1
|
Doktor F, Figueira RL, Fortuna V, Biouss G, Stasiewicz K, Obed M, Khalaj K, Antounians L, Zani A. Amniotic fluid stem cell extracellular vesicles promote lung development via TGF-beta modulation in a fetal rat model of oligohydramnios. J Control Release 2025; 377:427-441. [PMID: 39577465 DOI: 10.1016/j.jconrel.2024.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/17/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Oligohydramnios (decreased amniotic fluid volume for gestational age) is a severe condition associated with high morbidity and mortality mainly due to fetal pulmonary hypoplasia. Currently, there are limited treatment options to promote fetal lung development. Administration of stem cells and their derivates have shown promising regenerative properties for several fetal and neonatal diseases related to arrested lung development. Herein, we first characterized pulmonary hypoplasia secondary to oligohydramnios in a surgical rat model. Experimental induction of oligohydramnios led to impaired lung growth, branching morphogenesis (fewer airspaces with decreased Fgf10, Nrp1, Ctnnb1 expression), proximal/distal progenitor cell patterning (decreased Sox2 and Sox9 expression), and TGF-β signaling. We then tested antenatal administration of extracellular vesicles derived from amniotic fluid stem cells (AFSC-EVs). In oligohydramnios lungs, AFSC-EV administration improved lung branching morphogenesis and airway progenitor cell patterning at least in part through the release of miR-93-5p. Our experiments suggest that AFSC-EV miR-93-5p blocked SMAD 7, resulting in upregulation of pSMAD2/3 and restoration of TGF-β signaling. Conversely, oligohydramnios lungs treated with antagomir 93-5p transfected AFSC-EVs had decreased branching morphogenesis and TGF-β signaling. This is the first study reporting that antenatal administration of stem cell derivatives could be a potential therapy to rescue lung development in fetuses with oligohydramnios.
Collapse
Affiliation(s)
- Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada; Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Victoria Fortuna
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - George Biouss
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Kaya Stasiewicz
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Mikal Obed
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada; Department of Surgery, University of Toronto, Toronto M5T 1P5, Canada.
| |
Collapse
|
2
|
Figueira RL, Khoshgoo N, Doktor F, Khalaj K, Islam T, Moheimani N, Blundell M, Antounians L, Post M, Zani A. Antenatal Administration of Extracellular Vesicles Derived From Amniotic Fluid Stem Cells Improves Lung Function in Neonatal Rats With Congenital Diaphragmatic Hernia. J Pediatr Surg 2024; 59:1771-1777. [PMID: 38519389 DOI: 10.1016/j.jpedsurg.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND The severity of pulmonary hypoplasia is a main determinant of outcome for babies with congenital diaphragmatic hernia (CDH). Antenatal administration of extracellular vesicles derived from amniotic fluid stem cells (AFSC-EVs) has been shown to rescue morphological features of lung development in the rat nitrofen model of CDH. Herein, we evaluated whether AFSC-EV administration to fetal rats with CDH is associated with neonatal improvement in lung function. METHODS AFSC-EVs were isolated by ultracentrifugation and characterized by size, morphology, and canonical marker expression. At embryonic (E) day 9.5, dams were gavaged with olive oil (control) or nitrofen to induce CDH. At E18.5, fetuses received an intra-amniotic injection of either saline or AFSC-EVs. At E21.5, rats were delivered and subjected to a tracheostomy for mechanical ventilation (flexiVent system). Groups were compared for lung compliance, resistance, Newtonian resistance, tissue damping and elastance. Lungs were evaluated for branching morphogenesis and collagen quantification. RESULTS Compared to healthy control, saline-treated pups with CDH had fewer airspaces, more collagen deposition, and functionally exhibited reduced compliance and increased airway resistance, elastance, and tissue damping. Conversely, AFSC-EV administration resulted in improvement of lung mechanics (compliance, resistance, tissue damping, elastance) as well as lung branching morphogenesis and collagen deposition. CONCLUSIONS Our studies show that the rat nitrofen model reproduces lung function impairment similar to that of human babies with CDH. Antenatal administration of AFSC-EVs improves lung morphology and function in neonatal rats with CDH. LEVEL OF EVIDENCE N/A (animal and laboratory study).
