1
|
Tiegs-Heiden CA. MR-guided Focused Ultrasound for Musculoskeletal Applications. Magn Reson Imaging Clin N Am 2024; 32:641-650. [PMID: 39322353 DOI: 10.1016/j.mric.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
MR-guided focused ultrasound (MRgFUS) has a wide range of musculoskeletal applications. Some indications are well validated, specifically the treatment of painful osseous metastases and osteoid osteoma. Others are only beginning to be studied, such as the treatment of painful facet, sacroiliac, and knee joints. MRgFUS of soft tissue lesions also shows promise, particularly in patients whom alternative modalities are not feasible or may result in significant morbidity. Ongoing and future research will illuminate the full potential for MRgFUS in the treatment of musculoskeletal conditions.
Collapse
Affiliation(s)
- Christin A Tiegs-Heiden
- Division of Musculoskeletal Radiology, Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
2
|
McGill KC, Baal JD, Bucknor MD. Update on musculoskeletal applications of magnetic resonance-guided focused ultrasound. Skeletal Radiol 2024; 53:1869-1877. [PMID: 38363419 PMCID: PMC11303439 DOI: 10.1007/s00256-024-04620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) is a noninvasive, incisionless, radiation-free technology used to ablate tissue deep within the body. This technique has gained increased popularity following FDA approval for treatment of pain related to bone metastases and limited approval for treatment of osteoid osteoma. MRgFUS delivers superior visualization of soft tissue targets in unlimited imaging planes and precision in targeting and delivery of thermal dose which is all provided during real-time monitoring using MR thermometry. This paper provides an overview of the common musculoskeletal applications of MRgFUS along with updates on clinical outcomes and discussion of future applications.
Collapse
Affiliation(s)
- Kevin C McGill
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, Suite M391, San Francisco, CA, 94143, USA.
| | - Joe D Baal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, Suite M391, San Francisco, CA, 94143, USA
| | - Matthew D Bucknor
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, Suite M391, San Francisco, CA, 94143, USA
| |
Collapse
|
3
|
Gassert FT, Gassert FG, Hofmann FC, Lenhart N, Feuerriegel GC, von Schacky CE, Neumann J, Lenze U, Knebel C, Wörtler K. Diagnostic Delay in Patients with Osteoid Osteoma. ROFO-FORTSCHR RONTG 2024; 196:707-713. [PMID: 37995734 DOI: 10.1055/a-2203-2823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Affiliation(s)
| | - Felix Gerhard Gassert
- Radiology, Technical University of Munich Hospital Rechts der Isar, München, Germany
| | - Felix Carl Hofmann
- Radiology, Technical University of Munich Hospital Rechts der Isar, München, Germany
| | - Nicolas Lenhart
- Radiology, Technical University of Munich Hospital Rechts der Isar, München, Germany
| | | | - Claudio E von Schacky
- Radiology, Technical University of Munich Hospital Rechts der Isar, München, Germany
| | - Jan Neumann
- Radiology, Technical University of Munich Hospital Rechts der Isar, München, Germany
| | - Ulrich Lenze
- Orthopaedics, Technical University of Munich Hospital Rechts der Isar, München, Germany
| | - Carolin Knebel
- Orthopaedics, Technical University of Munich Hospital Rechts der Isar, München, Germany
| | - Klaus Wörtler
- Radiology, Technical University of Munich Hospital Rechts der Isar, München, Germany
| |
Collapse
|
4
|
Ciatawi K, Dusak IWS, Wiratnaya IGE. High-intensity focused ultrasound-a needleless management for osteoid osteoma: a systematic review. Musculoskelet Surg 2024; 108:21-30. [PMID: 38150115 DOI: 10.1007/s12306-023-00801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/24/2023] [Indexed: 12/28/2023]
Abstract
Osteoid osteoma is one of the most frequent benign musculoskeletal neoplasm. Radiofrequency ablation is the method of choice for non-conservative treatment of osteoid osteoma. Recently, high-intensity focused ultrasound (HIFU) has been proposed as a safer option. The objective of this study is to review the efficacy and side effects of HIFU in the management of osteoid osteoma. A comprehensive search was conducted in PubMed, Science Direct, and Clinical Key until June 30, 2022. Demographic data, baseline characteristics, success rates, pre- and post-procedure pain scores, recurrences, and complications were recorded. Eleven studies were included in this systematic review. Pooled analysis that involved 186 subjects resulted in an overall success rate of 91.94%. Recurrence was reported in two studies, in which it occurred in 4/177 (2.26%) subjects. Skin burn was found in 1 (0.54%) patients. No major or other complications were reported. Three studies compared the success rate of HIFU and RFA. Success rate was slightly higher in the RFA group with insignificant difference (p = 0.15). High-intensity focused ultrasound showed promising results. It offers a safer treatment approach for osteoid osteoma, especially in children, and can be considered for recalcitrant cases after RFA. Nonetheless, more studies are expected in the future.
Collapse
Affiliation(s)
- K Ciatawi
- Faculty of Medicine, University of North Sumatera, Medan, Indonesia.
| | - I W S Dusak
- Department of Orthopaedic and Traumatology, Faculty of Medicine, Udayana University, Denpasar, Indonesia
| | - I G E Wiratnaya
- Department of Orthopaedic and Traumatology, Faculty of Medicine, Udayana University, Denpasar, Indonesia
| |
Collapse
|
5
|
Hu R, He P, Tian X, Guan H. Efficacy and safety of magnetic resonance-guided focused ultrasound for the treatment of osteoid osteoma: A systematic review and meta-analysis. Eur J Radiol 2023; 166:111006. [PMID: 37523874 DOI: 10.1016/j.ejrad.2023.111006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
OBJECTIVE Magnetic resonance-guided focused ultrasound (MRgFUS) is a novel noninvasive interventional technique for osteoid osteoma (OO). The purpose of this study was to evaluate the efficacy and safety of MRgFUS in the treatment of OO through a systematic review and meta-analysis of pain scores and post-treatment adverse events before and after MRgFUS treatment. MATERIALS AND METHODS A comprehensive literature search of PubMed, Embase, Web of science, and Cochrane Library databases was conducted to screen the study literature based on inclusion and exclusion criteria to extract and analyze pre- and post-treatment pain score data, success rates (complete pain relief with no recurrence until the last follow-up), recurrence rates, secondary intervention rates, and complications to evaluate the efficacy and/or safety of MRgFUS for OO. RESULTS A total of 113 studies published between 2012 and 2022were collected, resulting in a total sample size of 353 patients. The majority of the studies were prospective and had a follow-up period of 4 weeks or more, and overall, the quality of evidence ranged from low to high. Pain scores at 1 week and 1 month after the merger were 0.62 (9.5% CI:0.28-0.96) and 0.37 (9.5% CI:0.07-0.68), respectively. The success rate of the combination was 92.8% (95% CI: 89.8%-95.7%), the incidence of minor complications (thermal injury at the ablation site) was 0.85%, and no major complications were recorded in any of the included literature. CONCLUSION MRgFUS is an effective procedure that is able to treat pain for patients with OO with satisfying efficacy and safety. PROSPERO No.CRD42023415573.
