1
|
Comparative role of SOX10 gene in the gliogenesis of central, peripheral, and enteric nervous systems. Differentiation 2022; 128:13-25. [DOI: 10.1016/j.diff.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
|
2
|
Schock EN, LaBonne C. Sorting Sox: Diverse Roles for Sox Transcription Factors During Neural Crest and Craniofacial Development. Front Physiol 2020; 11:606889. [PMID: 33424631 PMCID: PMC7793875 DOI: 10.3389/fphys.2020.606889] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
Sox transcription factors play many diverse roles during development, including regulating stem cell states, directing differentiation, and influencing the local chromatin landscape. Of the twenty vertebrate Sox factors, several play critical roles in the development the neural crest, a key vertebrate innovation, and the subsequent formation of neural crest-derived structures, including the craniofacial complex. Herein, we review the specific roles for individual Sox factors during neural crest cell formation and discuss how some factors may have been essential for the evolution of the neural crest. Additionally, we describe how Sox factors direct neural crest cell differentiation into diverse lineages such as melanocytes, glia, and cartilage and detail their involvement in the development of specific craniofacial structures. Finally, we highlight several SOXopathies associated with craniofacial phenotypes.
Collapse
Affiliation(s)
- Elizabeth N. Schock
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, United States
| |
Collapse
|
3
|
Wilmshurst JM, Ouvrier RA, Ryan MM. Peripheral nerve disease secondary to systemic conditions in children. Ther Adv Neurol Disord 2019; 12:1756286419866367. [PMID: 31447934 PMCID: PMC6691669 DOI: 10.1177/1756286419866367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/07/2019] [Indexed: 12/17/2022] Open
Abstract
This review is an overview of systemic conditions that can be associated with peripheral nervous system dysfunction. Children may present with neuropathic symptoms for which, unless considered, a causative systemic condition may not be recognized. Similarly, some systemic conditions may be complicated by comorbid peripheral neuropathies, surveillance for which is indicated. The systemic conditions addressed in this review are critical illness polyneuropathy, chronic renal failure, endocrine disorders such as insulin-dependent diabetes mellitus and multiple endocrine neoplasia type 2b, vitamin deficiency states, malignancies and reticuloses, sickle cell disease, neurofibromatosis, connective tissue disorders, bowel dysmotility and enteropathy, and sarcoidosis. In some disorders presymptomatic screening should be undertaken, while in others there is no benefit from early detection of neuropathy. In children with idiopathic peripheral neuropathies, systemic disorders such as celiac disease should be actively excluded. While management is predominantly focused on symptomatic care through pain control and rehabilitation, some neuropathies improve with effective control of the underlying etiology and in a small proportion a more targeted approach is possible. In conclusion, peripheral neuropathies can be associated with a diverse range of medical conditions and unless actively considered may not be recognized and inadequately managed.
Collapse
Affiliation(s)
- Jo M. Wilmshurst
- Department of Paediatric Neurology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s, Hospital Neuroscience Institute, University of Cape Town, Klipfontein Road, Cape Town, Western Cape, 7700, South Africa
| | - Robert A. Ouvrier
- The Institute of Neuroscience and Muscle Research, The Children’s Hospital at Westmead, Sydney, Australia
| | - Monique M. Ryan
- Department of Neurology, Royal Children’s Hospital, Murdoch Children’s Research Institute and University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Luzón‐Toro B, Villalba‐Benito L, Torroglosa A, Fernández RM, Antiñolo G, Borrego S. What is new about the genetic background of Hirschsprung disease? Clin Genet 2019; 97:114-124. [DOI: 10.1111/cge.13615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Berta Luzón‐Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Leticia Villalba‐Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Raquel M. Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| |
Collapse
|
5
|
Wilmshurst JM, Ouvrier RA. Neuropathies Secondary to Systemic Disorders. NEUROMUSCULAR DISORDERS OF INFANCY, CHILDHOOD, AND ADOLESCENCE 2015:418-430. [DOI: 10.1016/b978-0-12-417044-5.00022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Fujiwara S, Hoshikawa S, Ueno T, Hirata M, Saito T, Ikeda T, Kawaguchi H, Nakamura K, Tanaka S, Ogata T. SOX10 transactivates S100B to suppress Schwann cell proliferation and to promote myelination. PLoS One 2014; 9:e115400. [PMID: 25536222 PMCID: PMC4275212 DOI: 10.1371/journal.pone.0115400] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/21/2014] [Indexed: 01/28/2023] Open
Abstract
Schwann cells are an important cell source for regenerative therapy for neural disorders. We investigated the role of the transcription factor sex determining region Y (SRY)-box 10 (SOX10) in the proliferation and myelination of Schwann cells. SOX10 is predominantly expressed in rat sciatic nerve-derived Schwann cells and is induced shortly after birth. Among transcription factors known to be important for the differentiation of Schwann cells, SOX10 potently transactivates the S100B promoter. In cultures of Schwann cells, overexpressing SOX10 dramatically induces S100B expression, while knocking down SOX10 with shRNA suppresses S100B expression. Here, we identify three core response elements of SOX10 in the S100B promoter and intron 1 with a putative SOX motif. Knockdown of either SOX10 or S100B enhances the proliferation of Schwann cells. In addition, using dissociated cultures of dorsal root ganglia, we demonstrate that suppressing S100B with shRNA impairs myelination of Schwann cells. These results suggest that the SOX10-S100B signaling axis critically regulates Schwann cell proliferation and myelination, and therefore is a putative therapeutic target for neuronal disorders.