Collapse
Affiliation(s)
- Rebeca L Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Naghmeh Khoshgoo
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Tasneem Islam
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nazgol Moheimani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Matisse Blundell
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Jank M, Doktor F, Zani A, Keijzer R. Cellular origins and translational approaches to congenital diaphragmatic hernia. Semin Pediatr Surg 2024; 33:151444. [PMID: 38996507 DOI: 10.1016/j.sempedsurg.2024.151444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Congenital Diaphragmatic Hernia (CDH) is a complex developmental abnormality characterized by abnormal lung development, a diaphragmatic defect and cardiac dysfunction. Despite significant advances in management of CDH, mortality and morbidity continue to be driven by pulmonary hypoplasia, pulmonary hypertension, and cardiac dysfunction. The etiology of CDH remains unknown, but CDH is presumed to be caused by a combination of genetic susceptibility and external/environmental factors. Current research employs multi-omics technologies to investigate the molecular profile and pathways inherent to CDH. The aim is to discover the underlying pathogenesis, new biomarkers and ultimately novel therapeutic targets. Stem cells and their cargo, non-coding RNAs and agents targeting inflammation and vascular remodeling have produced promising results in preclinical studies using animal models of CDH. Shortcomings in current therapies combined with an improved understanding of the pathogenesis in CDH have given rise to novel promising experimental treatments that are currently being evaluated in clinical trials. This review provides insight into current developments in translational research, ranging from the cellular origins of abnormal cardiopulmonary development in CDH and the identification of novel treatment targets in preclinical CDH models at the bench and their translation to clinical trials at the bedside.
Collapse
Affiliation(s)
- Marietta Jank
- Department of Surgery, Division of Pediatric Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabian Doktor
- Division of General and Thoracic Surgery, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada; Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Augusto Zani
- Division of General and Thoracic Surgery, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Richard Keijzer
- Department of Surgery, Division of Pediatric Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
4
|
Antounians L, Figueira RL, Kukreja B, Litvack ML, Zani-Ruttenstock E, Khalaj K, Montalva L, Doktor F, Obed M, Blundell M, Wu T, Chan C, Wagner R, Lacher M, Wilson MD, Post M, Kalish BT, Zani A. Fetal hypoplastic lungs have multilineage inflammation that is reversed by amniotic fluid stem cell extracellular vesicle treatment. SCIENCE ADVANCES 2024; 10:eadn5405. [PMID: 39058789 PMCID: PMC11277482 DOI: 10.1126/sciadv.adn5405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Antenatal administration of extracellular vesicles from amniotic fluid stem cells (AFSC-EVs) reverses features of pulmonary hypoplasia in models of congenital diaphragmatic hernia (CDH). However, it remains unknown which lung cellular compartments and biological pathways are affected by AFSC-EV therapy. Herein, we conducted single-nucleus RNA sequencing (snRNA-seq) on rat fetal CDH lungs treated with vehicle or AFSC-EVs. We identified that intra-amniotically injected AFSC-EVs reach the fetal lung in rats with CDH, where they promote lung branching morphogenesis and epithelial cell differentiation. Moreover, snRNA-seq revealed that rat fetal CDH lungs have a multilineage inflammatory signature with macrophage enrichment, which is reversed by AFSC-EV treatment. Macrophage enrichment in CDH fetal rat lungs was confirmed by immunofluorescence, flow cytometry, and inhibition studies with GW2580. Moreover, we validated macrophage enrichment in human fetal CDH lung autopsy samples. Together, this study advances knowledge on the pathogenesis of pulmonary hypoplasia and further evidence on the value of an EV-based therapy for CDH fetuses.