Collapse
Affiliation(s)
- Rongrui Hu
- Eighth Clinical School of Guangzhou University of Chinese Medicine, Foshan, China
| | - Peicong He
- Eighth Clinical School of Guangzhou University of Chinese Medicine, Foshan, China
| | - Xiaona Tian
- Eighth Clinical School of Guangzhou University of Chinese Medicine, Foshan, China
| | - Honggang Guan
- Orthopedic and Traumatology Center, Foshan City Hospital of Traditional Chinese Medicine, Foshan, China.
| |
Collapse
|
6
|
Gupta D, Choi D, Lu N, Allen SP, Hall TL, Noll DC, Xu Z. Magnetic Resonance Thermometry Targeting for Magnetic Resonance-Guided Histotripsy Treatments. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1102-1107. [PMID: 36801181 PMCID: PMC10938365 DOI: 10.1016/j.ultrasmedbio.2022.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 05/11/2023]
Abstract
OBJECTIVE The potential of transcranial magnetic resonance (MR)-guided histotripsy for brain applications has been described in prior in vivo studies in the swine brain through an excised human skull. The safety and accuracy of transcranial MR-guided histotripsy (tcMRgHt) rely on pre-treatment targeting guidance. In the work described here, we investigated the feasibility and accuracy of using ultrasound-induced low-temperature heating and MR thermometry for histotripsy pre-treatment targeting in ex vivo bovine brain. METHODS A 15-element, 750-kHz MRI-compatible ultrasound transducer with modified drivers that can deliver both low-temperature heating and histotripsy acoustic pulses was used to treat seven bovine brain samples. The samples were first heated to an approximately 1.6°C temperature increase at the focus, and MR thermometry was used to localize the target. Once the targeting was confirmed, a histotripsy lesion was generated at the focus and visualized on post-histotripsy MR images. DISCUSSION The accuracy of MR thermometry targeting was evaluated with the mean/standard deviation of the difference between the locus of peak heating identified by MR thermometry and the center of mass of the post-treatment histotripsy lesion, which was 0.59/0.31 mm and 1.31/0.93 mm in the transverse and longitudinal directions, respectively. CONCLUSION This study determined that MR thermometry could provide reliable pre-treatment targeting for transcranial MR-guided histotripsy treatment.
Collapse
Affiliation(s)
- Dinank Gupta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Dave Choi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ning Lu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Steven P Allen
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Douglas C Noll
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
deSouza NM, Gedroyc W, Rivens I, ter Haar G. Tissue specific considerations in implementing high intensity focussed ultrasound under magnetic resonance imaging guidance. Front Oncol 2022; 12:1037959. [PMID: 36387108 PMCID: PMC9663991 DOI: 10.3389/fonc.2022.1037959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
High-intensity focused ultrasound can ablate a target permanently, leaving tissues through which it passes thermally unaffected. When delivered under magnetic resonance (MR) imaging guidance, the change in tissue relaxivity on heating is used to monitor the temperatures achieved. Different tissue types in the pre-focal beam path result in energy loss defined by their individual attenuation coefficients. Furthermore, at interfaces with different acoustic impedances the beam will be both reflected and refracted, changing the position of the focus. For complex interfaces this effect is exacerbated. Moreover, blood vessels proximal to the focal region can dissipate heat, altering the expected region of damage. In the target volume, the temperature distribution depends on the thermal conductivity (or diffusivity) of the tissue and its heat capacity. These are different for vascular tissues, water and fat containing tissues and bone. Therefore, documenting the characteristics of the pre-focal and target tissues is critical for effective delivery of HIFU. MR imaging provides excellent anatomic detail and characterization of soft tissue components. It is an ideal modality for real-time planning and monitoring of HIFU ablation, and provides non-invasive temperature maps. Clinical applications involve soft-tissue (abdomino-pelvic applications) or bone (brain applications) pre-focally and at the target (soft-tissue tumors and bone metastases respectively). This article addresses the technical difficulties of delivering HIFU effectively when vascular tissues, densely cellular tissues, fat or bone are traversed pre-focally, and the clinical applications that target these tissues. The strengths and limitations of MR techniques used for monitoring ablation in these tissues are also discussed.
Collapse
Affiliation(s)
- Nandita M. deSouza
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Wladyslaw Gedroyc
- Faculty of Medicine, St. Mary’s Hospital, Imperial College, London, United Kingdom
| | - Ian Rivens
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Gail ter Haar
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
8
|
Heo J, Joung C, Pahk K, Pahk KJ. Investigation of the long-term healing response of the liver to boiling histotripsy treatment in vivo. Sci Rep 2022; 12:14462. [PMID: 36002564 PMCID: PMC9402918 DOI: 10.1038/s41598-022-18544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
Boiling histotripsy (BH) is a promising High-Intensity Focused Ultrasound technique that can be employed to mechanically fractionate solid tumours. Whilst studies have shown the feasibility of BH to destroy liver cancer, no study has reported on the healing process of BH-treated liver tissue. We therefore extensively investigated the evolution of the healing response of liver to BH in order to provide an insight into the healing mechanisms. In the present study, 14 Sprague Dawley rats underwent the BH treatment and were sacrificed on days 0, 3, 7, 14, and 28 for morphological, histological, serological and qPCR analyses. The area of the treated region was 1.44 cm2 (1.2 cm × 1.2 cm). A well-defined BH lesion filled with coagulated blood formed on day 0. A week after the treatment, fibroblast activation was induced at the treatment site, leading to the formation of extracellular matrix structure (ECM). The ECM was then disrupted for 7 to 28 days. Regenerated normal hepatocytes and newly formed blood vessels were found within the BH region with the absence of hepatic fibrosis. No significant morphological, histological and genetic changes around the BH lesion occurred. These results suggest that BH could be a safe and promising therapeutic tool for treating solid tumours without inducing any significant adverse effect such as the formation of liver fibrosis.
