1
|
Pasquetti D, Tesolin P, Perino F, Zampieri S, Bobbo M, Caiffa T, Spedicati B, Girotto G. Expanding the Molecular Spectrum of MMP21 Missense Variants: Clinical Insights and Literature Review. Genes (Basel) 2025; 16:62. [PMID: 39858609 PMCID: PMC11764533 DOI: 10.3390/genes16010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/31/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES The failure of physiological left-right (LR) patterning, a critical embryological process responsible for establishing the asymmetric positioning of internal organs, leads to a spectrum of congenital abnormalities characterized by laterality defects, collectively known as "heterotaxy". MMP21 biallelic variants have recently been associated with heterotaxy syndrome and congenital heart defects (CHD). However, the genotype-phenotype correlations and the underlying pathogenic mechanisms remain poorly understood. METHODS Patients harboring biallelic MMP21 missense variants who underwent diagnostic genetic testing for CHD or heterotaxy were recruited at the Institute for Maternal and Child Health-I.R.C.C.S. "Burlo Garofolo". Additionally, a literature review on MMP21 missense variants was conducted, and clinical data from reported patients, along with molecular data from in silico and modeling tools, were collected. RESULTS A total of 18 MMP21 missense variants were reported in 26 patients, with the majority exhibiting CHD (94%) and variable extra-cardiac manifestations (64%). In our cohort, through Whole-Exome Sequencing (WES) analysis, the missense p.(Met301Ile) variant was identified in two unrelated patients, who both presented with heterotaxy syndrome. CONCLUSIONS Our comprehensive analysis of MMP21 missense variants supports the pathogenic role of the p.(Met301Ile) variant and provides significant insights into the disease pathogenesis. Specifically, missense variants are distributed throughout the gene without clustering in specific regions, and phenotype comparisons between patients carrying missense variants in compound heterozygosity or homozygosity do not reveal significant differences. These findings may suggest a potential loss-of-function mechanism for MMP21 missense variants, especially those located in the catalytic domain, and highlight their critical role in the pathogenesis of heterotaxy syndrome.
Collapse
Affiliation(s)
- Domizia Pasquetti
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (D.P.); (P.T.); (S.Z.); (M.B.); (T.C.); (G.G.)
| | - Paola Tesolin
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (D.P.); (P.T.); (S.Z.); (M.B.); (T.C.); (G.G.)
| | - Federica Perino
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| | - Stefania Zampieri
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (D.P.); (P.T.); (S.Z.); (M.B.); (T.C.); (G.G.)
| | - Marco Bobbo
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (D.P.); (P.T.); (S.Z.); (M.B.); (T.C.); (G.G.)
| | - Thomas Caiffa
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (D.P.); (P.T.); (S.Z.); (M.B.); (T.C.); (G.G.)
| | - Beatrice Spedicati
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (D.P.); (P.T.); (S.Z.); (M.B.); (T.C.); (G.G.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| | - Giorgia Girotto
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (D.P.); (P.T.); (S.Z.); (M.B.); (T.C.); (G.G.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| |
Collapse
|
2
|
Karuntu JS, Almushattat H, Nguyen XTA, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, van Karnebeek CDM, Bergen AA, van Genderen MM, Boon CJF. Syndromic Retinitis Pigmentosa. Prog Retin Eye Res 2024:101324. [PMID: 39733931 DOI: 10.1016/j.preteyeres.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives. Given the diverse clinical and genetic landscape of syndromic RP, the diagnosis may be challenging. However, an accurate and timely diagnosis is essential for optimal clinical management, prognostication, and potential treatment. Broadly, the syndromes associated with RP can be categorized into ciliopathies, inherited metabolic disorders, mitochondrial disorders, and miscellaneous syndromes. Among the ciliopathies associated with RP, Usher syndrome and Bardet-Biedl syndrome are the most well-known. Less common ciliopathies include Cohen syndrome, Joubert syndrome, cranioectodermal dysplasia, asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, and RHYNS syndrome. Several inherited metabolic disorders can present with RP including Zellweger spectrum disorders, adult Refsum disease, α-methylacyl-CoA racemase deficiency, certain mucopolysaccharidoses, ataxia with vitamin E deficiency, abetalipoproteinemia, several neuronal ceroid lipofuscinoses, mevalonic aciduria, PKAN/HARP syndrome, PHARC syndrome, and methylmalonic acidaemia with homocystinuria type cobalamin (cbl) C disease. Due to the mitochondria's essential role in supplying continuous energy to the retina, disruption of mitochondrial function can lead to RP, as seen in Kearns-Sayre syndrome, NARP syndrome, primary coenzyme Q10 deficiency, SSBP1-associated disease, and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Lastly, Cockayne syndrome and PERCHING syndrome can present with RP, but they do not fit the abovementioned hierarchy and are thus categorized as 'Miscellaneous'. Several first-in-human clinical trials are underway or in preparation for some of these syndromic forms of RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Marion M Brands
- Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands; Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
| | - Bart P Leroy
- Department of Ophthalmology & Center for Medical Genetics, Ghent University, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Clara D M van Karnebeek
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Dollfus H, Lilien MR, Maffei P, Verloes A, Muller J, Bacci GM, Cetiner M, van den Akker ELT, Grudzinska Pechhacker M, Testa F, Lacombe D, Stokman MF, Simonelli F, Gouronc A, Gavard A, van Haelst MM, Koenig J, Rossignol S, Bergmann C, Zacchia M, Leroy BP, Mosbah H, Van Eerde AM, Mekahli D, Servais A, Poitou C, Valverde D. Bardet-Biedl syndrome improved diagnosis criteria and management: Inter European Reference Networks consensus statement and recommendations. Eur J Hum Genet 2024; 32:1347-1360. [PMID: 39085583 DOI: 10.1038/s41431-024-01634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 05/09/2024] [Indexed: 08/02/2024] Open
Abstract
Four European Reference Networks (ERN-EYE, ERKNet, Endo-ERN, ERN-ITHACA) have teamed up to establish a consensus statement and recommendations for Bardet-Biedl syndrome (BBS). BBS is an autosomal recessive ciliopathy with at least 26 genes identified to date. The clinical manifestations are pleiotropic, can be observed in utero and will progress with age. Genetic testing has progressively improved in the last years prompting for a revision of the diagnostic criteria taking into account clinical Primary and Secondary features, as well as positive or negative molecular diagnosis. This consensus statement also emphasizes on initial diagnosis, monitoring and lifelong follow-up, and symptomatic care that can be provided to patients and family members according to the involved care professionals. For paediatricians, developmental anomalies can be at the forefront for diagnosis (such as polydactyly) but can require specific care, such as for associated neuro developmental disorders. For ophthalmology, the early onset retinal degeneration requires ad hoc functional and imaging technologies and specific care for severe visual impairment. For endocrinology, among other manifestations, early onset obesity and its complications has benefited from better evaluation of eating behaviour problems, improved lifestyle programs, and from novel pharmacological therapies. Kidney and urinary track involvements warrants lifespan attention, as chronic kidney failure can occur and early management might improve outcome. This consensus recommends revised diagnostic criteria for BBS that will ensure certainty of diagnosis, giving robust grounds for genetic counselling as well as in the perspective of future trials for innovative therapies.