Collapse
Affiliation(s)
- Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Bharti Kukreja
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Michael L. Litvack
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Elke Zani-Ruttenstock
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Louise Montalva
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Mikal Obed
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Matisse Blundell
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Taiyi Wu
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Cadia Chan
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Richard Wagner
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Michael D. Wilson
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5T 1P5, Canada
| | - Brian T. Kalish
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
- Division of Neonatology, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
- Department of Surgery, University of Toronto, Toronto M5T 1P5, Canada
| |
Collapse
|
5
|
Robertson JO, Bazeley P, Erzurum SC, Asosingh K. Single-cell transcriptomic profiling of microvascular endothelial cell heterogeneity in congenital diaphragmatic hernia. Sci Rep 2023; 13:9851. [PMID: 37330615 PMCID: PMC10276841 DOI: 10.1038/s41598-023-37050-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/15/2023] [Indexed: 06/19/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a neonatal anomaly that includes pulmonary hypoplasia and hypertension. We hypothesized that microvascular endothelial cell (EC) heterogeneity is different in CDH lungs and related to lung underdevelopment and remodeling. To test this, we evaluated rat fetuses at E21.5 in a nitrofen model of CDH to compare lung transcriptomes among healthy controls (2HC), nitrofen-exposed controls (NC) and nitrofen-exposed subjects with CDH. Single-cell RNA sequencing with unbiased clustering revealed 3 distinct microvascular EC clusters: a general population (mvEC), a proliferative population and a population high in hemoglobin. Only the CDH mvEC cluster had a distinct inflammatory transcriptomic signature as compared to the 2HC and NC endothelial cells, e.g. greater activation and adhesion of inflammatory cells and production of reactive oxygen species. Furthermore, CDH mvECs had downregulated Ca4, Apln and Ednrb gene expression. Those genes are markers for ECs important to lung development, gas exchange and alveolar repair (mvCa4+). mvCa4+ ECs were reduced in CDH (2HC [22.6%], NC [13.1%] and CDH [5.3%], p < 0.0001). Overall, these findings identify transcriptionally distinct microvascular endothelial cell clusters in CDH, including the distinctly inflammatory mvEC cluster and the depleted group of mvCa4+ ECs, which together may contribute to pathogenesis.
Collapse
Affiliation(s)
- Jason O Robertson
- Department of Pediatric Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic Children's, 9500 Euclid Avenue/A10, Cleveland, OH, 44195, USA.
| | - Peter Bazeley
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, 44195, USA
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, 44195, USA
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, 44195, USA
| |
Collapse
|
6
|
Damianos A, Sammour I. Barriers in translating stem cell therapies for neonatal diseases. Semin Perinatol 2023; 47:151731. [PMID: 36990922 DOI: 10.1016/j.semperi.2023.151731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Over the last 20 years, stem cells of varying origin and their associated secretome have been investigated as a therapeutic option for a myriad of neonatal models of disease, with very promising results. Despite the devastating nature of some of these disorders, translation of the preclinical evidence to the bedside has been slow. In this review, we explore the existing clinical evidence for stem cell therapies in neonates, highlight the barriers faced by researchers and suggest potential solutions to move the field forward.
Collapse
Affiliation(s)
- Andreas Damianos
- Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio
| | - Ibrahim Sammour
- Riley Hospital for Children, Indiana University, Indianapolis, USA.
| |
Collapse
|
7
|
Bowen CM, Ditmars FS, Gupta A, Reems JA, Fagg WS. Cell-Free Amniotic Fluid and Regenerative Medicine: Current Applications and Future Opportunities. Biomedicines 2022; 10:2960. [PMID: 36428527 PMCID: PMC9687956 DOI: 10.3390/biomedicines10112960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Amniotic fluid (AF) provides critical biological and physical support for the developing fetus. While AF is an excellent source of progenitor cells with regenerative properties, recent investigations indicate that cell-free AF (cfAF), which consists of its soluble components and extracellular vesicles, can also stimulate regenerative and reparative activities. This review summarizes published fundamental, translational, and clinical investigations into the biological activity and potential use of cfAF as a therapeutic agent. Recurring themes emerge from these studies, which indicate that cfAF can confer immunomodulatory, anti-inflammatory, and pro-growth characteristics to the target cells/tissue with which they come into contact. Another common observation is that cfAF seems to promote a return of cells/tissue to a homeostatic resting state when applied to a model of cell stress or disease. The precise mechanisms through which these effects are mediated have not been entirely defined, but it is clear that cfAF can safely and effectively treat cutaneous wounds and perhaps orthopedic degenerative conditions. Additional applications are currently being investigated, but require further study to dissect the fundamental mechanisms through which its regenerative effects are mediated. By doing so, rational design can be used to fully unlock its potential in the biotechnology lab and in the clinic.