Collapse
Affiliation(s)
- Jeongmin Heo
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Chanmin Joung
- Institute for Inflammation Control, Korea University, Seoul, Republic of Korea
| | - Kisoo Pahk
- Department of Nuclear Medicine, Korea University College of Medicine, Anam-dong 5-ga, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Ki Joo Pahk
- Department of Biomedical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
9
|
Yao R, Hu J, Zhao W, Cheng Y, Feng C. A review of high-intensity focused ultrasound as a novel and non-invasive interventional radiology technique. J Interv Med 2022; 5:127-132. [PMID: 36317144 PMCID: PMC9617156 DOI: 10.1016/j.jimed.2022.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022] Open
Abstract
High-intensity focused ultrasound (HIFU) is a non-invasive interventional radiology technology, which has been generally accepted in clinical practice for the treatment of benign and malignant tumors. HIFU can cause targeted tissue coagulative necrosis and protein denaturation by thermal or non-thermal effects, guided by diagnostic ultrasound or magnetic resonance imaging, without destruction of the normal adjacent tissue, under sedation or general anesthesia. HIFU has become an important alternative to standard treatments of solid tumors, including surgery, radiation, and medications. The aim of this review is to describe the development, principle, devices, and clinical applications of HIFU.
Collapse
Affiliation(s)
- Ruihong Yao
- Medical Imaging Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jihong Hu
- Medical Imaging Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Corresponding author.
| | - Wei Zhao
- Medical Imaging Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongde Cheng
- Editorial Board of the Journal of Interventional Medicine, Shanghai, China
| | - Chaofan Feng
- Medical Imaging Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Optical Property Measurement and Temperature Monitoring in High-Intensity Focused Ultrasound Therapy by Diffuse Optical Tomography: A Correlation Study. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this article, we propose a new approach utilizing diffuse optical tomography (DOT) to monitoring the changes in tissues’ optical properties and temperature in high-intensity focused ultrasound (HIFU) therapy. By correlating the tissue reduced scattering coefficient (μs’) reconstructed by DOT and the temperature measured by a thermocouple, the quantitative relationship between μs’ and temperature in HIFU treatment was explored. The experiments were conducted using porcine and chicken breast muscle tissues during HIFU; the temperature of each tissue sample was recorded using a thermocouple. To incorporate the temperature dependency of tissue optical properties, both polynomial and exponential models were utilized to fit the experimental data. The results show that the change of μs’ during HIFU treatment could be detected in real-time using DOT and that this change of μs’ is quantitatively correlated with tissue temperature. Furthermore, while the tissue-type-dependent relationship between μs’ and temperature is non-linear in nature, it is stable and repeatable. Therefore, our approach has the potential to be used to predict temperature of tissue during HIFU treatment.
Collapse
|
11
|
Janwadkar R, Leblang S, Ghanouni P, Brenner J, Ragheb J, Hennekens CH, Kim A, Sharma K. Focused Ultrasound for Pediatric Diseases. Pediatrics 2022; 149:184761. [PMID: 35229123 DOI: 10.1542/peds.2021-052714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Focused ultrasound (FUS) is a noninvasive therapeutic technology with multiple pediatric clinical applications. The ability of focused ultrasound to target tissues deep in the body without exposing children to the morbidities associated with conventional surgery, interventional procedures, or radiation offers significant advantages. In 2021, there are 10 clinical pediatric focused ultrasound studies evaluating various musculoskeletal, oncologic, neurologic, and vascular diseases of which 8 are actively recruiting and 2 are completed. Pediatric musculoskeletal applications of FUS include treatment of osteoid osteoma and bone metastases using thermal ablation and high-intensity FUS. Pediatric oncologic applications of FUS include treatment of soft tissue tumors including desmoid tumors, malignant sarcomas, and neuroblastoma with high-intensity FUS ablation alone, or in combination with targeted chemotherapy delivery. Pediatric neurologic applications include treatment of benign tumors such as hypothalamic hamartomas with thermal ablation and malignant diffuse intrinsic pontine glioma with low-intensity FUS for blood brain barrier opening and targeted drug delivery. Additionally, low-intensity FUS can be used to treat seizures. Pediatric vascular applications of FUS include treatment of arteriovenous malformations and twin-twin transfusion syndrome using ablation and vascular occlusion. FUS treatment appears safe and efficacious in pediatric populations across many subspecialties. Although there are 7 Food and Drug Administration-approved indications for adult applications of FUS, the first Food and Drug Administration approval for pediatric patients with osteoid osteoma was obtained in 2020. This review summarizes the preclinical and clinical research on focused ultrasound of potential benefit to pediatric populations.
Collapse
Affiliation(s)
- Rohan Janwadkar
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Suzanne Leblang
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | | | | | - John Ragheb
- University of Miami Miller School of Medicine, Nicklaus Children's Hospital, Miami, Florida
| | - Charles H Hennekens
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - AeRang Kim
- Children's National Hospital, George Washington School of Medicine, Washington, DC
| | - Karun Sharma
- Children's National Hospital, George Washington School of Medicine, Washington, DC
| |
Collapse
|
12
|
De Salvo S, Pavone V, Coco S, Dell’Agli E, Blatti C, Testa G. Benign Bone Tumors: An Overview of What We Know Today. J Clin Med 2022; 11:jcm11030699. [PMID: 35160146 PMCID: PMC8836463 DOI: 10.3390/jcm11030699] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
Nonmalignant bone tumors represent a wide variety of different entities but maintain many common features. They usually affect young patients, and most can be diagnosed through imaging exams. Often asymptomatic, they can be discovered incidentally. Due to their similarities, these tumors may be challenging to diagnose and differentiate between each other, thus the need for a complete and clear description of their main characteristics. The aim of this review is to give a picture of the benign bone tumors that clinicians can encounter more frequently in their everyday work.
Collapse
|
13
|
Stanborough RO, Long JR, Garner HW. Bone and Soft Tissue Tumors. Radiol Clin North Am 2022; 60:311-326. [DOI: 10.1016/j.rcl.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Bucknor MD, Baal JD, McGill KC, Infosino A, Link TM. Musculoskeletal Applications of Magnetic Resonance-Guided Focused Ultrasound. Semin Musculoskelet Radiol 2021; 25:725-734. [DOI: 10.1055/s-0041-1735472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractMagnetic resonance-guided focused ultrasound (MRgFUS) is a novel noninvasive therapy that uses focused sound energy to thermally ablate focal pathology within the body. In the United States, MRgFUS is approved by the Food and Drug Administration for the treatment of uterine fibroids, palliation of painful bone metastases, and thalamotomy for the treatment of essential tremor. However, it has also demonstrated utility for the treatment of a wide range of additional musculoskeletal (MSK) conditions that currently are treated as off-label indications. Advantages of the technology include the lack of ionizing radiation, the completely noninvasive technique, and the precise targeting that offer unprecedented control of the delivery of the thermal dose, as well as real-time monitoring capability with MR thermometry. In this review, we describe the most common MSK applications of MRgFUS: palliation of bone metastases, treatment of osteoid osteomas, desmoid tumors, facet arthropathy, and other developing indications.
