1
|
Yoneda A, Shichino H, Hishiki T, Matsumoto K, Ohira M, Kamijo T, Kuroda T, Soejima T, Nakazawa A, Takimoto T, Yokota I, Teramukai S, Takahashi H, Fukushima T, Hara J, Kaneko M, Ikeda H, Tajiri T, Mugishima H, Nakagawara A. A nationwide phase II study of delayed local treatment for children with high-risk neuroblastoma: The Japan Children's Cancer Group Neuroblastoma Committee Trial JN-H-11. Pediatr Blood Cancer 2024; 71:e30976. [PMID: 38577760 DOI: 10.1002/pbc.30976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/15/2024] [Accepted: 02/13/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE Survival rates of patients with high-risk neuroblastoma are unacceptable. A time-intensified treatment strategy with delayed local treatment to control systemic diseases has been developed in Japan. We conducted a nationwide, prospective, single-arm clinical trial with delayed local treatment. This study evaluated the safety and efficacy of delayed surgery to increase treatment intensity. PATIENTS AND METHODS Seventy-five patients with high-risk neuroblastoma were enrolled in this study between May 2011 and September 2015. Delayed local treatment consisted of five courses of induction chemotherapy (cisplatin, pirarubicin, vincristine, and cyclophosphamide) and myeloablative high-dose chemotherapy (melphalan, etoposide, and carboplatin), followed by local tumor extirpation with surgery and irradiation. The primary endpoint was progression-free survival (PFS). The secondary endpoints were overall survival (OS), response rate, adverse events, and surgical complications. RESULTS Seventy-five patients were enrolled, and 64 were evaluable (stage 3, n = 8; stage 4, n = 56). The estimated 3-year PFS and OS rates (95% confidence interval [CI]) were 44.4% [31.8%-56.3%] and 80.7% [68.5%-88.5%], resspectively. The response rate of INRC after completion of the treatment protocol was 66% (42/64; 95% CI: 53%-77%; 23 CR [complete response], 10 VGPR [very good partial response], and nine PR [partial response]). None of the patients died during the protocol treatment or within 30 days of completion. Grade 4 adverse effects, excluding hematological adverse effects, occurred in 48% of patients [31/64; 95% CI: 36%-61%]. Major Surgical complications were observed in 25% of patients [13/51; 95% CI: 14%-40%]. CONCLUSION This study indicates that delayed local treatment is feasible and shows promising efficacy, suggesting that this treatment should be considered further in a comparative study of high-risk neuroblastoma.
Collapse
Affiliation(s)
- Akihiro Yoneda
- The Japan Children's Cancer Group (JCCG) Neuroblastoma Committee (JNBSG), Nagoya, Japan
- Surgery, Surgical Oncology, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
- Pediatric Surgical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroyuki Shichino
- The Japan Children's Cancer Group (JCCG) Neuroblastoma Committee (JNBSG), Nagoya, Japan
- Pediatrics, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomoro Hishiki
- The Japan Children's Cancer Group (JCCG) Neuroblastoma Committee (JNBSG), Nagoya, Japan
- Pediatric Surgery, Chiba University, Chiba, Japan
| | - Kimikazu Matsumoto
- The Japan Children's Cancer Group (JCCG) Neuroblastoma Committee (JNBSG), Nagoya, Japan
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Miki Ohira
- The Japan Children's Cancer Group (JCCG) Neuroblastoma Committee (JNBSG), Nagoya, Japan
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Takehiko Kamijo
- The Japan Children's Cancer Group (JCCG) Neuroblastoma Committee (JNBSG), Nagoya, Japan
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Tatsuo Kuroda
- The Japan Children's Cancer Group (JCCG) Neuroblastoma Committee (JNBSG), Nagoya, Japan
- Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Toshinori Soejima
- The Japan Children's Cancer Group (JCCG) Neuroblastoma Committee (JNBSG), Nagoya, Japan
- Kobe Proton Center, Kobe, Japan
| | - Atsuko Nakazawa
- The Japan Children's Cancer Group (JCCG) Neuroblastoma Committee (JNBSG), Nagoya, Japan
- Clinical Research, Saitama Children's Medical Center, Saitama, Japan
| | - Tetsuya Takimoto
- The Japan Children's Cancer Group (JCCG) Neuroblastoma Committee (JNBSG), Nagoya, Japan
