism
- Leukemia, Myelomonocytic, Juvenile/pathology
- Leukemia, Myelomonocytic, Juvenile/therapy
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Signal Transduction
- Stem Cell Transplantation
Collapse
Affiliation(s)
- Charlotte M Niemeyer
- Department of Pediatrics and Adolescent Medicine, University Children's Hospital, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Dvorak CC, Satwani P, Stieglitz E, Cairo MS, Dang H, Pei Q, Gao Y, Wall D, Mazor T, Olshen AB, Parker JS, Kahwash S, Hirsch B, Raimondi S, Patel N, Skeens M, Cooper T, Mehta PA, Grupp SA, Loh ML. Disease burden and conditioning regimens in ASCT1221, a randomized phase II trial in children with juvenile myelomonocytic leukemia: A Children's Oncology Group study. Pediatr Blood Cancer 2018; 65. [PMID: 29528181 PMCID: PMC5980696 DOI: 10.1002/pbc.27034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Most patients with juvenile myelomonocytic leukemia (JMML) are curable only with allogeneic hematopoietic cell transplantation (HCT). However, the current standard conditioning regimen, busulfan-cyclophosphamide-melphalan (Bu-Cy-Mel), may be associated with higher risks of morbidity and mortality. ASCT1221 was designed to test whether the potentially less-toxic myeloablative conditioning regimen containing busulfan-fludarabine (Bu-Flu) would be associated with equivalent outcomes. PROCEDURE Twenty-seven patients were enrolled on ASCT1221 from 2013 to 2015. Pre- and post-HCT (starting Day +30) mutant allele burden was measured in all and pre-HCT therapy was administered according to physician discretion. RESULTS Fifteen patients were randomized (six to Bu-Cy-Mel and nine to Bu-Flu) after meeting diagnostic criteria for JMML. Pre-HCT low-dose chemotherapy did not appear to reduce pre-HCT disease burden. Two patients, however, received aggressive chemotherapy pre-HCT and achieved low disease-burden state; both are long-term survivors. All four patients with detectable mutant allele burden at Day +30 post-HCT eventually progressed compared to two of nine patients with unmeasurable allele burden (P = 0.04). The 18-month event-free survival of the entire cohort was 47% (95% CI, 21-69%), and was 83% (95% CI, 27-97%) and 22% (95% CI, 03-51%) for Bu-Cy-Mel and Bu-Flu, respectively (P = 0.04). ASCT1221 was terminated early due to concerns that the Bu-Flu arm had inferior outcomes. CONCLUSIONS The regimen of Bu-Flu is inadequate to provide disease control in patients with JMML who present to HCT with large burdens of disease. Advances in molecular testing may allow better characterization of biologic risk, pre-HCT responses to chemotherapy, and post-HCT management.
Collapse
Affiliation(s)
| | | | | | - Mitchell S. Cairo
- Maria Fareri Children’s Hospital, Westchester Medical Center, New York Medical College
| | - Ha Dang
- University of Southern California
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hasle H. Myelodysplastic and myeloproliferative disorders of childhood. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:598-604. [PMID: 27913534 PMCID: PMC6142519 DOI: 10.1182/asheducation-2016.1.598] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Myelodysplastic syndrome (MDS) and myeloproliferative disorders are rare in children; they are divided into low-grade MDS (refractory cytopenia of childhood [RCC]), advanced MDS (refractory anemia with excess blasts in transformation), and juvenile myelomonocytic leukemia (JMML), each with different characteristics and management strategies. Underlying genetic predisposition is recognized in an increasing number of patients. Germ line GATA2 mutation is found in 70% of adolescents with MDS and monosomy 7. It is challenging to distinguish RCC from aplastic anemia, inherited bone marrow failure, and reactive conditions. RCC is often hypoplastic and may respond to immunosuppressive therapy. In case of immunosuppressive therapy failure, hypercellular RCC, or RCC with monosomy 7, hematopoietic stem cell transplantation (HSCT) using reduced-intensity conditioning regimens is indicated. Almost all patients with refractory anemia with excess blasts are candidates for HSCT; children age 12 years or older have a higher risk of treatment-related death, and the conditioning regimens should be adjusted accordingly. Unraveling the genetics of JMML has demonstrated that JMML in patients with germ line PTPN11 and CBL mutations often regresses spontaneously, and therapy is seldom indicated. Conversely, patients with JMML and neurofibromatosis type 1, somatic PTPN11, KRAS, and most of those with NRAS mutations have a rapidly progressive disease, and early HSCT is indicated. The risk of relapse after HSCT is high, and prophylaxis for graft-versus-host disease and monitoring should be adapted to this risk.
Collapse
MESH Headings
- Adolescent
- Anemia, Aplastic/diagnosis
- Anemia, Aplastic/genetics
- Anemia, Aplastic/immunology
- Anemia, Aplastic/therapy
- Anemia, Refractory, with Excess of Blasts/diagnosis
- Anemia, Refractory, with Excess of Blasts/genetics
- Anemia, Refractory, with Excess of Blasts/immunology
- Anemia, Refractory, with Excess of Blasts/therapy
- Child
- Child, Preschool
- Chromosome Deletion
- Chromosomes, Human, Pair 7/genetics
- Chromosomes, Human, Pair 7/immunology
- Female
- GATA2 Transcription Factor/genetics
- GATA2 Transcription Factor/immunology
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/immunology
- Humans
- Immunosuppression Therapy/methods
- Infant
- Leukemia, Myelomonocytic, Juvenile/diagnosis
- Leukemia, Myelomonocytic, Juvenile/genetics
- Leukemia, Myelomonocytic, Juvenile/immunology
- Leukemia, Myelomonocytic, Juvenile/therapy
- Male
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/immunology
- Proto-Oncogene Proteins c-cbl/genetics
- Proto-Oncogene Proteins c-cbl/immunology
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/immunology
Collapse
Affiliation(s)
- Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|