Collapse
Affiliation(s)
- Hélène Dollfus
- ERN-EYE Centre de Référence Pour les Affections Rares en Génétique Ophtalmologique (CRMR CARGO), Institut de Génétique Médicale d'Alsace (IGMA), FSMR SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
- Université de Strasbourg, UMRS_1112, Strasbourg, France.
| | - Marc R Lilien
- ERKNet Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | - Pietro Maffei
- Endo-ERN Department of Medicine (DIMED), 3rd Medical Clinic, Padua University, Padua, Italy
| | - Alain Verloes
- ERN-ITHACA Department of Genetics, AP-HP - Université de Paris; INSERM UMR 1141 "NeuroDiderot", Hôpital Robert Debré, Paris, France
| | - Jean Muller
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Unité Fonctionnelle de Bioinformatique Médicale Appliquée au Diagnostic (UF7363), Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, UMRS_1112, Strasbourg, France
| | - Giacomo M Bacci
- ERN-EYE Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, University of Florence, Florence, Italy
| | - Metin Cetiner
- ERKNet Children's Hospital, Pediatrics II, University of Essen, Essen, Germany
| | - Erica L T van den Akker
- Endo-ERN Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Division of Endocrinology, Department of Pediatrics, Erasmus MC-Sophia, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Francesco Testa
- ERN-EYE Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Didier Lacombe
- ERN-ITHACA Department of Medical Genetics, CHU Bordeaux, INSERM Unit_1211, Laboratory "Rare Diseases: Genetics and Metabolism", University of Bordeaux, Bordeaux, France
| | - Marijn F Stokman
- ERKNet Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Francesca Simonelli
- ERN-EYE Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Aurélie Gouronc
- ERN-EYE Centre de Référence Pour les Affections Rares en Génétique Ophtalmologique (CRMR CARGO), Institut de Génétique Médicale d'Alsace (IGMA), FSMR SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Université de Strasbourg, UMRS_1112, Strasbourg, France
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Unité Fonctionnelle de Bioinformatique Médicale Appliquée au Diagnostic (UF7363), Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, UMRS_1112, Strasbourg, France
| | - Amélie Gavard
- ERN-EYE Coordination Center, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Mieke M van Haelst
- ERN-ITHACA Department of Human Genetics, Section Clinical Genetics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Jens Koenig
- ERKNet University Children's Hospital Muenster, Muenster, NRW, Germany
| | - Sylvie Rossignol
- Endo-ERN Département de Pédiatrie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Carsten Bergmann
- Department of Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Miriam Zacchia
- ERKNet Division of Nephrology, Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Bart P Leroy
- ERN-EYE Department of Ophthalmology & Department of Head & Skin, Ghent University Hospital and Ghent University, Ghent, Belgium
- Center for Cellular and Molecular Therapeutics and Division of Ophthalmology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Héléna Mosbah
- Endo-ERN Department of Endocrinology, Diabetology & Nutrition, University Hospital of Poitiers, Poitiers, France
| | - Albertien M Van Eerde
- ERKNet Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Djalila Mekahli
- ERKNet PKD Research Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Aude Servais
- ERKNet Department of Kidney and Metabolic Diseases, Transplantation and Clinical Immunology, Necker Hospital, AP-HP, Centre of Reference for the French Nationwide MARHEANetwork (CNR-MARHEA), Paris, France
- Inserm U1163, Imagine Institute, Paris, France
| | - Christine Poitou
- Endo-ERN Centre de Référence pour les obésités rares (CRMR PRADORT), Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Sorbonne Université, INSERM, Nutrition & Obesities: Systemic Approaches Research Group (NutriOmics), Paris, France
| | - Diana Valverde
- CINBIO, Universidad de Vigo, Grupo de Investigación en Enfermedades Raras, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), Vigo, Spain
| |
Collapse
|
4
|
Cetiner M, Bergmann C, Bettendorf M, Faust J, Gäckler A, Gillissen B, Hansen M, Kerber M, Klaus G, König J, Kühlewein L, Oh J, Richter-Unruh A, von Schnurbein J, Wabitsch M, Weihrauch-Blüher S, Pape L. [Improved Care and Treatment Options for Patients with Hyperphagia-Associated Obesity in Bardet-Biedl Syndrome]. KLINISCHE PADIATRIE 2024; 236:269-279. [PMID: 38458231 PMCID: PMC11383622 DOI: 10.1055/a-2251-5382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Bardet-Biedl syndrome (BBS) is a rare, autosomal recessive multisystem disease. The pathophysiological origin is a dysfunction of the primary cilium. Clinical symptoms are heterogeneous and variable: retinal dystrophy, obesity, polydactyly, kidney abnormalities, hypogenitalism and developmental delays are the most common features. By the approval of the melanocortin 4 receptor agonist setmelanotide, a drug therapy for BBS-associated hyperphagia and obesity can be offered for the first time. Hyperphagia and severe obesity represent a considerable burden and are associated with comorbidity and increased mortality risk. Due to the limited experience with setmelanotide in BBS, a viable comprehensive therapy concept is to be presented. Therapy decision and management should be conducted in expert centers. For best therapeutic effects with setmelanotide adequate information of the patient about the modalities of the therapy (daily subcutaneous injection) and possible adverse drug events are necessary. Furthermore, the involvement of psychologists, nutritionists and nursing services (support for the application) should be considered together with the patient. The assessment of therapy response should be carried out with suitable outcome measurements and centrally reported to an adequate register.