- Clinical Epidemiology Research Center for Pediatric Cancer, National Center for Child Health and Development, Tokyo, Japan
| | - Isao Yokota
- The Japan Children's Cancer Group (JCCG) Neuroblastoma Committee (JNBSG), Nagoya, Japan
- Biostatistics, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Satoshi Teramukai
- The Japan Children's Cancer Group (JCCG) Neuroblastoma Committee (JNBSG), Nagoya, Japan
- Biostatistics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideto Takahashi
- The Japan Children's Cancer Group (JCCG) Neuroblastoma Committee (JNBSG), Nagoya, Japan
- National Institute of Public Health, Saitama, Japan
| | - Takashi Fukushima
- The Japan Children's Cancer Group (JCCG) Neuroblastoma Committee (JNBSG), Nagoya, Japan
- Department of Pediatric Hematology and Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Junichi Hara
- The Japan Children's Cancer Group (JCCG) Neuroblastoma Committee (JNBSG), Nagoya, Japan
- Pediatric Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Michio Kaneko
- The Japan Children's Cancer Group (JCCG) Neuroblastoma Committee (JNBSG), Nagoya, Japan
- Ibaraki Prefectural Association of Health Evaluation and Promotion, Mito, Japan
| | - Hitoshi Ikeda
- The Japan Children's Cancer Group (JCCG) Neuroblastoma Committee (JNBSG), Nagoya, Japan
- Pediatric Surgery, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Japan
| | - Tatsuro Tajiri
- The Japan Children's Cancer Group (JCCG) Neuroblastoma Committee (JNBSG), Nagoya, Japan
- Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideo Mugishima
- The Japan Children's Cancer Group (JCCG) Neuroblastoma Committee (JNBSG), Nagoya, Japan
- Booth Memorial Aged Care Center GRACE, Tokyo, Japan
| | - Akira Nakagawara
- The Japan Children's Cancer Group (JCCG) Neuroblastoma Committee (JNBSG), Nagoya, Japan
- SAGA Heavy Ion Medical Accelerator in Tosu, Tosu, Japan
| |
Collapse
|
2
|
Somasundaram DB, Subramanian K, Aravindan S, Yu Z, Natarajan M, Herman T, Aravindan N. De novo regulation of RD3 synthesis in residual neuroblastoma cells after intensive multi-modal clinical therapy harmonizes disease evolution. Sci Rep 2019; 9:11766. [PMID: 31409909 PMCID: PMC6692366 DOI: 10.1038/s41598-019-48034-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
Most high-risk neuroblastomas that initially respond to therapy will ultimately relapse. Currently, no curative treatment is available. Acquired genetic/molecular rearrangement in therapy-resistant cells contributes to tumor relapse. Recently, we identified significant RD3 loss in progressive disease (PD) and defined its association with advanced disease-stage and poor clinical outcomes. Here, we investigated whether RD3 loss is an acquired process in cells that survive intensive multi-modal clinical therapy (IMCT) and its significance in disease evolution. RD3 status (mRNA, protein) during diagnosis (Dx) and PD after IMCT was investigated in NB patient cohort (n = 106), stage-4 NB cell lines (n = 15) with known treatment status and validated with independent data from another set of 15 cell-lines. Loss of RD3 in metastatic disease was examined using a mouse model of PD and metastatic-site-derived aggressive cells (MSDACs) ex vivo. RD3 silencing/expression assessed changes in metastatic state. Influence of RD3 loss in therapy resistance was examined through independent in vitro and in vivo studies. A significant loss of RD3 mRNA and protein was observed in resistant cells derived from patients with PD after IMCT. This is true to the effect within and between patients. Results from the mouse model identified significant transcriptional/translational loss of RD3 in metastatic tumors and MSDACs. RD3 re-expression in MSDACs and silencing RD3 in parental cells defined the functional relevance of RD3-loss in PD pathogenesis. Analysis of independent studies with salvage therapeutic agents affirmed RD3 loss in surviving resistant cells and residual tumors. The profound reductions in RD3 transcription indicate the de novo regulation of RD3 synthesis in resistant cells after IMCT. Defining RD3 loss in PD and the benefit of targeted reinforcement could improve salvage therapy for progressive neuroblastoma.