Collapse
Affiliation(s)
- Matthew D. Bucknor
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Joe D. Baal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Kevin C. McGill
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Andrew Infosino
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California
| | - Thomas M. Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| |
Collapse
|
15
|
Tydings C, Yarmolenko P, Bornhorst M, Dombi E, Myseros J, Keating R, Bost J, Sharma K, Kim A. Feasibility of magnetic resonance-guided high-intensity focused ultrasound treatment targeting distinct nodular lesions in neurofibromatosis type 1. Neurooncol Adv 2021; 3:vdab116. [PMID: 34604751 PMCID: PMC8482787 DOI: 10.1093/noajnl/vdab116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Patients with Neurofibromatosis Type 1 (NF1) and plexiform neurofibromas (PN) often have radiographically diagnosed distinct nodular lesions (DNL) which can cause pain and weakness. Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) can precisely and accurately deliver heat to thermally ablate target tissue. The aim of this study is to evaluate whole-body MRIs from patients with NF1 and DNL, applying volumetrics and a consistent treatment planning approach to determine the feasibility of MR-HIFU ablation of DNL. Methods A retrospective review of whole-body MRI scans from patients with NF1 and PN from CNH and NCI was performed. DNL are defined as lesions >3 cm, distinct from PN and lacking the “central dot” feature. Criteria for MR-HIFU thermal ablation include target location 1–8 cm from skin surface; >1 cm from visible plexus, spinal canal, bladder, bowel, physis; and ability to ablate ≥50% of lesion volume. Lesions in skull and vertebral body were excluded. Results In 26 patients, 120 DNL were identified. The majority of DNL were located in an extremity (52.5%). Other sites included head/neck (7%), chest (13%), and abdomen/pelvis (28%). The predefined HIFU ablation criteria was not met for 47.5% of lesions (n = 57). The main limitation was proximity to a vital structure or organ (79%). Complete and partial HIFU ablation was feasible for 25% and 27.5% of lesions, respectively. Conclusion Based on imaging review of lesion location, technical considerations and ability to target lesions, thermal ablation with MR-HIFU may be a feasible noninvasive alternative for symptom management in patients with NF1 and symptomatic DNL.
Collapse
Affiliation(s)
- Caitlin Tydings
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia, USA.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA
| | - Pavel Yarmolenko
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA
| | - Miriam Bornhorst
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia, USA.,Gilbert Neurofibromatosis Institute, Children's National Hospital, Washington, District of Columbia, USA
| | - Eva Dombi
- National Cancer Institute, Pediatric Oncology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - John Myseros
- Department of Neurosurgery, Children's National Hospital, Washington, District of Columbia, USA
| | - Robert Keating
- Department of Neurosurgery, Children's National Hospital, Washington, District of Columbia, USA
| | - James Bost
- Department of Biostatistics and Study Methodology, Children's Research Institute, Washington, District of Columbia, USA
| | - Karun Sharma
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA.,Department of Radiology, Children's National Hospital, Washington, District of Columbia, USA
| | - AeRang Kim
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia, USA.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
16
|
De Tommasi F, Massaroni C, Grasso RF, Carassiti M, Schena E. Temperature Monitoring in Hyperthermia Treatments of Bone Tumors: State-of-the-Art and Future Challenges. SENSORS (BASEL, SWITZERLAND) 2021; 21:5470. [PMID: 34450911 PMCID: PMC8400360 DOI: 10.3390/s21165470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022]
Abstract
Bone metastases and osteoid osteoma (OO) have a high incidence in patients facing primary lesions in many organs. Radiotherapy has long been the standard choice for these patients, performed as stand-alone or in conjunction with surgery. However, the needs of these patients have never been fully met, especially in the ones with low life expectancy, where treatments devoted to pain reduction are pivotal. New techniques as hyperthermia treatments (HTs) are emerging to reduce the associated pain of bone metastases and OO. Temperature monitoring during HTs may significantly improve the clinical outcomes since the amount of thermal injury depends on the tissue temperature and the exposure time. This is particularly relevant in bone tumors due to the adjacent vulnerable structures (e.g., spinal cord and nerve roots). In this Review, we focus on the potential of temperature monitoring on HT of bone cancer. Preclinical and clinical studies have been proposed and are underway to investigate the use of different thermometric techniques in this scenario. We review these studies, the principle of work of the thermometric techniques used in HTs, their strengths, weaknesses, and pitfalls, as well as the strategies and the potential of improving the HTs outcomes.
Collapse
Affiliation(s)
- Francesca De Tommasi
- Unit of Measurements and Biomedical Instrumentations, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (F.D.T.); (C.M.)
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentations, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (F.D.T.); (C.M.)
| | - Rosario Francesco Grasso
- Unit of Interventional Radiology, School of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy;
| | - Massimiliano Carassiti
- Unit of Anesthesia, Intensive Care and Pain Management, School of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy;
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentations, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (F.D.T.); (C.M.)
| |
Collapse
|
17
|
Chandwar K, Lathiya H, Gohel A, Shah C. Sacral osteoid osteoma: a rare cause of inflammatory back pain and sacroiliitis in a young man. BMJ Case Rep 2021; 14:e244074. [PMID: 34380684 PMCID: PMC8359513 DOI: 10.1136/bcr-2021-244074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 11/03/2022] Open
Affiliation(s)
- Kunal Chandwar
- Department of Clinical Immunology and Rheumatology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Harsh Lathiya
- Department of Radiology, Zydus Research Center, Ahmedabad, Gujarat, India
| | - Abhishek Gohel
- Department of Neurology, NIMHANS, Bangalore, Karnataka, India
| | - Chandani Shah
- Department of Neurology, Sawai Man Singh Medical College and Hospital, Jaipur, Rajasthan, India
| |
Collapse
|
18
|
di Biase L, Falato E, Caminiti ML, Pecoraro PM, Narducci F, Di Lazzaro V. Focused Ultrasound (FUS) for Chronic Pain Management: Approved and Potential Applications. Neurol Res Int 2021; 2021:8438498. [PMID: 34258062 PMCID: PMC8261174 DOI: 10.1155/2021/8438498] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/19/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic pain is one of the leading causes of disability and disease burden worldwide, accounting for a prevalence between 6.9% and 10% in the general population. Pharmacotherapy alone results ineffective in about 70-60% of patients in terms of a satisfactory degree of pain relief. Focused ultrasound is a promising tool for chronic pain management, being approved for thalamotomy in chronic neuropathic pain and for bone metastases-related pain treatment. FUS is a noninvasive technique for neuromodulation and for tissue ablation that can be applied to several tissues. Transcranial FUS (tFUS) can lead to opposite biological effects, depending on stimulation parameters: from reversible neural activity facilitation or suppression (low-intensity, low-frequency ultrasound, LILFUS) to irreversible tissue ablation (high-intensity focused ultrasounds, HIFU). HIFU is approved for thalamotomy in neuropathic pain at the central nervous system level and for the treatment of facet joint osteoarthritis at the peripheral level. Potential applications include HIFU at the spinal cord level for selected cases of refractory chronic neuropathic pain, knee osteoarthritis, sacroiliac joint disease, intervertebral disc nucleolysis, phantom limb, and ablation of peripheral nerves. FUS at nonablative dosage, LILFUS, has potential reversible and tissue-selective effects. FUS applications at nonablative doses currently are at a research stage. The main potential applications include targeted drug and gene delivery through the Blood-Brain Barrier, assessment of pain thresholds and study of pain, and reversible peripheral nerve conduction block. The aim of the present review is to describe the approved and potential applications of the focused ultrasound technology in the field of chronic pain management.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