Collapse
Affiliation(s)
- Metin Cetiner
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Carsten Bergmann
- Human genetic diagnostics, Medical Genetics Mainz, Mainz, Germany
| | - Markus Bettendorf
- Pediatric Endocrinology and Diabetes, Heidelberg University Hospital Department of General Pediatrics Pediatric Neurology Metabolic Diseases Gastroenterology and Nephrology, Heidelberg, Germany
| | - Johanna Faust
- Psychiatry and psychotherapy, Max-Planck-Institute for Psychiatry, München, Germany
| | - Anja Gäckler
- Department of Nephrology, University Hospital Essen, Essen, Germany
| | - Bernarda Gillissen
- Bardet Biedl syndrome Working Group, PRO RETINA Deutschland e V, Bonn, Germany
| | - Matthias Hansen
- KFH Kidney Center for Children and Adolescents, Clementine Children's Hospital - Dr Christ'sche Foundation, Frankfurt am Main, Germany
| | - Maximilian Kerber
- Bardet Biedl syndrome Working Group, PRO RETINA Deutschland e V, Bonn, Germany
| | - Günter Klaus
- KFH Kidney Center for Children and Adolescents, University Hospitals Giessen and Marburg Campus Giessen, Marburg, Germany
| | - Jens König
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Laura Kühlewein
- Department of Ophthalmology, University Hospital Tübingen Clinic of Ophthalmology, Tübingen, Germany
| | - Jun Oh
- Pediatric Nephrology, University Medical Center Hamburg-Eppendorf Department of Pediatrics, Hamburg, Germany
| | - Annette Richter-Unruh
- Department of Pediatric Endocrinology and Diabetology, University Hospital of the Ruhr University Bochum, Bochum, Germany
| | - Julia von Schnurbein
- Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, Ulm, Germany
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, Ulm, Germany
| | | | - Lars Pape
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| |
Collapse
|
5
|
Gabriel GC, Ganapathiraju M, Lo CW. The Role of Cilia and the Complex Genetics of Congenital Heart Disease. Annu Rev Genomics Hum Genet 2024; 25:309-327. [PMID: 38724024 DOI: 10.1146/annurev-genom-121222-105345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Congenital heart disease (CHD) can affect up to 1% of live births, and despite abundant evidence of a genetic etiology, the genetic landscape of CHD is still not well understood. A large-scale mouse chemical mutagenesis screen for mutations causing CHD yielded a preponderance of cilia-related genes, pointing to a central role for cilia in CHD pathogenesis. The genes uncovered by the screen included genes that regulate ciliogenesis and cilia-transduced cell signaling as well as many that mediate endocytic trafficking, a cell process critical for both ciliogenesis and cell signaling. The clinical relevance of these findings is supported by whole-exome sequencing analysis of CHD patients that showed enrichment for pathogenic variants in ciliome genes. Surprisingly, among the ciliome CHD genes recovered were many that encoded direct protein-protein interactors. Assembly of the CHD genes into a protein-protein interaction network yielded a tight interactome that suggested this protein-protein interaction may have functional importance and that its disruption could contribute to the pathogenesis of CHD. In light of these and other findings, we propose that an interactome enriched for ciliome genes may provide the genomic context for the complex genetics of CHD and its often-observed incomplete penetrance and variable expressivity.
Collapse
Affiliation(s)
- George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; ,
| | - Madhavi Ganapathiraju
- Carnegie Mellon University in Qatar, Doha, Qatar
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA;
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; ,
| |
Collapse
|
6
|
Shaikh Qureshi WM, Hentges KE. Functions of cilia in cardiac development and disease. Ann Hum Genet 2024; 88:4-26. [PMID: 37872827 PMCID: PMC10952336 DOI: 10.1111/ahg.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023]
Abstract
Errors in embryonic cardiac development are a leading cause of congenital heart defects (CHDs), including morphological abnormalities of the heart that are often detected after birth. In the past few decades, an emerging role for cilia in the pathogenesis of CHD has been identified, but this topic still largely remains an unexplored area. Mouse forward genetic screens and whole exome sequencing analysis of CHD patients have identified enrichment for de novo mutations in ciliary genes or non-ciliary genes, which regulate cilia-related pathways, linking cilia function to aberrant cardiac development. Key events in cardiac morphogenesis, including left-right asymmetric development of the heart, are dependent upon cilia function. Cilia dysfunction during left-right axis formation contributes to CHD as evidenced by the substantial proportion of heterotaxy patients displaying complex CHD. Cilia-transduced signaling also regulates later events during heart development such as cardiac valve formation, outflow tract septation, ventricle development, and atrioventricular septa formation. In this review, we summarize the role of motile and non-motile (primary cilia) in cardiac asymmetry establishment and later events during heart development.
Collapse
Affiliation(s)
- Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Kathryn E. Hentges
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
7
|
Shikwambana MM, Fourie JV. Supporting a Tsonga learner living with Bardet-Biedl syndrome, a rare complex disability. Afr J Disabil 2023; 12:1181. [PMID: 38204908 PMCID: PMC10777427 DOI: 10.4102/ajod.v12i0.1181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/30/2023] [Indexed: 01/12/2024] Open
Abstract
Background Bardet-Biedl syndrome (BBS) is a rare, systemic, hereditary disorder characterised by obesity, polydactyly, visual and auditory impairment, and cognitive disability. Providing quality education in appropriate schools for children who present with such complex chronic conditions is challenging. Objectives This study explored the dimensions of psycho-educational support needs for a child with BBS in South Africa to contribute to the improvement of early detection and holistic interventions. Method A descriptive in-depth qualitative case study of Gezani, an adolescent Tsonga boy diagnosed with BBS, was undertaken. Semi-structured interviews were conducted with his parents and teachers to ascertain the boy's psycho-educational support needs. Medical reports provided information on the complexities and prognosis of the syndrome. Observations in the classroom corroborated the learner's symptoms and behaviours. Results Thematic content analysis revealed the key areas of support needs. Gezani's cognitive disability required a modified, slow-paced curriculum. His visual impairment required mobility orientation training and learning Braille. His emotional needs were supported with psychotherapy to maintain a sense of well-being. Medical monitoring was recommended with interventions for walking and managing his diet and weight. Speech therapy supported his communication skills. Conclusion Learners with multiple disabilities require carefully planned, individualised psycho-educational support programmes addressing their unique needs and delays with targeted remedial interventions in appropriate special needs schools. Contribution This study informs educators about BBS and provides multi-faceted, holistic support. The Department of Basic Education could bring special schools and national policies in tighter alignment for learners presenting with complex disabilities.
Collapse
Affiliation(s)
- Mfungana M Shikwambana
- Department of Educational Psychology, Faculty of Education, University of Johannesburg, Johannesburg, South Africa
| | - Jean V Fourie
- Department of Educational Psychology, Faculty of Education, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
8
|
Khan S, Focșa IO, Budișteanu M, Stoica C, Nedelea F, Bohîlțea L, Caba L, Butnariu L, Pânzaru M, Rusu C, Jurcă C, Chirita-Emandi A, Bănescu C, Abbas W, Sadeghpour A, Baig SM, Bălgrădean M, Davis EE. Exome sequencing in a Romanian Bardet-Biedl syndrome cohort revealed an overabundance of causal BBS12 variants. Am J Med Genet A 2023; 191:2376-2391. [PMID: 37293956 PMCID: PMC10524726 DOI: 10.1002/ajmg.a.63322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Bardet-Biedl syndrome (BBS), is an emblematic ciliopathy hallmarked by pleiotropy, phenotype variability, and extensive genetic heterogeneity. BBS is a rare (~1/140,000 to ~1/160,000 in Europe) autosomal recessive pediatric disorder characterized by retinal degeneration, truncal obesity, polydactyly, cognitive impairment, renal dysfunction, and hypogonadism. Twenty-eight genes involved in ciliary structure or function have been implicated in BBS, and explain the molecular basis for ~75%-80% of individuals. To investigate the mutational spectrum of BBS in Romania, we ascertained a cohort of 24 individuals in 23 families. Following informed consent, we performed proband exome sequencing (ES). We detected 17 different putative disease-causing single nucleotide variants or small insertion-deletions and two pathogenic exon disruptive copy number variants in known BBS genes in 17 pedigrees. The most frequently impacted genes were BBS12 (35%), followed by BBS4, BBS7, and BBS10 (9% each) and BBS1, BBS2, and BBS5 (4% each). Homozygous BBS12 p.Arg355* variants were present in seven pedigrees of both Eastern European and Romani origin. Our data show that although the diagnostic rate of BBS in Romania is likely consistent with other worldwide cohorts (74%), we observed a unique distribution of causal BBS genes, including overrepresentation of BBS12 due to a recurrent nonsense variant, that has implications for regional diagnostics.