Collapse
Affiliation(s)
- Dinesh Babu Somasundaram
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Karthikeyan Subramanian
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Zhongxin Yu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mohan Natarajan
- Department of Pathology, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Terence Herman
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Stephenson Cancer Center, Oklahoma City, OK, USA
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Sequential actions of immune effector cells induced by viral activation of dendritic cells to eliminate murine neuroblastoma. J Pediatr Surg 2018; 53:1615-1620. [PMID: 28941928 DOI: 10.1016/j.jpedsurg.2017.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/16/2017] [Accepted: 08/22/2017] [Indexed: 11/24/2022]
Abstract
PURPOSE In preclinical trails, we reported the antitumor effect of dendritic cells activated with Sendai virus (rSeV/DC) combined with γ-irradiation against neuroblastoma. However, what kind of effector cells for the combined therapy were used to show the antitumor effect was unclear. In this study, we performed radiation and rSeV/DC therapy in vivo and examined the effector cells involved. METHODS Dendritic cells were cultured from bone marrow cells, activated with SeV and administered intratumorally at 106 weekly for 3weeks. Radiation was administered at 4Gy/time × 3 times. During the treatment, CD4+ and CD8+ cells and natural killer (NK) cells were removed by antibodies. RESULTS Complete remission of neuroblastoma was observed in 62.5% of individuals in the combined therapy group. By depleting the effector cells using antibodies, the tumor increased in size from an early stage of treatment in the CD4+ and NK cell-depleted group. In contrast, the tumor increased in size in the late stage of treatment in the CD8+ cell-depleted group. CONCLUSION The combination of radiation and rSeV/DC therapy induces different effector cells, depending on the time point during treatment. LEVEL OF EVIDENCE V.
Collapse
|
4
|
Zaatiti H, Abdallah J, Nasr Z, Khazen G, Sandler A, Abou-Antoun TJ. Tumorigenic proteins upregulated in the MYCN-amplified IMR-32 human neuroblastoma cells promote proliferation and migration. Int J Oncol 2018; 52:787-803. [PMID: 29328367 PMCID: PMC5807036 DOI: 10.3892/ijo.2018.4236] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
Abstract
Childhood neuroblastoma is one of the most common types of extra-cranial cancer affecting children with a clinical spectrum ranging from spontaneous regression to malignant and fatal progression. In order to improve the clinical outcomes of children with high-risk neuroblastoma, it is crucial to understand the tumorigenic mechanisms that govern its malignant behaviors. MYCN proto-oncogene, bHLH transcription factor (MYCN) amplification has been implicated in the malignant, treatment-evasive nature of aggressive, high-risk neuroblastoma. In this study, we used a SILAC approach to compare the proteomic signatures of MYCN-amplified IMR-32 and non-MYCN-amplified SK-N-SH human neuroblastoma cells. Tumorigenic proteins, including fatty-acid binding protein 5 (FABP5), L1-cell adhesion molecule (L1-CAM), baculoviral IAP repeat containing 5 [BIRC5 (survivin)] and high mobility group protein A1 (HMGA1) were found to be significantly upregulated in the IMR-32 compared to the SK-N-SH cells and mapped to highly tumorigenic pathways including, MYC, MYCN, microtubule associated protein Tau (MAPT), E2F transcription factor 1 (E2F1), sterol regulatory element binding transcription factor 1 or 2 (SREBF1/2), hypoxia-inducible factor 1α (HIF-1α), Sp1 transcription factor (SP1) and amyloid precursor protein (APP). The transcriptional knockdown (KD) of MYCN, HMGA1, FABP5 and L1-CAM significantly abrogated the proliferation of the IMR-32 cells at 48 h post transfection. The early apoptotic rates were significantly higher in the IMR-32 cells in which FABP5 and MYCN were knocked down, whereas cellular migration was significantly abrogated with FABP5 and HMGA1 KD compared to the controls. Of note, L1-CAM, HMGA1 and FABP5 KD concomitantly downregulated MYCN protein expression and MYCN KD concomitantly downregulated L1-CAM, HMGA1 and FABP5 protein expression, while survivin protein expression was significantly downregulated by MYCN, HMGA1 and FABP5 KD. In addition, combined L1-CAM and FABP5 KD led to the concomitant downregulation of HMGA1 protein expression. On the whole, our data indicate that this inter-play between MYCN and the highly tumorigenic proteins which are upregulated in the malignant IMR-32 cells may be fueling their aggressive behavior, thereby signifying the importance of combination, multi-modality targeted therapy to eradicate this deadly childhood cancer.