- Brain Innovations Lab, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Emma Falato
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Maria Letizia Caminiti
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Pasquale Maria Pecoraro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Flavia Narducci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| |
Collapse
|
19
|
Lin X, Chen W, Wei F. Technique Success, Technique Efficacy and Complications of HIFU Ablation for Palliation of Pain in Patients With Bone Lesions: A Meta-Analysis of 28 Feasibility Studies. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1182-1191. [PMID: 33583637 DOI: 10.1016/j.ultrasmedbio.2021.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Several feasibility studies have reported that high-intensity focused ultrasound (HIFU) ablation can be applied to ease patients' bone pain. However, the effect of HIFU ablation to palliate bone pain remains unclear. To evaluate the technique's success, efficacy, minor complication and major complication on patients suffering from bone pain, we searched the PubMed, MEDLINE, EMBASE and Cochrane Library databases from January 1998 to March 2019. Clinical studies that have assessed the association between bone pain and HIFU ablation were involved. We filtered out 28 feasibility studies, which reported the association between HIFU ablation and bone pain, including a total of 717 patients and 736 bone lesions. Overall, our results indicate that the rate of technique success of HIFU ablation was 93% (95% confidence interval [CI] 89%-96%) for patients with bone lesions. The technique efficacy rate of HIFU ablation for palliation of pain from bone lesions was 80% (95% CI 74%-87%) in all the patients, 96% (91%-100%) in the subgroup of retrospective studies and 77% (69%-85%) in the subgroup of prospective studies. In regard to HIFU ablation treatment safety, the hazard ratio for minor complication was 12% (95% CI 7%-17%), and the hazard ratio for major complication was 2% (95% CI 1%-3%). In conclusion, the summary rates for various considerations of using HIFU ablation for the palliation of bone pain are as follows: technique success is 93%, technique efficacy is 77%, minor complication is 12% and major complication is 2%. Our results suggest that extracorporeal HIFU ablation is a promising method for palliation of pain in bone lesions, with high technique success and efficacy, but low adverse events.
Collapse
Affiliation(s)
- Xiaoti Lin
- Department of Breast, Fujian Provincial Maternity and Children's Hospital, Fujian Medical University, Fuzhou, China; Department of Breast Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Weiyu Chen
- Department of Physiology, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, China
| | - Fengqin Wei
- Department of Emergency, Fujian Provincial 2nd People's Hospital, Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
20
|
Lau LW, Eranki A, Celik H, Kim A, Kim PCW, Sharma KV, Yarmolenko PS. Are Current Technical Exclusion Criteria for Clinical Trials of Magnetic Resonance-Guided High-Intensity Focused Ultrasound Too Restrictive?: Early Experiences at a Pediatric Hospital. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:1849-1855. [PMID: 32227606 DOI: 10.1002/jum.15259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/04/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Certain technical criteria must be met to ensure the treatment safety of magnetic resonance-guided high-intensity focused ultrasound. We retrospectively reviewed how our enrollment criteria were applied from 2014 to 2017 in a clinical trial of magnetic resonance-guided high-intensity focused ultrasound ablation of recurrent malignant and locally aggressive benign solid tumors. Among the 36 screened patients between 2014 and 2017, more than one-third were excluded for technical exclusion criteria such as the anatomic location and proximity to prosthetics. Overall, patients were difficult to accrue for this trial, given the incidence of these tumors. To increase potential accrual, screening exclusion criteria could be more generalized and centered on the ability to achieve an acceptable treatment safety margin, rather than specifically excluding on the basis of general anatomic areas.
Collapse
Affiliation(s)
- Lung W Lau
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
- Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Avinash Eranki
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| | - Haydar Celik
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
- Center for Interventional Oncology, Radiology, and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - AeRang Kim
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| | - Peter C W Kim
- Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Karun V Sharma
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| | - Pavel S Yarmolenko
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
| |
Collapse
|
21
|
Eranki A, Srinivasan P, Ries M, Kim A, Lazarski CA, Rossi CT, Khokhlova TD, Wilson E, Knoblach SM, Sharma KV, Wood BJ, Moonen C, Sandler AD, Kim PCW. High-Intensity Focused Ultrasound (HIFU) Triggers Immune Sensitization of Refractory Murine Neuroblastoma to Checkpoint Inhibitor Therapy. Clin Cancer Res 2020; 26:1152-1161. [PMID: 31615935 PMCID: PMC9009723 DOI: 10.1158/1078-0432.ccr-19-1604] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/05/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunotherapy promises unprecedented benefits to patients with cancer. However, the majority of cancer types, including high-risk neuroblastoma, remain immunologically unresponsive. High-intensity focused ultrasound (HIFU) is a noninvasive technique that can mechanically fractionate tumors, transforming immunologically "cold" tumors into responsive "hot" tumors. EXPERIMENTAL DESIGN We treated <2% of tumor volume in previously unresponsive, large, refractory murine neuroblastoma tumors with mechanical HIFU and assessed systemic immune response using flow cytometry, ELISA, and gene sequencing. In addition, we combined this treatment with αCTLA-4 and αPD-L1 to study its effect on the immune response and long-term survival. RESULTS Combining HIFU with αCTLA-4 and αPD-L1 significantly enhances antitumor response, improving survival from 0% to 62.5%. HIFU alone causes upregulation of splenic and lymph node NK cells and circulating IL2, IFNγ, and DAMPs, whereas immune regulators like CD4+Foxp3+, IL10, and VEGF-A are significantly reduced. HIFU combined with checkpoint inhibitors induced significant increases in intratumoral CD4+, CD8α+, and CD8α+CD11c+ cells, CD11c+ in regional lymph nodes, and decrease in circulating IL10 compared with untreated group. We also report significant abscopal effect following unilateral treatment of mice with large, established bilateral tumors using HIFU and checkpoint inhibitors compared with tumors treated with HIFU or checkpoint inhibitors alone (61.1% survival, P < 0.0001). This combination treatment significantly also induces CD4+CD44+hiCD62L+low and CD8α+CD44+hiCD62L+low population and is adoptively transferable, imparting immunity, slowing subsequent de novo tumor engraftment. CONCLUSIONS Mechanical fractionation of tumors using HIFU can effectively induce immune sensitization in a previously unresponsive murine neuroblastoma model and promises a novel yet efficacious immunoadjuvant modality to overcome therapeutic resistance.