Collapse
Affiliation(s)
- Sheraz Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Human Molecular Genetics Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ina Ofelia Focșa
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Cytogenomic Medical Laboratory, Bucharest, Romania
| | - Magdalena Budișteanu
- Psychiatry Research Laboratory, "Prof. Dr. Alexandru Obregia" Clinical Hospital of Psychiatry, Bucharest, Romania
- Medical Genetic Laboratory, "Victor Babeș" National Institute of Pathology, Bucharest, Romania
- Department of Medical Genetics, Faculty of Medicine, "Titu Maiorescu" University, Bucharest, Romania
| | - Cristina Stoica
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Department of Pediatrics, Clinical Institute Fundeni, Bucharest, Romania
| | - Florina Nedelea
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Genetics Department, Clinical Hospital Filantropia, Bucharest, Romania
| | | | - Lavinia Caba
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
| | - Lăcrămioara Butnariu
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
- Regional Medical Genetics Centre, "Sf. Maria" Children's Hospital, Iași, Romania
| | - Monica Pânzaru
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
- Regional Medical Genetics Centre, "Sf. Maria" Children's Hospital, Iași, Romania
| | - Cristina Rusu
- Department of Medical Genetics, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania
- Regional Medical Genetics Centre, "Sf. Maria" Children's Hospital, Iași, Romania
| | - Claudia Jurcă
- Department of Genetics, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Department of Pediatrics, "Dr. Gavril Curteanu" Municipal Clinical Hospital, Oradea, Romania
| | - Adela Chirita-Emandi
- Emergency Hospital for Children Louis Turcanu, Regional Center of Medical Genetics Timis, Timisoara, Romania
- Victor Babes University of Medicine and Pharmacy Timisoara, Department of Microscopic Morphology Genetics, Center for Genomic Medicine, Timisoara, Romania
| | - Claudia Bănescu
- "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, Târgu Mureş, Romania
| | - Wasim Abbas
- Human Molecular Genetics Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Azita Sadeghpour
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
- Duke Precision Medicine Program, Department of Medicine, Division of General Internal Medicine, Duke University Medical Center, Durham, NC, USA
| | - Shahid Mahmood Baig
- Pakistan Science Foundation (PSF), Islamabad, Pakistan
- Department of Biological and Biomedical Sciences, Agha Khan University Karachi, Karachi, Pakistan
| | - Mihaela Bălgrădean
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Department of Pediatrics and Pediatric Nephrology, Emergency Clinical Hospital for Children "Maria Skłodowska Curie", Bucharest, Romania
| | - Erica E Davis
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
9
|
Lethal neonatal respiratory failure due to biallelic variants in BBS1 and monoallelic variant in TTC21B. Pediatr Nephrol 2023; 38:605-609. [PMID: 35695966 PMCID: PMC9744956 DOI: 10.1007/s00467-022-05616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Bardet-Biedl syndrome (BBS) is a rare, autosomal recessive ciliopathy characterized by early onset retinal dystrophy, renal anomalies, postaxial polydactyly, and cognitive impairment with considerable phenotypic heterogeneity. BBS results from biallelic pathogenic variants in over 20 genes that encode key proteins required for the assembly or primary ciliary functions of the BBSome, a heterooctameric protein complex critical for homeostasis of primary cilia. While variants in BBS1 are most frequently identified in affected individuals, the renal and pulmonary phenotypes associated with BBS1 variants are reportedly less severe than those seen in affected individuals with pathogenic variants in the other BBS-associated genes. CASE-DIAGNOSIS We report an infant with severe renal dysplasia and lethal pulmonary hypoplasia who was homozygous for the most common BBS1 pathogenic variant (c.1169 T > G; p.M390R) and also carried a predicted pathogenic variant in TTC21B (c.1846C > T; p.R616C), a genetic modifier of disease severity of ciliopathies associated with renal dysplasia and pulmonary hypoplasia. CONCLUSIONS This report expands the phenotypic spectrum of BBS with the first infant with lethal neonatal respiratory failure associated with biallelic, pathogenic variants in BBS1 and a monoallelic, predicted pathogenic variant in TTC21B. BBS should be considered among the ciliopathies in the differential diagnosis of neonates with renal dysplasia and severe respiratory failure.
Collapse
|
10
|
Melluso A, Secondulfo F, Capolongo G, Capasso G, Zacchia M. Bardet-Biedl Syndrome: Current Perspectives and Clinical Outlook. Ther Clin Risk Manag 2023; 19:115-132. [PMID: 36741589 PMCID: PMC9896974 DOI: 10.2147/tcrm.s338653] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The Bardet Biedl syndrome (BBS) is a rare inherited disorder considered a model of non-motile ciliopathy. It is in fact caused by mutations of genes encoding for proteins mainly localized to the base of the cilium. Clinical features of BBS patients are widely shared with patients suffering from other ciliopathies, especially autosomal recessive syndromic disorders; moreover, mutations in cilia-related genes can cause different clinical ciliopathy entities. Besides the best-known clinical features, as retinal degeneration, learning disabilities, polydactyly, obesity and renal defects, several additional clinical signs have been reported in BBS, expanding our understanding of the complexity of its clinical spectrum. The present review aims to describe the current knowledge of BBS i) pathophysiology, ii) clinical manifestations, highlighting both the most common and the less described features, iii) current and future perspective for treatment.
Collapse
Affiliation(s)
- Andrea Melluso
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Floriana Secondulfo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanna Capolongo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy,Biogem Scarl, Ariano Irpino, AV, 83031, Italy
| | - Miriam Zacchia
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy,Correspondence: Miriam Zacchia, Via Pansini 5, Naples, 80131, Italy, Tel +39 081 566 6650, Fax +39 081 566 6671, Email
| |
Collapse
|
11
|
Solarat C, Valverde D. Clinical and molecular diagnosis of Bardet-Biedl syndrome (BBS). Methods Cell Biol 2023; 176:125-137. [PMID: 37164534 DOI: 10.1016/bs.mcb.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bardet-Biedl syndrome (BBS) is a rare genetic disease of the group of ciliopathies, a group of pathologies characterized mainly by defects in the structure and/or function of primary cilia. The main features of this ciliopathy are retinal dystrophy, obesity, polydactyly, urogenital and renal abnormalities, and cognitive impairment, commonly accompanied by various secondary features, making clear the extensive clinical heterogeneity associated with this syndrome, which, together with the frequent overlapping phenotype with other ciliopathies, greatly complicates its diagnosis. Patients are mainly detected by their pediatrician at quite early ages, usually between 2 and 6years. The pediatrician, given the main symptoms they present, usually refers patients to a specialist. Personalized medicine brought diagnosis closer to many patients who lacked it. It usually presents an autosomal recessive mode of inheritance, but in recent years several authors have proposed more complex inheritance models to explain the frequent inter- and intra-familial clinical variability. The main molecular techniques used for diagnosis are gene panels, the clinical exome and, in certain cases, the patient's complete genome. Although numerous studies have contributed to defining the role of the different BBS genes and designing various strategies for the molecular diagnosis of BBS, as well as delving into the functions performed by these proteins, these advances have not been sufficient to develop a complete treatment for this syndrome. and to be able to offer patients some therapeutic options.