Collapse
Affiliation(s)
- Hayat Zaatiti
- Department of Biology, Faculty of Sciences, University of Balamand, El-Koura, Lebanon
| | - Jad Abdallah
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos 1102-2801, Lebanon
| | - Zeina Nasr
- Department of Biology, Faculty of Sciences, University of Balamand, El-Koura, Lebanon
| | - George Khazen
- School of Arts and Sciences, Lebanese American University, Byblos 1102-2801, Lebanon
| | - Anthony Sandler
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Joseph E. Robert Jr. Center for Surgical Care, Children's National Medical Center, Washington, DC 20010, USA
| | - Tamara J Abou-Antoun
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos 1102-2801, Lebanon
| |
Collapse
|
5
|
Li Y, Zhuo B, Yin Y, Han T, Li S, Li Z, Wang J. Anti-cancer effect of oncolytic adenovirus-armed shRNA targeting MYCN gene on doxorubicin-resistant neuroblastoma cells. Biochem Biophys Res Commun 2017; 491:134-139. [PMID: 28711493 DOI: 10.1016/j.bbrc.2017.07.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/11/2017] [Indexed: 11/19/2022]
Abstract
Chemotherapy is one of the few effective choices for patients with neuroblastoma. However, the development of muti-drug resistance (MDR) to chemotherapy is a major obstacle to the effective treatment of advanced or recurrent neuroblastoma. The muti-drug resistance-associated protein (MRP), which encodes a transmembrane glycoprotein, is a key regulator of MDR. The expression of MRP is a close correlation with MYCN oncogene in neuroblastoma. We have recently shown ZD55-shMYCN (oncolytic virus armed with shRNA against MYCN) can down-regulate MYCN to inhibit tumor cells proliferation and induce apoptosis in neuroblastoma. Here we further report ZD55-shMYCN re-sensitized doxorubicin-resistant cells to doxorubicin (as shown by reduced proliferation, increased apoptosis, and inhibited cell migration), and reduced the in vivo growth rate of neuroblastoma xenografts by down-regulation of MRP expression. Sequential therapy with doxorubicin did not affect the replication of ZD55-shMYCN in doxorubicin-resistant neuroblastoma cells, but decreased the expression of Bcl-2, Bcl-XL, MMP-1. Thus, this synergistic effect of ZD55-shMYCN in combination with doxorubicin provides a novel therapy strategy for doxorubicin-resistant neuroblastoma, and is a promising approach for further clinical development.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou, Jiangsu 215025, China; Department of Pediatric Surgery, Xuzhou Children's Hospital, 18 Suti North Road, Xuzhou, Jiangsu 221006, China
| | - Baobiao Zhuo
- Department of Pediatric Surgery, Xuzhou Children's Hospital, 18 Suti North Road, Xuzhou, Jiangsu 221006, China
| | - Yiyu Yin
- Department of Pediatric Surgery, Xuzhou Children's Hospital, 18 Suti North Road, Xuzhou, Jiangsu 221006, China
| | - Tao Han
- Department of Pediatric Surgery, Xuzhou Children's Hospital, 18 Suti North Road, Xuzhou, Jiangsu 221006, China
| | - Shixian Li
- Department of Pediatric Surgery, Xuzhou Children's Hospital, 18 Suti North Road, Xuzhou, Jiangsu 221006, China
| | - Zhengwei Li
- Department of Pediatric Surgery, Xuzhou Children's Hospital, 18 Suti North Road, Xuzhou, Jiangsu 221006, China
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou, Jiangsu 215025, China.