Collapse
Affiliation(s)
- Sayaka Fujiwara
- Departments of Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Shinya Hoshikawa
- Departments of Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Takaaki Ueno
- Departments of Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Makoto Hirata
- Departments of Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Taku Saito
- Bone and Cartilage Regenerative Medicine, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Toshiyuki Ikeda
- Departments of Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroshi Kawaguchi
- Departments of Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Kozo Nakamura
- Departments of Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Sakae Tanaka
- Departments of Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Toru Ogata
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
- * E-mail:
| |
Collapse
|
7
|
Kawai H, Satomi K, Morishita Y, Murata Y, Sugano M, Nakano N, Noguchi M. Developmental markers of ganglion cells in the enteric nervous system and their application for evaluation of Hirschsprung disease. Pathol Int 2014; 64:432-42. [DOI: 10.1111/pin.12191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 07/08/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Hitomi Kawai
- Department of Pathology; Tsukuba University Hospital; University of Tsukuba; Tsukuba Japan
| | - Kaishi Satomi
- Department of Diagnostic Pathology; Faculty of Medicine; University of Tsukuba; Tsukuba Japan
| | - Yukio Morishita
- Department of Diagnostic Pathology; Tokyo Medical University Ibaraki Medical Center; Ami Japan
| | - Yoshihiko Murata
- Department of Diagnostic Pathology; Graduate School of Comprehensive Human Sciences; University of Tsukuba; Tsukuba Japan
| | - Masato Sugano
- Department of Diagnostic Pathology; Faculty of Medicine; University of Tsukuba; Tsukuba Japan
| | - Noriyuki Nakano
- Department of Diagnostic Pathology; Graduate School of Comprehensive Human Sciences; University of Tsukuba; Tsukuba Japan
| | - Masayuki Noguchi
- Department of Diagnostic Pathology; Faculty of Medicine; University of Tsukuba; Tsukuba Japan
| |
Collapse
|
8
|
Granström AL, Markljung E, Fink K, Nordenskjöld E, Nilsson D, Wester T, Nordenskjöld A. A novel stop mutation in the EDNRB gene in a family with Hirschsprung's disease associated with multiple sclerosis. J Pediatr Surg 2014; 49:622-5. [PMID: 24726125 DOI: 10.1016/j.jpedsurg.2013.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/16/2013] [Accepted: 10/11/2013] [Indexed: 11/18/2022]
Abstract
PURPOSE We identified a girl with Hirschsprung's disease (HSCR) whose mother and grandmother had HSCR associated with multiple sclerosis (MS). The aim of this study was to outline mutations in HSCR-related genes and MS susceptibility alleles in these three individuals. METHODS The phenotypes were reviewed based on medical records. The three subjects had rectosigmoid HSCR verified with histopathology. The mother and grandmother fulfilled the McDonald criteria for MS. DNA was isolated from EDTA-preserved blood according to standard procedures. Exome sequencing aiming mainly at analyzing HSCR associated genes as well as Sanger sequencing for confirmation was performed. RESULTS All affected individuals carry a novel heterozygous nonsense mutation in the EDNRB gene (c.C397T,p.R133X,refNM_000115), changing an arginine at position 133 into a premature stop codon. None of the subjects were homozygous for the HLA risk alleles for MS. CONCLUSION We report a novel non-sense EDNRB gene mutation in a girl with HSCR and her mother and grandmother with HSCR and MS. We propose that this EDNRB gene mutation plays a role in the etiology of HSCR and also makes the subjects susceptible to MS.