Collapse
|
12
|
Amore G, Spoto G, Scuderi A, Prato A, Dicanio D, Nicotera A, Farello G, Chimenz R, Ceravolo I, Salpietro V, Gitto E, Ceravolo G, Iapadre G, Rosa GD, Pironti E. Bardet–Biedl Syndrome: A Brief Overview on Clinics and Genetics. JOURNAL OF PEDIATRIC NEUROLOGY 2022. [DOI: 10.1055/s-0042-1759534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractBardet–Biedl syndrome is a genetically pleiotropic disorder characterized by high clinical heterogeneity with severe multiorgan impairment. Clinically, it encompasses primary and secondary manifestations, mainly including retinal dystrophy, mental retardation, obesity, polydactyly, hypogonadism in male, and renal abnormalities. At least 21 different genes have been identified, all involved into primary cilium structure or function. To date, genotype–phenotype correlation is still poor.
Collapse
Affiliation(s)
- Greta Amore
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Giulia Spoto
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Anna Scuderi
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Adriana Prato
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Daniela Dicanio
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Antonio Nicotera
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Giovanni Farello
- Pediatric Clinic–Department of Life, Health and Environmental Sciences–Piazzale Salvatore Tommasi 1, Coppito (AQ), Italy
| | - Roberto Chimenz
- Faculty of Medicine and Surgery, University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giorgia Ceravolo
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Pediatric Emergency, University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Gabriella Di Rosa
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Erica Pironti
- Department of Woman-Child, Unit of Child Neurology and Psychiatry, Ospedali Riuniti, University of Foggia, Foggia, Italy
| |
Collapse
|
13
|
Saba TG, Geddes GC, Ware SM, Schidlow DN, Del Nido PJ, Rubalcava NS, Gadepalli SK, Stillwell T, Griffiths A, Bennett Murphy LM, Barber AT, Leigh MW, Sabin N, Shapiro AJ. A multi-disciplinary, comprehensive approach to management of children with heterotaxy. Orphanet J Rare Dis 2022; 17:351. [PMID: 36085154 PMCID: PMC9463860 DOI: 10.1186/s13023-022-02515-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/04/2022] [Indexed: 11/10/2022] Open
Abstract
Heterotaxy (HTX) is a rare condition of abnormal thoraco-abdominal organ arrangement across the left-right axis of the body. The pathogenesis of HTX includes a derangement of the complex signaling at the left-right organizer early in embryogenesis involving motile and non-motile cilia. It can be inherited as a single-gene disorder, a phenotypic feature of a known genetic syndrome or without any clear genetic etiology. Most patients with HTX have complex cardiovascular malformations requiring surgical intervention. Surgical risks are relatively high due to several serious comorbidities often seen in patients with HTX. Asplenia or functional hyposplenism significantly increase the risk for sepsis and therefore require antimicrobial prophylaxis and immediate medical attention with fever. Intestinal rotation abnormalities are common among patients with HTX, although volvulus is rare and surgical correction carries substantial risk. While routine screening for intestinal malrotation is not recommended, providers and families should promptly address symptoms concerning for volvulus and biliary atresia, another serious morbidity more common among patients with HTX. Many patients with HTX have chronic lung disease and should be screened for primary ciliary dyskinesia, a condition of respiratory cilia impairment leading to bronchiectasis. Mental health and neurodevelopmental conditions need to be carefully considered among this population of patients living with a substantial medical burden. Optimal care of children with HTX requires a cohesive team of primary care providers and experienced subspecialists collaborating to provide compassionate, standardized and evidence-based care. In this statement, subspecialty experts experienced in HTX care and research collaborated to provide expert- and evidence-based suggestions addressing the numerous medical issues affecting children living with HTX.
Collapse
Affiliation(s)
- Thomas G Saba
- Department of Pediatrics, Pulmonary Division, University of Michigan Medical School, 1500 E. Medical Center Drive, Ann Arbor, MI, USA.
| | - Gabrielle C Geddes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephanie M Ware
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David N Schidlow
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nathan S Rubalcava
- Department of Surgery, Section of Pediatric Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Samir K Gadepalli
- Department of Surgery, Section of Pediatric Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Terri Stillwell
- Department of Pediatrics, Infectious Disease Division, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anne Griffiths
- Department of Pediatrics, Pulmonary/Critical Care Division, Children's Minnesota and Children's Respiratory and Critical Care Specialists, Minneapolis, MN, USA
| | - Laura M Bennett Murphy
- Department of Pediatrics, Division of Pediatric Psychiatry and Behavioral Health, University of Utah, Primary Children's Hospital, Salt Lake City, UT, USA
| | - Andrew T Barber
- Department of Pediatrics, Division of Pulmonology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Margaret W Leigh
- Department of Pediatrics, Division of Pulmonology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Necia Sabin
- Heterotaxy Connection, Eagle Mountain, UT, USA
| | - Adam J Shapiro
- Department of Pediatrics, McGill University Health Centre Research Institute, Montreal, QC, Canada
| |
Collapse
|
14
|
Caba L, Florea L, Braha EE, Lupu VV, Gorduza EV. Monitoring and Management of Bardet-Biedl Syndrome: What the Multi-Disciplinary Team Can Do. J Multidiscip Healthc 2022; 15:2153-2167. [PMID: 36193191 PMCID: PMC9526427 DOI: 10.2147/jmdh.s274739] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Bardet – Biedl syndrome is a rare autosomal recessive multisystem non-motile ciliopathy. It has heterogeneous clinical manifestations. It is caused by mutations in 26 genes encoding BBSome proteins, chaperonines, and IFT complex. The main clinical features are: retinal cone-rod dystrophy, central obesity, postaxial polydactyly, cognitive impairment, hypogonadism and genitourinary anomalies, and kidney disease. The onset of clinical manifestations is variable which makes the diagnosis difficult in some patients. Because of the multiple system involvement, a multidisciplinary approach is necessary. The purpose of this review is to provide monitoring and management directions for a better approach to these patients.