| |
Collapse
|
6
|
Yue ZX, Huang C, Gao C, Xing TY, Liu SG, Li XJ, Zhao Q, Wang XS, Zhao W, Jin M, Ma XL. MYCN amplification predicts poor prognosis based on interphase fluorescence in situ hybridization analysis of bone marrow cells in bone marrow metastases of neuroblastoma. Cancer Cell Int 2017; 17:43. [PMID: 28367105 PMCID: PMC5374581 DOI: 10.1186/s12935-017-0412-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/28/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND MYCN gene amplification is related to risk stratification. Therefore it is important to identify accurately the level of the MYCN gene as early as possible in neuroblastoma (NB); however, for patients with bone marrow (BM) metastasis who need chemotherapy before surgery, timely detection of the MYCN gene is not possible due to the unavailability of primary tumors. METHODS MYCN gene status was evaluated in 81 BM metastases of NB by interphase fluorescence in situ hybridization (FISH) analysis of BM cells. The clinicobiological characteristics and prognostic impact of MYCN amplification in NB metastatic to BM were analyzed. RESULTS MYCN amplification was found in 16% of patients with metastases, and the results were consistent with the primary tumors detected by pathological tissue FISH. MYCN amplification was associated with age, lactate dehydrogenase (LDH) levels and prognosis (P = 0.038, P < 0.001, P = 0.026). Clinical outcome was poorer in patients with MYCN amplification than in those without amplification (3-year EFS 28.8 ± 13.1 vs. 69.7 ± 5.7%, P = 0.005; 3-year OS 41.5 ± 14.7 vs. 76.7 ± 5.5%, P = 0.005). CONCLUSIONS MYCN amplification predicts a poor outcome in NB metastatic to BM, and interphase FISH of bone marrow cells provides a timely direct and valid method to evaluate the MYCN gene status.
Collapse
Affiliation(s)
- Zhi-Xia Yue
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Cheng Huang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Chao Gao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Tian-Yu Xing
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Shu-Guang Liu
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Xing-Jun Li
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Qian Zhao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Xi-Si Wang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Wen Zhao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Mei Jin
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Xiao-Li Ma
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| |
Collapse
|
7
|
Nicolai S, Pieraccioli M, Peschiaroli A, Melino G, Raschellà G. Neuroblastoma: oncogenic mechanisms and therapeutic exploitation of necroptosis. Cell Death Dis 2015; 6:e2010. [PMID: 26633716 PMCID: PMC4720889 DOI: 10.1038/cddis.2015.354] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial childhood tumor classified in five stages (1, 2, 3, 4 and 4S), two of which (3 and 4) identify chemotherapy-resistant, highly aggressive disease. High-risk NB frequently displays MYCN amplification, mutations in ALK and ATRX, and genomic rearrangements in TERT genes. These NB subtypes are also characterized by reduced susceptibility to programmed cell death induced by chemotherapeutic drugs. The latter feature is a major cause of failure in the treatment of advanced NB patients. Thus, proper reactivation of apoptosis or of other types of programmed cell death pathways in response to treatment is relevant for the clinical management of aggressive forms of NB. In this short review, we will discuss the most relevant genomic rearrangements that define high-risk NB and the role that destabilization of p53 and p73 can have in NB aggressiveness. In addition, we will propose a strategy to stabilize p53 and p73 by using specific inhibitors of their ubiquitin-dependent degradation. Finally, we will introduce necroptosis as an alternative strategy to kill NB cells and increase tumor immunogenicity.