Collapse
Affiliation(s)
- Charles M. Bowen
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- John Sealy School of Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Frederick S. Ditmars
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- John Sealy School of Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA
- BioIntegrate, Lawrenceville, GA 30043, USA
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
- Regenerative Orthopaedics, Noida 201301, UP, India
| | - Jo-Anna Reems
- Merakris Therapeutics, RTP Frontier 800 Park Offices Dr. Suite 3322, Research Triangle Park, NC 27709, USA
- Department of Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - William Samuel Fagg
- Department of Surgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Regenerative Orthopaedics, Noida 201301, UP, India
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Figueira RL, Antounians L, Zani-Ruttenstock E, Khalaj K, Zani A. Fetal lung regeneration using stem cell-derived extracellular vesicles: A new frontier for pulmonary hypoplasia secondary to congenital diaphragmatic hernia. Prenat Diagn 2022; 42:364-372. [PMID: 35191057 DOI: 10.1002/pd.6117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/12/2022]
Abstract
The poor outcomes of babies with congenital diaphragmatic hernia (CDH) are directly related to pulmonary hypoplasia, a cosndition characterized by impaired lung development. Although the pathogenesis of pulmonary hypoplasia is not fully elucidated, there is now evidence that CDH patients have missing or dysregulated microRNAs (miRNAs) that regulate lung development. A prenatal therapy that supplements these missing/dysregulated miRNAs could be a strategy to rescue normal lung development. Extracellular vesicles (EVs), also known as exosomes when of small dimensions, are lipid-bound nanoparticles that can transfer their heterogeneous cargo (proteins, lipids, small RNAs) to target cells to induce biological responses. Herein, we review all studies that show evidence for stem cell-derived EVs as a regenerative therapy to rescue normal development in CDH fetal lungs. Particularly, we report studies showing that administration of EVs derived from amniotic fluid stem cells (AFSC-EVs) to models of pulmonary hypoplasia promotes fetal lung growth and maturation via transfer of miRNAs that are known to regulate lung developmental processes. We also describe that stem cell-derived EVs exert effects on vascular remodeling, thus possibly preventing postnatal pulmonary hypertension. Finally, we discuss future perspectives and challenges to translate this promising stem cell EV-based therapy to clinical practice. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Elke Zani-Ruttenstock
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada.,Department of Surgery, University of Toronto, Toronto, M5T 1P5, Canada
| |
Collapse
|
9
|
Costa A, Quarto R, Bollini S. Small Extracellular Vesicles from Human Amniotic Fluid Samples as Promising Theranostics. Int J Mol Sci 2022; 23:ijms23020590. [PMID: 35054775 PMCID: PMC8775841 DOI: 10.3390/ijms23020590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Since the first evidence that stem cells can provide pro-resolving effects via paracrine secretion of soluble factors, growing interest has been addressed to define the most ideal cell source for clinical translation. Leftover or clinical waste samples of human amniotic fluid obtained following prenatal screening, clinical intervention, or during scheduled caesarean section (C-section) delivery at term have been recently considered an appealing source of mesenchymal progenitors with peculiar regenerative capacity. Human amniotic fluid stem cells (hAFSC) have been demonstrated to support tissue recovery in several preclinical models of disease by exerting paracrine proliferative, anti-inflammatory and regenerative influence. Small extracellular vesicles (EVs) concentrated from the hAFSC secretome (the total soluble trophic factors secreted in the cell-conditioned medium, hAFSC-CM) recapitulate most of the beneficial cell effects. Independent studies in preclinical models of either adult disorders or severe diseases in newborns have suggested a regenerative role of hAFSC-EVs. EVs can be eventually concentrated from amniotic fluid (hAF) to offer useful prenatal information, as recently suggested. In this review, we focus on the most significant aspects of EVs obtained from either hAFSC and hAF and consider the current challenges for their clinical translation, including isolation, characterization and quantification methods.