Collapse
Affiliation(s)
- Avinash Eranki
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, D.C
- Center for Interventional Oncology, National Cancer Institute, Radiology & Imaging Sciences, NIH Clinical Center, NIH, Bethesda, Maryland
| | - Priya Srinivasan
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, D.C
| | - Mario Ries
- Imaging Division, UMC Utrecht, Heidelberglaan, Utrecht, the Netherlands
| | - AeRang Kim
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, D.C
| | - Christopher A Lazarski
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, D.C
| | - Christopher T Rossi
- Department of Pathology, Children's National Medical Center, Washington, D.C
| | - Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, Washington
| | - Emmanuel Wilson
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, D.C
| | - Susan M Knoblach
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, D.C
| | - Karun V Sharma
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, D.C
| | - Bradford J Wood
- Center for Interventional Oncology, National Cancer Institute, Radiology & Imaging Sciences, NIH Clinical Center, NIH, Bethesda, Maryland
| | - Chrit Moonen
- Imaging Division, UMC Utrecht, Heidelberglaan, Utrecht, the Netherlands
| | - Anthony D Sandler
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, D.C
| | - Peter C W Kim
- Department of Surgery, Brown University, Providence, Rhode Island.
| |
Collapse
|
22
|
Duc NM, Keserci B. Emerging clinical applications of high-intensity focused ultrasound. ACTA ACUST UNITED AC 2020; 25:398-409. [PMID: 31287428 DOI: 10.5152/dir.2019.18556] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High-intensity focused ultrasound (HIFU) is a minimally-invasive and non-ionizing promising technology and has been assessed for its role in the treatment of not only primary tumors but also metastatic lesions under the guidance of ultrasound or magnetic resonance imaging. Its performance is notably effective in neurologic, genitourinary, hepato-pancreato-biliary, musculoskeletal, oncologic, and other miscellaneous applications. In this article, we reviewed the emerging technology of HIFU and its clinical applications.
Collapse
Affiliation(s)
- Nguyen Minh Duc
- Department of Radiology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Bilgin Keserci
- Department of Radiology, Universiti Sains Malaysia School of Medical Sciences, Kelantan, Malaysia; Department of Radiology, Hospital Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe current advances in pediatric precision therapy through innovations in technology and engineering. A multimodal approach of chemotherapy, surgery and/or radiation therapy has improved survival outcomes for pediatric cancer but with significant early and late toxicities. The pediatric population is particularly vulnerable given their age during treatment. Advances in precision interventions discussed include image guidance, ablation techniques, radiation therapy and novel drug delivery mechanisms that offer the potential for more targeted approach approaches with improved efficacy while limiting acute and late toxicities. RECENT FINDINGS Image-guidance provides improved treatment planning, real time monitoring and targeting when combined with ablative techniques and radiation therapy. Advances in drug delivery including radioisotopes, nanoparticles and antibody drug conjugates have shown benefit in adult malignancies with increasing use in pediatrics. These therapies alone and combined may lead to augmented local antitumor effect while sparing systemic exposure and potentially limiting early and late toxicities. SUMMARY Pediatric cancer medicine often requires a multimodal approach, each with early and late toxicities. Precision interventions and therapies offer promise for more targeted approaches in treating pediatric malignancies and require further investigation to determine long-term benefit.
Collapse
|
24
|
Emerging hyperthermia applications for pediatric oncology. Adv Drug Deliv Rev 2020; 163-164:157-167. [PMID: 33203538 DOI: 10.1016/j.addr.2020.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022]
Abstract
Local application of hyperthermia has a myriad of effects on the tumor microenvironment as well as the host's immune system. Ablative hyperthermia (typically > 55 °C) has been used both as monotherapy and adjuvant therapy, while mild hyperthermia treatment (39-45 °C) demonstrated efficacy as an adjuvant therapy through enhancement of both chemotherapy and radiation therapy. Clinical integration of hyperthermia has especially great potential in pediatric oncology, where current chemotherapy regimens have reached maximum tolerability and the young age of patients implies significant risks of late effects related to therapy. Furthermore, activation of both local and systemic immune response by hyperthermia suggests that hyperthermia treatments could be used to enhance the anticancer effects of immunotherapy. This review summarizes the state of current applications of hyperthermia in pediatric oncology and discusses the use of hyperthermia in the context of other available treatments and promising pre-clinical research.
Collapse
|
25
|
Eranki A, Mikhail AS, Negussie AH, Katti PS, Wood BJ, Partanen A. Tissue-mimicking thermochromic phantom for characterization of HIFU devices and applications. Int J Hyperthermia 2019; 36:518-529. [PMID: 31046513 DOI: 10.1080/02656736.2019.1605458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Tissue-mimicking phantoms (TMPs) are synthetic materials designed to replicate properties of biological tissues. There is a need to quantify temperature changes following ultrasound or magnetic resonance imaging-guided high intensity focused ultrasound (MR-HIFU). This work describes development, characterization and evaluation of tissue-mimicking thermochromic phantom (TMTCP) for direct visualization and quantification of HIFU heating. The objectives were to (1) develop an MR-imageable, HIFU-compatible TMTCP that reports absolute temperatures, (2) characterize TMTCP physical properties and (3) examine TMTCP color change after HIFU. METHODS AND MATERIALS A TMTCP was prepared to contain thermochromic ink, silicon dioxide and bovine serum albumin (BSA) and its properties were quantified. A clinical MRI-guided and a preclinical US-guided HIFU system were used to perform sonications in TMTCP. MRI thermometry was performed during HIFU, followed by T2-weighted MRI post-HIFU. Locations of color and signal intensity change were compared to the sonication plan and to MRI temperature maps. RESULTS TMTCP properties were comparable to those in human soft tissues. Upon heating, the TMTCP exhibited an incremental but permanent color change for temperatures between 45 and 70 °C. For HIFU sonications the TMTCP revealed spatially sharp regions of color change at the target locations, correlating with MRI thermometry and hypointense regions on T2-weighted MRI. TMTCP-based assessment of various HIFU applications was also demonstrated. CONCLUSIONS We developed a novel MR-imageable and HIFU-compatible TMTCP to characterize HIFU heating without MRI or thermocouples. The HIFU-optimized TMTCP reports absolute temperatures and ablation zone geometry with high spatial resolution. Consequently, the TMTCP can be used to evaluate HIFU heating and may provide an in vitro tool for peak temperature assessment, and reduce preclinical in vivo requirements for clinical translation.