Collapse
Affiliation(s)
- S Nicolai
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - M Pieraccioli
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - A Peschiaroli
- Institute of Cell Biology and Neurobiology (IBCN), CNR, Via E. Ramarini 32, Rome 00015, Italy
| | - G Melino
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy.,Medical Research Council, Toxicology Unit, Hodgkin Building, Leicester University, Lancaster Road, PO Box 138, Leicester LE1 9HN, UK
| | - G Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Via Anguillarese, 301, Rome 00123, Italy
| |
Collapse
|
8
|
Hotta R, Fujimura T, Shimojima N, Nakahara T, Fuchimoto Y, Hoshino K, Morikawa Y, Matsufuji H, Kuroda T. Application of nuclear medicine to achieve less invasive surgery for malignant solid tumors in children. Pediatr Int 2014; 56:896-901. [PMID: 24773623 DOI: 10.1111/ped.12368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/11/2014] [Accepted: 04/17/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND The use of nuclear medicine for the management of malignant tumor, such as radioguided surgery and sentinel lymph node biopsy (SLNB), has been widely accepted in the adult practice. However, there are very few studies to apply those techniques for pediatric diseases. The aim of this study was to investigate the feasibility of application of nuclear medicine in surgery for neuroblastoma (NB) or rhabdomyosarcoma (RMS) in children. METHODS Radioguided surgery using (123) I-metaiodobenzylguanidine was performed on six children with NB. SLNB using technetium-labeled tin or sulfur colloid was performed on two children with perineal RMS. Histological evaluation of resected specimens was performed to determine the accuracy of intraoperative detection and SLNB. All patients were evaluated for overall survival and complications. RESULTS Intraoperative tumor localization using hand-held gamma probe was helpful in 85.7% of NB patients. Sensitivity and specificity of this technique were 81.8% and 93.3%, respectively. There were no postoperative complications, and four out of five patients with high-risk NB experienced disease-free survival (median follow up, 57 months). Sentinel lymph nodes were easily detected in patients with perineal RMS, and histological assessment revealed complete consistency with regional lymph node status. CONCLUSIONS Nuclear medicine may have a potential application in the use of less invasive surgery for advanced NB or perineal RMS, the two most challenging pediatric malignancies.
Collapse
Affiliation(s)
- Ryo Hotta
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Takumi Fujimura
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Shimojima
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tadaki Nakahara
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Yasushi Fuchimoto
- Department of Surgery, National Center for Child Health and Development, Tokyo, Japan
| | - Ken Hoshino
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasuhide Morikawa
- Department of Pediatric Surgery, International University of Health & Welfare, Tochigi, Japan
| | - Hiroshi Matsufuji
- Department of Pediatric Surgery, Graduate School of Medicine, Kagoshima University, Kagoshima, Japan
| | - Tatsuo Kuroda
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Takahashi H, Kato M, Kikuchi A, Hanada R, Koh K. Delayed short-term administration of granulocyte colony-stimulating factor is a good mobilization strategy for harvesting autologous peripheral blood stem cells in pediatric patients with solid tumors. Pediatr Transplant 2013; 17:688-93. [PMID: 23962050 DOI: 10.1111/petr.12137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2013] [Indexed: 11/30/2022]
Abstract
PBSCs have become the preferred source of autologous stem cells for supporting high-dose chemotherapy in childhood solid tumors. The aims of this retrospective study were to examine the optimal timing for administration of G-CSF after chemotherapy and to identify the patients from whom an optimal dose of PBSCs can be harvested. We evaluated the timing of G-CSF administration for harvesting PBSCs in patients with childhood solid tumors. G-CSF was administered immediately after chemotherapy in eight patients (11 harvests, long-term group) and following recovery from hematological nadirs in 17 patients (21 harvests, short-term group). The median duration of G-CSF administration was 22 vs. 5 days, respectively (p < 0.005), and the dose of harvested CD34(+) cells (×10(6) /kg) was 1.4 vs. 2.9, respectively (p = 0.023). Our results suggest that short-term G-CSF administration is a good strategy for harvesting PBSCs in these patients.