Collapse
Affiliation(s)
- Lavinia Caba
- Department of Mother and Child Medicine – Medical Genetics, “Grigore T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
- Correspondence: Lavinia Caba, Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, Iasi, 700115, Romania, Email
| | - Laura Florea
- Department of Nephrology - Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Valeriu Vasile Lupu
- Department of Mother and Child Medicine – Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
| | - Eusebiu Vlad Gorduza
- Department of Mother and Child Medicine – Medical Genetics, “Grigore T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
| |
Collapse
|
15
|
Post-operative Morbidity and Mortality After Fontan Procedure in Patients with Heterotaxy and Other Situs Anomalies. Pediatr Cardiol 2022; 43:952-959. [PMID: 35064275 DOI: 10.1007/s00246-021-02804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Heterotaxy is a complex, multisystem disorder associated with single ventricle heart disease and decreased survival. Ciliary dysfunction is common in heterotaxy and other situs abnormalities (H/SA) and may increase post-operative complications. We hypothesized that patients with H/SA have increased respiratory and renal morbidities and increased in-hospital mortality after Fontan procedure. We queried the Pediatric Health Information System database for hospitalizations with ICD-9/10 codes for Fontan procedure in patients aged 1 through 11 years from 2004 to 2019. H/SA was identified by codes for dextrocardia, situs inversus, asplenia/polysplenia, or atrial isomerism and compared to non-H/SA controls. Outcomes were in-hospital mortality or heart transplantation, ECMO, hemodialysis, length of stay (LOS), and mechanical ventilation or vasoactive medication use ≥ 4 days. We adjusted estimates with multivariable logistic regression. Of 7897 patients at 50 centers, 1366 (17%) met criteria for H/SA. H/SA had worse outcomes for all study measures: death/transplantation (1.9 vs 1.1%, OR 1.74 (95% CI 1.01-3.03); p = 0.047), ECMO (3.7 vs 2.3%, OR 1.74 (1.28-2.35); p < 0.001), hemodialysis (2.1 vs 1.2%, OR 1.66 (1.06-2.59); p = 0.026), prolonged mechanical ventilation (13.2% vs 7.6%, OR 1.85 (1.53-2.25); p < 0.001) and vasoactive medication use (29.4 vs 19.7%, OR 1.65 (1.43-1.90), and longer LOS (11 (8-17) vs 9 (7-14) days; p < 0.001). H/SA is associated with increased cardiovascular, renal, and respiratory morbidity, as well as in-hospital mortality after Fontan procedure. Attention to renal and respiratory needs may improve outcomes in this difficult population. The relationship between ciliary dysfunction and lung and renal morbidity should be explored further.
Collapse
|
16
|
Djenoune L, Berg K, Brueckner M, Yuan S. A change of heart: new roles for cilia in cardiac development and disease. Nat Rev Cardiol 2022; 19:211-227. [PMID: 34862511 PMCID: PMC10161238 DOI: 10.1038/s41569-021-00635-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/27/2022]
Abstract
Although cardiac abnormalities have been observed in a growing class of human disorders caused by defective primary cilia, the function of cilia in the heart remains an underexplored area. The primary function of cilia in the heart was long thought to be restricted to left-right axis patterning during embryogenesis. However, new findings have revealed broad roles for cilia in congenital heart disease, valvulogenesis, myocardial fibrosis and regeneration, and mechanosensation. In this Review, we describe advances in our understanding of the mechanisms by which cilia function contributes to cardiac left-right axis development and discuss the latest findings that highlight a broader role for cilia in cardiac development. Specifically, we examine the growing line of evidence connecting cilia function to the pathogenesis of congenital heart disease. Furthermore, we also highlight research from the past 10 years demonstrating the role of cilia function in common cardiac valve disorders, including mitral valve prolapse and aortic valve disease, and describe findings that implicate cardiac cilia in mechanosensation potentially linking haemodynamic and contractile forces with genetic regulation of cardiac development and function. Finally, given the presence of cilia on cardiac fibroblasts, we also explore the potential role of cilia in fibrotic growth and summarize the evidence implicating cardiac cilia in heart regeneration.
Collapse
Affiliation(s)
- Lydia Djenoune
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn Berg
- Department of Paediatrics, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Martina Brueckner
- Department of Paediatrics, Yale University School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| | - Shiaulou Yuan
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Meyer JR, Krentz AD, Berg RL, Richardson JG, Pomeroy J, Hebbring SJ, Haws RM. Kidney Failure in Bardet-Biedl Syndrome. Clin Genet 2022; 101:429-441. [PMID: 35112343 PMCID: PMC9311438 DOI: 10.1111/cge.14119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 11/29/2022]
Abstract
The aim of this study was to explore kidney failure (KF) in Bardet–Biedl syndrome (BBS), focusing on high‐risk gene variants, demographics, and morbidity. We employed the Clinical Registry Investigating BBS (CRIBBS) to identify 44 (7.2%) individuals with KF out of 607 subjects. Molecularly confirmed BBS was identified in 37 KF subjects and 364 CRIBBS registrants. KF was concomitant with recessive causal variants in 12 genes, with BBS10 the most predominant causal gene (26.6%), while disease penetrance was highest in SDCCAG8 (100%). Two truncating variants were present in 67.6% of KF cases. KF incidence was increased in genes not belonging to the BBSome or chaperonin‐like genes (p < 0.001), including TTC21B, a new candidate BBS gene. Median age of KF was 12.5 years, with the vast majority of KF occurring by 30 years (86.3%). Females were disproportionately affected (77.3%). Diverse uropathies were identified, but were not more common in the KF group (p = 0.672). Kidney failure was evident in 11 of 15 (73.3%) deaths outside infancy. We conclude that KF poses a significant risk for premature morbidity in BBS. Risk factors for KF include female sex, truncating variants, and genes other than BBSome/chaperonin‐like genes highlighting the value of comprehensive genetic investigation.
Collapse
Affiliation(s)
- Jennifer R Meyer
- University of Wisconsin, School of Medicine and Public Health, Madison, WI, USA
| | | | - Richard L Berg
- Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | | | - Jeremy Pomeroy
- Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Scott J Hebbring
- Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Robert M Haws
- Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA.,Marshfield Clinic Health System, Marshfield, Wisconsin, USA
| |
Collapse
|
18
|
Day ML, Avila CC, Novak DL. Hydrometrocolpos and postaxial polydactyly in a girl newborn: A case report. Clin Case Rep 2022; 10:e05453. [PMID: 35223016 PMCID: PMC8850395 DOI: 10.1002/ccr3.5453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/14/2021] [Indexed: 11/07/2022] Open
Abstract
This case report is of a 35-week female neonate with a cystic abdominal mass. Physical examination was notable for post-axial polydactyly, distended abdomen, and abnormal urethral opening. Differential diagnosis includes Bardet-Biedl Syndrome (BBS), an autosomal recessive ciliopathy. Genetic panel revealed she was a carrier for a BBS mutation.