Collapse
Affiliation(s)
- Avinash Eranki
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center and National Cancer Institute, National Institutes of Health , Bethesda , MD , USA.,b Sheikh Zayed Institute for Pediatric Surgical Innovation , Children's National Medical Center , Washington , DC , USA
| | - Andrew S Mikhail
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center and National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Ayele H Negussie
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center and National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Prateek S Katti
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center and National Cancer Institute, National Institutes of Health , Bethesda , MD , USA.,c Institute of Biomedical Engineering , University of Oxford , Oxford , UK
| | - Bradford J Wood
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center and National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Ari Partanen
- a Center for Interventional Oncology, Radiology and Imaging Sciences , Clinical Center and National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
26
|
Magnetic Resonance-guided High-intensity Focused Ultrasound (MRgHIFU) Virtual Treatment Planning for Abdominal Neuroblastoma Utilizing Retrospective Diagnostic 3D CT Images. J Pediatr Hematol Oncol 2019; 41:e443-e449. [PMID: 31449496 DOI: 10.1097/mph.0000000000001563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) is a novel treatment for neuroblastoma using ultrasound-induced thermal ablation with real-time MR thermometry. It is unclear which patients would be amenable to MRgHIFU given the retroperitoneal location of many neuroblastomas within the smaller pediatric abdomen. In addition, planning relies on MR scans, which are not routine in the standard pediatric neuroblastoma workup. This study sought to demonstrate that neuroblastomas are targetable with MRgHIFU and available computed tomographic imaging could be utilized for MRgHIFU virtual treatment. Cross-sectional images of 88 pediatric abdominal neuroblastoma patients were retrospectively processed with custom software to be made compatible with the Sonalleve MRgHIFU platform. Targetability measured percent treatment to lesion volume, within adequate safety margins from critical structures. All images were successfully converted into treatment planning files. Median lesion size was 191±195 cm and depth was 29±17 mm. Up to 78 (85%) patients had targetable lesions with a median targetable volume of 15% and ranging up to 79%. Targetability was highest in superficial, right upper quadrant lesions >200 cm, but limited by proximity to bowel and ribs. This study demonstrates the capacity for MRgHIFU to potentially treat the majority of abdominal neuroblastomas and the feasibility of using computed tomographic images for MRgHIFU virtual treatment planning.
Collapse
|
27
|
Magnetic-resonance-guided focused ultrasound treatment of non-spinal osteoid osteoma in children: multicentre experience. Pediatr Radiol 2019; 49:1209-1216. [PMID: 31129699 DOI: 10.1007/s00247-019-04426-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/05/2019] [Accepted: 05/13/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Osteoid osteoma is a benign and painful musculoskeletal tumour that usually affects children. Current standard treatment is CT-guided radiofrequency ablation, a minimally invasive percutaneous procedure, with clinical success rates ranging between 85% and 98%. Though minimally invasive, however, this type of procedure is not free from complications. OBJECTIVE To investigate the efficacy and safety of magnetic resonance (MR)-guided focused ultrasound (MRgFUS), a needleless procedure of thermal ablation employed in the treatment of non-spinal osteoid osteoma in paediatric patients. MATERIALS AND METHODS We report the results of 33 procedures of ablation of osteoid osteoma performed with MRgFUS in three university hospitals. To ablate a lesion on the bone surface, MRgFUS employs the ultrasound energy transduced along the soft tissue. The follow-up studies lasted 24 months and were performed combining clinical and imaging data. RESULTS Mean age of the children was 13.8 years. The clinical outcome showed a primary success of 97%. One case alone was submitted to repeat treatment because the first one failed (secondary success). No major or minor complications were recorded. During the investigation time, no relapse of symptomatology or delayed complications were observed. CONCLUSION Although our study is preliminary and limited by a low number of patients, our data show that MRgFUS is effective. This suggests that it might be useful as the first-line treatment in paediatric patients with osteoid osteoma.
Collapse
|
28
|
Bitton RR, Webb TD, Pauly KB, Ghanouni P. Prolonged heating in nontargeted tissue during MR‐guided focused ultrasound of bone tumors. J Magn Reson Imaging 2019; 50:1526-1533. [DOI: 10.1002/jmri.26726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Rachel R. Bitton
- School of Medicine, Department of RadiologyStanford University Stanford California USA
| | - Taylor D. Webb
- Department of Electrical EngineeringStanford University Stanford California USA
| | - Kim Butts Pauly
- School of Medicine, Department of RadiologyStanford University Stanford California USA
| | - Pejman Ghanouni
- School of Medicine, Department of RadiologyStanford University Stanford California USA
| |
Collapse
|
29
|
Modena D, Baragona M, Bošnački D, Breuer BJT, Elevelt A, Maessen RTH, Hilbers PAJ, Ten Eikelder HMM. Modeling the interference between shear and longitudinal waves under high intensity focused ultrasound propagation in bone. Phys Med Biol 2018; 63:235024. [PMID: 30511661 DOI: 10.1088/1361-6560/aaef14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) is a noninvasive thermal technique that enables rapid heating of a specific area in the human body. Its clinical relevance has been proven for the treatments of soft tissue tumors, like uterine fibroids, and for the treatments of solid tumors in bone. In MR-HIFU treatment, MR-thermometry is used to monitor the temperature evolution in soft tissue. However, this technique is currently unavailable for bone tissue. Computer models can play a key role in the accurate prediction and monitoring of temperature. Here, we present a computer ray tracing model that calculates the heat production density in the focal region. This model accounts for both the propagation of shear waves and the interference between longitudinal and shear waves. The model was first compared with a finite element approach which solves the Helmholtz equation in soft tissue and the frequency-domain wave equation in bone. To obtain the temperature evolution in the focal region, the heat equation was solved using the heat production density generated by the raytracer as a heat source. Then, we investigated the role of the interaction between shear and longitudinal waves in terms of dissipated power and temperature output. The results of our model were in agreement with the results obtained by solving the Helmholtz equation and the frequency-domain wave equation, both in soft tissue and bone. Our results suggest that it is imperative to include both shear waves and their interference with longitudinal waves in the model when simulating high intensity focused ultrasound propagation in solids. In fact, when modeling HIFU treatments, omitting the interference between shear and longitudinal waves leads to an over-estimation of the temperature increase in the tissues.