Collapse
Affiliation(s)
- Anna Löf Granström
- Division for Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska, University Hospital, Stockholm, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ellen Markljung
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Katharina Fink
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurology Huddinge, Karolinska University Hospital, Stockholm, Sweden
| | - Edvard Nordenskjöld
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Nilsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Karolinska, Institutet, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Wester
- Division for Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska, University Hospital, Stockholm, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | - Agneta Nordenskjöld
- Division for Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska, University Hospital, Stockholm, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Romero P, Niesler B, Schmitz-Winnenthal H, Fitze G, Holland-Cunz S. Is there a link between the calcium sensing receptor and Hirschsprung's disease? A mutational analysis. J Pediatr Surg 2012; 47:551-5. [PMID: 22424352 DOI: 10.1016/j.jpedsurg.2011.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/23/2011] [Accepted: 10/03/2011] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Hirschsprung's disease (HD) is a congenital malformation of the hindgut characterized by the absence of enteric ganglion cells in the submucosal and myenteric plexuses. Hirschsprung's disease is routinely treated by resection of the aganglionic bowel and pull-through procedure of the proximal ganglionated bowel to the anorectal region. Occasionally, after resection of the aganglionic bowel, HD patients still experience persistent disturbances in gut motility. The etiology of HD as well as the underlying pathomechanism for postoperative disturbances in gut motility is unclear. Molecular analysis of putative candidate genes may help to clarify the pathophysiology of these conditions. In the present study, we investigated the correlation between mutations and polymorphisms in the calcium sensing receptor (CaSR) and HD patients. METHODS Mutational screening of the CaSR coding sequence was performed via polymerase chain reaction and direct sequencing of the amplified samples from 63 HD patients and 100 controls. RESULTS We identified 3 common polymorphisms (p.A986S, p.G990R, and p.Q1011E) residing in exon 7 and 1 polymorphism in intron 5 (IVS 5-88 T>C) of the CaSR gene. Overall, 16 patients (25%) and 25 controls (25%) were carriers of the p.A986S polymorphism (P = 1). The incidence of p.R990G polymorphism of patients was twice as high as in the control group (P = .17). Furthermore, we verified a 4 times higher incidence of p.Q1011E polymorphism carriers in patients compared to the control group (P = .1). CONCLUSION We found a higher incidence of R990G and Q1011E polymorphisms in HD patients compared to controls. However, there was no statistically significant association between HD and the 3 polymorphic variants in the intracellular signaling region of CaSR. It will be important to further investigate genetic variations in CaSR in more patient cohorts to better characterize the function of this gene and to establish a correlation between CaSR variants and HD.
Collapse
Affiliation(s)
- Philipp Romero
- Department of Surgery, Division of Pediatric Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
10
|
Parthey K, Kornhuber M, Kunze C, Wand D, Nolte KW, Nikolin S, Weis J, Schröder JM. SOX10 mutation with peripheral amyelination and developmental disturbance of axons. Muscle Nerve 2012; 45:284-90. [PMID: 22246888 DOI: 10.1002/mus.22262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this study we describe a case of a term infant with the neurological variant of Waardenburg syndrome type 4 (i.e., PCWH = peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease, as defined in OMIM #609136) due to a novel heterozygous base exchange (c.671C>G) in exon 4 of SOX10. Magnetic resonance imaging suggested central myelin deficiency with cerebral and cerebellar hypoplasia. Hirschsprung disease was confirmed by rectal biopsy. Sural nerve biopsy revealed hypoplasia due to amyelination (with the exception of a single, small myelinated fiber) and severe reduction in the number of axons.
Collapse
Affiliation(s)
- Kathleen Parthey
- Clinic and Policlinic for Child and Adolescent Medicine, Neonatal Intensive Care Unit, University Hospital, Halle, Saale, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Bassotti G, Villanacci V. Can "functional" constipation be considered as a form of enteric neuro-gliopathy? Glia 2010; 59:345-50. [PMID: 21264943 DOI: 10.1002/glia.21115] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 11/03/2010] [Indexed: 12/12/2022]
Abstract
Constipation has been traditionally viewed and classified as a functional or idiopathic disorder. However, evidence has been accumulating that suggests how constipation might be considered as due to abnormalities of the enteric nervous system, since alterations of this system, not evident in conventional histological examination, may be present in these patients. These abnormalities often consist in decrease or loss of the enteric glial cells, a pathological finding present in most types of constipation so far investigated. In this article we will discuss these evidences, and will try to consider constipation no more as a simple functional or idiopathic disorder but as a form of enteric neuro-gliopathy.
Collapse
Affiliation(s)
- Gabrio Bassotti
- Department of Clinical and Experimental Medicine, Gastroenterology and Hepatology Section, University of Perugia, Italy.
| | | |
Collapse
|
12
|
Harris ML, Baxter LL, Loftus SK, Pavan WJ. Sox proteins in melanocyte development and melanoma. Pigment Cell Melanoma Res 2010; 23:496-513. [PMID: 20444197 DOI: 10.1111/j.1755-148x.2010.00711.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over 10 years have passed since the first Sox gene was implicated in melanocyte development. Since then, we have discovered that SOX5, SOX9, SOX10 and SOX18 all participate as transcription factors that affect key melanocytic genes in both regulatory and modulatory fashions. Both SOX9 and SOX10 play major roles in the establishment and normal function of the melanocyte; SOX10 has been shown to heavily influence melanocyte development and SOX9 has been implicated in melanogenesis in the adult. Despite these advances, the precise cellular and molecular details of how these SOX proteins are regulated and interact during all stages of the melanocyte life cycle remain unknown. Improper regulation of SOX9 or SOX10 is also associated with cancerous transformation, and thus understanding the normal function of SOX proteins in the melanocyte will be key to revealing how these proteins contribute to melanoma.
Collapse
Affiliation(s)
- Melissa L Harris
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
13
|
A de novoSOX10 mutation causing severe type 4 Waardenburg syndrome without Hirschsprung disease. Am J Med Genet A 2008; 146A:1038-41. [DOI: 10.1002/ajmg.a.32247] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|