Collapse
Affiliation(s)
- Hiroyoshi Takahashi
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | | | | | | | | |
Collapse
|
10
|
Iehara T, Hamazaki M, Tajiri T, Kawano Y, Kaneko M, Ikeda H, Hosoi H, Sugimoto T, Sawada T. Successful treatment of infants with localized neuroblastoma based on their MYCN status. Int J Clin Oncol 2012; 18:389-95. [DOI: 10.1007/s10147-012-0391-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 02/12/2012] [Indexed: 11/28/2022]
|
11
|
Tajiri T, Souzaki R, Kinoshita Y, Koga Y, Suminoe A, Hara T, Taguchi T. Implications of surgical intervention in the treatment of neuroblastomas: 20-year experience of a single institution. Surg Today 2012; 42:220-4. [DOI: 10.1007/s00595-011-0053-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/09/2011] [Indexed: 11/29/2022]
Affiliation(s)
- Tatsuro Tajiri
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Chuang JH, Chuang HC, Huang CC, Wu CL, Du YY, Kung ML, Chen CH, Chen SC, Tai MH. Differential toll-like receptor 3 (TLR3) expression and apoptotic response to TLR3 agonist in human neuroblastoma cells. J Biomed Sci 2011; 18:65. [PMID: 21861882 PMCID: PMC3184062 DOI: 10.1186/1423-0127-18-65] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/23/2011] [Indexed: 01/08/2023] Open
Abstract
Background Toll-like receptor-3 (TLR-3) is a critical component of innate immune system against dsRNA viruses and is expressed in the central nervous system. However, it remains unknown whether TLR3 may serve as a therapeutic target in human neuroblastoma (NB). Methods TLR3 expression in human NB samples was examined by immunohistochemical analysis. Quantitative RT-PCR and western blot was used to determine TLR3 expression in three human NB cell lines. The effect of TLR3 agonist, polyinosinic-polycytidylic acid (poly(I:C)), on the growth of human NB cells was evaluated by WST-1 cell proliferation assay, flow cytometry analysis, and immunoblot analysis. Blockade of TLR3 signaling was achieved using TLR3 neutralizing antibody, small interference RNA, and 2-aminopurine (2-AP), an inhibitor of protein kinase R (PKR), an interferon-induced, double-stranded RNA-activated protein kinase. Results In immunohistochemical studies, TLR3 mainly expressed in the cytoplasm of ganglion cells and in some neuroblastic cells, but not in the stromal cells in human NB tissues. Among three human NB cell lines analyzed, TLR3 was significantly up-regulated in SK-N-AS cells at mRNA and protein level compared with other two low TLR3- expressing NB cells. Treatment with poly(I:C) elicited significant growth inhibition and apoptosis only in high TLR3-expressing SK-N-AS cells, but not in low TLR3-expressing SK-N-FI and SK-N-DZ cells. Moreover, poly(I:C) treatment significantly stimulated the activities of PKR, interferon regulatory factor 3 (IRF-3) and caspase-3 in SK-N-AS cells. Application of TLR3 neutralizing antibody or small interference RNA (siRNA) reduced the poly(I:C)-induced inhibition of cell proliferation and apoptosis in SK-N-AS cells. On the contrary, ectopic TLR3 expression enhanced the sensitivity of low TLR3-expressing NB cells to poly(I:C). Finally, application of 2-AP attenuated the poly(I:C)-induced IRF-3 and caspase-3 activation in SK-N-AS cells. Conclusion The present study demonstrates that TLR3 is expressed in a subset of NB cells. Besides, TLR3/PKR/IRF-3/capase-3 pathway is implicated in the selective cytotoxicity of TLR3 agonist towards high TLR3-expressing NB cells.