Collapse
Affiliation(s)
- Morgan L. Day
- Department of PediatricsUniversity of New Mexico Children's HospitalAlbuquerqueNew MexicoUSA
| | - Crystal C. Avila
- Department of PediatricsUniversity of New Mexico Children's HospitalAlbuquerqueNew MexicoUSA
| | - Dawn L. Novak
- Department of NeonatologyUniversity of New Mexico Children's HospitalAlbuquerqueNew MexicoUSA
| |
Collapse
|
19
|
Chandra B, Tung ML, Hsu Y, Scheetz T, Sheffield VC. Retinal ciliopathies through the lens of Bardet-Biedl Syndrome: Past, present and future. Prog Retin Eye Res 2021; 89:101035. [PMID: 34929400 DOI: 10.1016/j.preteyeres.2021.101035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
The primary cilium is a highly specialized and evolutionary conserved organelle in eukaryotes that plays a significant role in cell signaling and trafficking. Over the past few decades tremendous progress has been made in understanding the physiology of cilia and the underlying pathomechanisms of various ciliopathies. Syndromic ciliopathies consist of a group of disorders caused by ciliary dysfunction or abnormal ciliogenesis. These disorders have multiorgan involvement in addition to retinal degeneration underscoring the ubiquitous distribution of primary cilia in different cell types. Genotype-phenotype correlation is often challenging due to the allelic heterogeneity and pleiotropy of these disorders. In this review, we discuss the clinical and genetic features of syndromic ciliopathies with a focus on Bardet-Biedl syndrome (BBS) as a representative disorder. We discuss the structure and function of primary cilia and their role in retinal photoreceptors. We describe the progress made thus far in understanding the functional and genetic characterization including expression quantitative trait locus (eQTL) analysis of BBS genes. In the future directions section, we discuss the emerging technologies, such as gene therapy, as well as anticipated challenges and their implications in therapeutic development for ciliopathies.
Collapse
Affiliation(s)
- Bharatendu Chandra
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Moon Ley Tung
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA
| | - Todd Scheetz
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA
| | - Val C Sheffield
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
20
|
Focșa IO, Budișteanu M, Burloiu C, Khan S, Sadeghpour A, Bohîlțea LC, Davis EE, Bălgrădean M. A case of Bardet-Biedl syndrome caused by a recurrent variant in BBS12: A case report. Biomed Rep 2021; 15:103. [PMID: 34760276 PMCID: PMC8567465 DOI: 10.3892/br.2021.1479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a clinically and genetically heterogenous disorder that manifests as a result of primary cilia impairment. Cilia are present on most cell types, thus BBS is a multisystemic condition involving the majority of organ systems. The core features of the syndrome include retinal degeneration, obesity, polydactyly, cognitive impairment, renal anomalies and urogenital malformations. To date, pathogenic variants in 26 genes have been shown to be involved in the molecular basis of this rare ciliopathy. Of these causal loci, BBS12 accounts for ~8% of all cases. In this case report, an individual with BBS caused by a rare recurrent variant in BBS12 (NM_152618.3: c.1063C>T; p.Arg355*) is described and compared with others with the same DNA variant, placing this finding in the context of the current literature.
Collapse
Affiliation(s)
- Ina Ofelia Focșa
- Department of Medical Genetics, University of Medicine and Pharmacy 'Carol Davila', 021901 Bucharest, Romania
| | - Magdalena Budișteanu
- Department of Pediatric Neurology, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania.,Medical Genetic Laboratory, 'Victor Babeș' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Medical Genetics, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Carmen Burloiu
- Department of Pediatric Neurology, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Sheraz Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan Institute of Engineering and Applied Sciences, Islamabad 38000, Pakistan.,Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Azita Sadeghpour
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701, USA.,Duke Center for Applied Genomics and Precision Medicine, Duke University, Durham, NC 27708, USA
| | - Laurențiu C Bohîlțea
- Department of Medical Genetics, University of Medicine and Pharmacy 'Carol Davila', 021901 Bucharest, Romania
| | - Erica E Davis
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.,Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mihaela Bălgrădean
- Department of Pediatrics and Pediatric Nephrology, Emergency Clinical Hospital for Children 'Maria Skłodowska Curie', 077120 Bucharest, Romania.,Department of Pediatrics, University of Medicine and Pharmacy 'Carol Davila', 077120 Bucharest, Romania
| |
Collapse
|
21
|
Antony D, Brunner HG, Schmidts M. Ciliary Dyneins and Dynein Related Ciliopathies. Cells 2021; 10:cells10081885. [PMID: 34440654 PMCID: PMC8391580 DOI: 10.3390/cells10081885] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Although ubiquitously present, the relevance of cilia for vertebrate development and health has long been underrated. However, the aberration or dysfunction of ciliary structures or components results in a large heterogeneous group of disorders in mammals, termed ciliopathies. The majority of human ciliopathy cases are caused by malfunction of the ciliary dynein motor activity, powering retrograde intraflagellar transport (enabled by the cytoplasmic dynein-2 complex) or axonemal movement (axonemal dynein complexes). Despite a partially shared evolutionary developmental path and shared ciliary localization, the cytoplasmic dynein-2 and axonemal dynein functions are markedly different: while cytoplasmic dynein-2 complex dysfunction results in an ultra-rare syndromal skeleto-renal phenotype with a high lethality, axonemal dynein dysfunction is associated with a motile cilia dysfunction disorder, primary ciliary dyskinesia (PCD) or Kartagener syndrome, causing recurrent airway infection, degenerative lung disease, laterality defects, and infertility. In this review, we provide an overview of ciliary dynein complex compositions, their functions, clinical disease hallmarks of ciliary dynein disorders, presumed underlying pathomechanisms, and novel developments in the field.
Collapse
Affiliation(s)
- Dinu Antony
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany;
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
| | - Han G. Brunner
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
| | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany;
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
- Correspondence: ; Tel.: +49-761-44391; Fax: +49-761-44710
| |
Collapse
|
22
|
Gumus E, Tuncez E, Oz O, Guvenc MS. Response to Letter to the Editor: "Atrioventricular canal defect is an infrequent congenital heart disease that can be observed in Bardet-Biedl syndrome". Ann Hum Genet 2021; 85:103-104. [PMID: 33817793 DOI: 10.1111/ahg.12420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Evren Gumus
- Department of Medical Genetics, Faculty of Medicine, University of Harran, Sanliurfa, Turkey.,Department of Medical Genetics, Faculty of Medicine, University of Mugla Sitki Kocman, Mugla, Turkey
| | - Ebru Tuncez
- Clinic of Medical Genetics, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - Ozlem Oz
- Department of Medical Genetics, Faculty of Medicine, University of Harran, Sanliurfa, Turkey
| | - Merve Saka Guvenc
- Genetic Diagnosis Center, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| |
Collapse
|
23
|
Rissardo JP, Caprara ALF. Laurence-moon-biedl-bardet syndrome: An overview. Taiwan J Ophthalmol 2021; 11:108-109. [PMID: 33767966 PMCID: PMC7971431 DOI: 10.4103/tjo.tjo_2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/31/2019] [Indexed: 11/04/2022] Open
Affiliation(s)
- Jamir Pitton Rissardo
- Neurology Department, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.,Medicine Department, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Ana Letícia Fornari Caprara
- Neurology Department, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.,Medicine Department, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
24
|
Pugnaloni F, Versacci P, Marino B, Digilio MC. Atrioventricular canal defect is the classic congenital heart disease in Bardet-Biedl syndrome. Ann Hum Genet 2021; 85:101-102. [PMID: 33433911 DOI: 10.1111/ahg.12413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Flaminia Pugnaloni
- Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | - Paolo Versacci
- Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | - Bruno Marino
- Department of Pediatrics, Obstetrics and Gynecology, "Sapienza" University of Rome, Rome, Italy
| | - Maria Cristina Digilio
- Medical Genetics Unit, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| |
Collapse
|
25
|
Ganesh S, Utebay B, Heit J, Coskun AF. Cellular sociology regulates the hierarchical spatial patterning and organization of cells in organisms. Open Biol 2020; 10:200300. [PMID: 33321061 PMCID: PMC7776581 DOI: 10.1098/rsob.200300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Advances in single-cell biotechnology have increasingly revealed interactions of cells with their surroundings, suggesting a cellular society at the microscale. Similarities between cells and humans across multiple hierarchical levels have quantitative inference potential for reaching insights about phenotypic interactions that lead to morphological forms across multiple scales of cellular organization, namely cells, tissues and organs. Here, the functional and structural comparisons between how cells and individuals fundamentally socialize to give rise to the spatial organization are investigated. Integrative experimental cell interaction assays and computational predictive methods shape the understanding of societal perspective in the determination of the cellular interactions that create spatially coordinated forms in biological systems. Emerging quantifiable models from a simpler biological microworld such as bacterial interactions and single-cell organisms are explored, providing a route to model spatio-temporal patterning of morphological structures in humans. This analogical reasoning framework sheds light on structural patterning principles as a result of biological interactions across the cellular scale and up.