Collapse
Affiliation(s)
- D Modena
- Eindhoven University of Technology, Eindhoven, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bing F, Vappou J, de Mathelin M, Gangi A. Targetability of osteoid osteomas and bone metastases by MR-guided high intensity focused ultrasound (MRgHIFU). Int J Hyperthermia 2018; 35:471-479. [DOI: 10.1080/02656736.2018.1508758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Fabrice Bing
- Radiology Department, Hôpital d’Annecy, Metz-Tessy, France
- ICube, University of Strasbourg, Strasbourg, France
- Interventional Radiology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | | | - Afshin Gangi
- ICube, University of Strasbourg, Strasbourg, France
- Interventional Radiology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
31
|
Magnetic Resonance Imaging-guided High-intensity Focused Ultrasound Applications in Pediatrics: Early Experience at Children's National Medical Center. Top Magn Reson Imaging 2018; 27:45-51. [PMID: 29406415 DOI: 10.1097/rmr.0000000000000163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) is a novel technology that integrates magnetic resonance imaging with therapeutic ultrasound. This unique approach provides a completely noninvasive method for precise thermal ablation of targeted tissues with real-time imaging feedback. Over the past 2 decades, MR-HIFU has shown clinical success in several adult applications ranging from treatment of painful bone metastases to uterine fibroids to prostate cancer and essential tremor. Although clinical experience in pediatrics is relatively small, the advantages of a completely noninvasive and radiation-free therapy are especially attractive to growing children. Unlike elderly patients, young children must deal with an entire lifetime of negative effects related to collateral tissue damage associated with invasive surgery, side effects of chemotherapy, and risk of secondary malignancy due to radiation exposure. These reasons provide a clear rationale and strong motivation to further advance clinical utility of MR-HIFU in pediatrics. We begin with an introduction to MR-HIFU technology and the clinical experience in adults. We then describe our early institutional experience in using MR-HIFU ablation to treat symptomatic benign, locally aggressive, and metastatic tumors in children and young adults. We also review some limitations and challenges encountered in treating pediatric patients and highlight additional pediatric applications which may be feasible in the near future.
Collapse
|
32
|
Bobola MS, Chen L, Ezeokeke CK, Kuznetsova K, Lahti AC, Lou W, Myroniv AN, Schimek NW, Selby ML, Mourad PD. A Review of Recent Advances in Ultrasound, Placed in the Context of Pain Diagnosis and Treatment. Curr Pain Headache Rep 2018; 22:60. [PMID: 29987680 PMCID: PMC6061208 DOI: 10.1007/s11916-018-0711-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ultrasound plays a significant role in the diagnosis and treatment of pain, with significant literature reaching back many years, especially with regard to diagnostic ultrasound and its use for guiding needle-based delivery of drugs. Advances in ultrasound over at least the last decade have opened up new areas of inquiry and potential clinical efficacy in the context of pain diagnosis and treatment. Here we offer an overview of the recent literature associated with ultrasound and pain in order to highlight some promising frontiers at the intersection of these two subjects. We focus first on peripheral application of ultrasound, for which there is a relatively rich, though still young, literature. We then move to central application of ultrasound, for which there is little literature but much promise.
Collapse
Affiliation(s)
- Michael S Bobola
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Lucas Chen
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | | | - Katy Kuznetsova
- Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Annamarie C Lahti
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Weicheng Lou
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Aleksey N Myroniv
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Nels W Schimek
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Madison L Selby
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Pierre D Mourad
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA.
- Applied Physics Laboratory, University of Washington, Seattle, WA, USA.
- Division of Engineering and Mathematics, University of Washington, Bothell, WA, USA.
| |
Collapse
|
33
|
Elhelf IS, Albahar H, Shah U, Oto A, Cressman E, Almekkawy M. High intensity focused ultrasound: The fundamentals, clinical applications and research trends. Diagn Interv Imaging 2018; 99:349-359. [DOI: 10.1016/j.diii.2018.03.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023]
|
34
|
Eranki A, Farr N, Partanen A, Sharma KV, Rossi CT, Rosenberg AZ, Kim A, Oetgen M, Celik H, Woods D, Yarmolenko PS, Kim PCW, Wood BJ. Mechanical fractionation of tissues using microsecond-long HIFU pulses on a clinical MR-HIFU system. Int J Hyperthermia 2018; 34:1213-1224. [PMID: 29429375 DOI: 10.1080/02656736.2018.1438672] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
PURPOSE High intensity focussed ultrasound (HIFU) can non-invasively treat tumours with minimal or no damage to intervening tissues. While continuous-wave HIFU thermally ablates target tissue, the effect of hundreds of microsecond-long pulsed sonications is examined in this work. The objective of this study was to characterise sonication parameter-dependent thermomechanical bioeffects to provide the foundation for future preclinical studies and facilitate clinical translation. METHODS AND MATERIALS Acoustic power, number of cycles/pulse, sonication time and pulse repetition frequency (PRF) were varied on a clinical magnetic resonance imaging (MRI)-guided HIFU (MR-HIFU) system. Ex vivo porcine liver, kidney and cardiac muscle tissue samples were sonicated (3 × 3 grid pattern, 1 mm spacing). Temperature, thermal dose and T2 relaxation times were quantified using MRI. Lesions were histologically analysed using H&E and vimentin stains for lesion structure and viability. RESULTS Thermomechanical HIFU bioeffects produced distinct types of fractionated tissue lesions: solid/thermal, paste-like and vacuolated. Sonications at 20 or 60 Hz PRF generated substantial tissue damage beyond the focal region, with reduced viability on vimentin staining, whereas H&E staining indicated intact tissue. Same sonication parameters produced dissimilar lesions in different tissue types, while significant differences in temperature, thermal dose and T2 were observed between the parameter sets. CONCLUSION Clinical MR-HIFU system was utilised to generate distinct types of lesions and to produce targeted thermomechanical bioeffects in ex vivo tissues. The results guide HIFU research on thermomechanical tissue bioeffects, inform future studies and advice sonication parameter selection for direct tumour ablation or immunomodulation using a clinical MR-HIFU system.
Collapse
Affiliation(s)
- Avinash Eranki
- a Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System , Washington , DC , USA.,b Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center , National Institutes of Health , Bethesda , MD , USA
| | - Navid Farr
- b Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center , National Institutes of Health , Bethesda , MD , USA
| | - Ari Partanen
- b Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center , National Institutes of Health , Bethesda , MD , USA.,c Clinical Science MR Therapy, Philips , Andover , MA , USA
| | - Karun V Sharma
- a Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System , Washington , DC , USA
| | - Christopher T Rossi
- d Department of Pathology , Children's National Health System , Washington , DC , USA
| | - Avi Z Rosenberg
- e Department of Pathology , Johns Hopkins University , Baltimore , MD , USA
| | - AeRang Kim
- a Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System , Washington , DC , USA
| | - Matthew Oetgen
- a Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System , Washington , DC , USA
| | - Haydar Celik
- a Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System , Washington , DC , USA.,b Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center , National Institutes of Health , Bethesda , MD , USA
| | - David Woods
- b Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center , National Institutes of Health , Bethesda , MD , USA
| | - Pavel S Yarmolenko
- a Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System , Washington , DC , USA
| | - Peter C W Kim
- a Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System , Washington , DC , USA
| | - Bradford J Wood
- b Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|