Collapse
Affiliation(s)
- Jiin-Haur Chuang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
High therapeutic effectiveness of postoperative irinotecan chemotherapy in a typical case of radiographically and pathologically diagnosed pleuropulmonary blastoma. J Pediatr Hematol Oncol 2009; 31:355-8. [PMID: 19415019 DOI: 10.1097/mph.0b013e318196a422] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A 2-year 9-month-old girl with a large mass in the right chest underwent middle and inferior lobectomy, after which the mass was pathologically diagnosed as a pleuropulmonary blastoma (PPB). The clinical, radiographic, and pathologic findings were typical. Three courses of postoperative chemotherapy with 2 different regimens were ineffective in preventing multiple metastases of the lung. We then instituted a protocol with irinotecan (CPT-11) and vincristine. After the third course of this protocol the metastases disappeared and there were no recurrences. PPB is a rare pediatric malignant tumor, and no adequate therapy has been defined. This is the only case reported to have been treated with vincristine/irinotecan therapy for the treatment of PPB.
Collapse
|
14
|
Misawa A, Tanaka S, Yagyu S, Tsuchiya K, Iehara T, Sugimoto T, Hosoi H. RASSF1A hypermethylation in pretreatment serum DNA of neuroblastoma patients: a prognostic marker. Br J Cancer 2009; 100:399-404. [PMID: 19165202 PMCID: PMC2634715 DOI: 10.1038/sj.bjc.6604887] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The tumour suppressor gene RASSF1A is known to be frequently silenced by promoter hypermethylation in neuroblastoma tumours. Here we explored the possible prognostic significance of aberrant promoter hypermethylation of RASSF1A in serum DNA samples of patients with neuroblastoma as a surrogate marker for circulating tumour cells. We analysed the methylation status of the RASSF1A gene in matched tumour and pretreatment serum DNA obtained from 68 neuroblastoma patients. Hypermethylation of RASSF1A in tumour samples was found in 64 patients (94%). In contrast, serum methylation of RASSF1A was observed in 17 patients (25%). Serum methylation of RASSF1A was found to be statistically associated with age ⩾12 months at diagnosis (P=0.002), stage 4 (P<0.001) and MYCN amplification (P<0.001). The influence of serum RASSF1A methylation on prognosis was found to be comparable with that of the currently most reliable marker, MYCN amplification on univariate analysis (hazard ratio, 9.2; 95% confidence interval (CI), 2.8–30.1; P<0.001). In multivariate analysis of survival, methylation of RASSF1A in serum had a hazard ratio of 2.4 (95% CI, 0.6–9.2), although this association did not reach statistical significance (P=0.194). These findings show that the methylation status of RASSF1A in the serum of patients with neuroblastoma has the potential to become a prognostic predictor of outcome.
Collapse
Affiliation(s)
- A Misawa
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Tatsuta K, Tanaka S, Tajiri T, Shibata S, Komaru A, Ueda Y, Inoue M, Hasegawa M, Suita S, Sueishi K, Taguchi T, Yonemitsu Y. Complete elimination of established neuroblastoma by synergistic action of γ-irradiation and DCs treated with rSeV expressing interferon-β gene. Gene Ther 2008; 16:240-51. [DOI: 10.1038/gt.2008.161] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Abstract
Management of cases of refractory neuroblastoma remains a challenge. As intensive chemotherapy sometimes results in severe regimen-related toxicity and poor quality of life, palliative chemotherapy with modest toxicity may be considered for these cases. We report 2 cases of stage 4 neuroblastoma with poor performance status that received low-dose protracted schedules of irinotecan. This regimen achieved not only disease stabilization but also dramatic improvements of quality of life for significant periods. A low-dose protracted schedule of irinotecan was tolerable even if the patient's performance status was poor, and thus might be useful as a palliative chemotherapy for advanced neuroblastoma.
Collapse
|