Collapse
Affiliation(s)
- Shambavi Ganesh
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.,School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Beliz Utebay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jeremy Heit
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
26
|
Deletion in the Bardet-Biedl Syndrome Gene TTC8 Results in a Syndromic Retinal Degeneration in Dogs. Genes (Basel) 2020; 11:genes11091090. [PMID: 32962042 PMCID: PMC7565673 DOI: 10.3390/genes11091090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
In golden retriever dogs, a 1 bp deletion in the canine TTC8 gene has been shown to cause progressive retinal atrophy (PRA), the canine equivalent of retinitis pigmentosa. In humans, TTC8 is also implicated in Bardet–Biedl syndrome (BBS). To investigate if the affected dogs only exhibit a non-syndromic PRA or develop a syndromic ciliopathy similar to human BBS, we recruited 10 affected dogs to the study. The progression of PRA for two of the dogs was followed for 2 years, and a rigorous clinical characterization allowed a careful comparison with primary and secondary characteristics of human BBS. In addition to PRA, the dogs showed a spectrum of clinical and morphological signs similar to primary and secondary characteristics of human BBS patients, such as obesity, renal anomalies, sperm defects, and anosmia. We used Oxford Nanopore long-read cDNA sequencing to characterize retinal full-length TTC8 transcripts in affected and non-affected dogs, the results of which suggest that three isoforms are transcribed in the retina, and the 1 bp deletion is a loss-of-function mutation, resulting in a canine form of Bardet–Biedl syndrome with heterogeneous clinical signs.
Collapse
|
27
|
Kops SA, Kylat RI, Bhatia S, Seckeler MD, Barber BJ, Bader MY. Genetic Characterization of a Model Ciliopathy: Bardet-Biedl Syndrome. J Pediatr Genet 2020; 10:126-130. [PMID: 33996183 DOI: 10.1055/s-0040-1708844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a rare ciliopathy affecting multiple organ systems. Patients with BBS are usually diagnosed later in childhood when clinical features of the disease become apparent. In this article, we presented a case of BBS discovered by whole genome sequencing in a newborn with heterotaxy, duodenal atresia, and complex congenital heart disease. Early diagnosis is important not only for prognostication but also to explore ways to mitigate the cone-rod dysfunction and for exploring newer therapies. Our case highlights the importance of a high index of suspicion and the utility of advanced genetic testing to provide an early diagnosis for a rare disease.
Collapse
Affiliation(s)
- Samantha A Kops
- Department of Pediatrics, Banner University Medical Center, Arizona, United States
| | - Ranjit I Kylat
- Department of Pediatrics, Banner University Medical Center, Arizona, United States.,Department of Pediatrics, University of Arizona College of Medicine, Arizona, United States
| | - Shanti Bhatia
- Department of Pediatrics, Banner University Medical Center, Arizona, United States
| | - Michael D Seckeler
- Department of Pediatrics, Banner University Medical Center, Arizona, United States.,Department of Pediatrics, University of Arizona College of Medicine, Arizona, United States
| | - Brent J Barber
- Department of Pediatrics, Banner University Medical Center, Arizona, United States.,Department of Pediatrics, University of Arizona College of Medicine, Arizona, United States
| | - Mohammad Y Bader
- Department of Pediatrics, Banner University Medical Center, Arizona, United States.,Department of Pediatrics, University of Arizona College of Medicine, Arizona, United States
| |
Collapse
|
28
|
Digilio MC, Calcagni G, De Luca A, Guida V, Marino B. Atrioventricular canal defect as partial expression of heterotaxia in patients with Bardet-Biedl syndrome. J Pediatr 2020; 218:263-264. [PMID: 31843215 DOI: 10.1016/j.jpeds.2019.10.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Affiliation(s)
- M Cristina Digilio
- Medical Genetics and Pediatric Cardiology, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Giulio Calcagni
- Medical Genetics and Pediatric Cardiology, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Alessandro De Luca
- Molecular Genetics Unit, Casa Sollievo della Sofferenza, IRCCS, San Giovanni Rotondo, Foggia, Italy
| | - Valentina Guida
- Molecular Genetics Unit, Casa Sollievo della Sofferenza, IRCCS, San Giovanni Rotondo, Foggia, Italy
| | - Bruno Marino
- Department of Pediatrics, Sapienza University, Rome, Italy
| |
Collapse
|
29
|
Grochowsky A, Gunay-Aygun M. Clinical characteristics of individual organ system disease in non-motile ciliopathies. TRANSLATIONAL SCIENCE OF RARE DISEASES 2019; 4:1-23. [PMID: 31763176 PMCID: PMC6864414 DOI: 10.3233/trd-190033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-motile ciliopathies (disorders of the primary cilia) include autosomal dominant and recessive polycystic kidney diseases, nephronophthisis, as well as multisystem disorders Joubert, Bardet-Biedl, Alström, Meckel-Gruber, oral-facial-digital syndromes, and Jeune chondrodysplasia and other skeletal ciliopathies. Chronic progressive disease of the kidneys, liver, and retina are common features in non-motile ciliopathies. Some ciliopathies also manifest neurological, skeletal, olfactory and auditory defects. Obesity and type 2 diabetes mellitus are characteristic features of Bardet-Biedl and Alström syndromes. Overlapping clinical features and molecular heterogeneity of these ciliopathies render their diagnoses challenging. In this review, we describe the clinical characteristics of individual organ disease for each ciliopathy and provide natural history data on kidney, liver, retinal disease progression and central nervous system function.
Collapse
Affiliation(s)
- Angela Grochowsky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meral Gunay-Aygun
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pediatrics and The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|