Collapse
Affiliation(s)
- Ambra Costa
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
| | - Rodolfo Quarto
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sveva Bollini
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
- Correspondence: ; Tel.: +39-010-555-8394
| |
Collapse
|
10
|
Valiulienė G, Zentelytė A, Beržanskytė E, Navakauskienė R. Metabolic Profile and Neurogenic Potential of Human Amniotic Fluid Stem Cells From Normal vs. Fetus-Affected Gestations. Front Cell Dev Biol 2021; 9:700634. [PMID: 34336852 PMCID: PMC8322743 DOI: 10.3389/fcell.2021.700634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 12/04/2022] Open
Abstract
Human amniotic fluid stem cells (hAFSCs) possess some characteristics with mesenchymal stem cells (MSCs) and embryonic stem cells and have a broader differentiation potential compared to MSCs derived from other sources. Although hAFSCs are widely researched, their analysis mainly involves stem cells (SCs) obtained from normal, fetus-unaffected gestations. However, in clinical settings, knowledge about hAFSCs from normal gestations could be poorly translational, as hAFSCs from healthy and fetus-diseased gestations may differ in their differentiation and metabolic potential. Therefore, a more thorough investigation of hAFSCs derived from pathological gestations would provide researchers with the knowledge about the general characteristics of these cells that could be valuable for further scientific investigations and possible future clinical applicability. The goal of this study was to look into the neurogenic and metabolic potential of hAFSCs derived from diseased fetuses, when gestations were concomitant with polyhydramnios and compare them to hAFSCs derived from normal fetuses. Results demonstrated that these cells are similar in gene expression levels of stemness markers (SOX2, NANOG, LIN28A, etc.). However, they differ in expression of CD13, CD73, CD90, and CD105, as flow cytometry analysis revealed higher expression in hAFSCs from unaffected gestations. Furthermore, hAFSCs from “Normal” and “Pathology” groups were different in oxidative phosphorylation rate, as well as level of ATP and reactive oxygen species production. Although the secretion of neurotrophic factors BDNF and VEGF was of comparable degree, as evaluated with enzyme-linked immunosorbent assay (ELISA) test, hAFSCs from normal gestations were found to be more prone to neurogenic differentiation, compared to hAFSCs from polyhydramnios. Furthermore, hAFSCs from polyhydramnios were distinguished by higher secretion of pro-inflammatory cytokine TNFα, which was significantly downregulated in differentiated cells. Overall, these observations show that hAFSCs from pathological gestations with polyhydramnios differ in metabolic and inflammatory status and also possess lower neurogenic potential compared to hAFSCs from normal gestations. Therefore, further in vitro and in vivo studies are necessary to dissect the potential of hAFSCs from polyhydramnios in stem cell-based therapies. Future studies should also search for strategies that could improve the characteristics of hAFSCs derived from diseased fetuses in order for those cells to be successfully applied for regenerative medicine purposes.
Collapse
Affiliation(s)
- Giedrė Valiulienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aistė Zentelytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Elizabet Beržanskytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
11
|
Antounians L, Catania VD, Montalva L, Liu BD, Hou H, Chan C, Matei AC, Tzanetakis A, Li B, Figueira RL, da Costa KM, Wong AP, Mitchell R, David AL, Patel K, De Coppi P, Sbragia L, Wilson MD, Rossant J, Zani A. Fetal lung underdevelopment is rescued by administration of amniotic fluid stem cell extracellular vesicles in rodents. Sci Transl Med 2021; 13:13/590/eaax5941. [PMID: 33883273 DOI: 10.1126/scitranslmed.aax5941] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 03/04/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022]
Abstract
Fetal lung underdevelopment, also known as pulmonary hypoplasia, is characterized by decreased lung growth and maturation. The most common birth defect found in babies with pulmonary hypoplasia is congenital diaphragmatic hernia (CDH). Despite research and clinical advances, babies with CDH still have high morbidity and mortality rates, which are directly related to the severity of lung underdevelopment. To date, there is no effective treatment that promotes fetal lung growth and maturation. Here, we describe a stem cell-based approach in rodents that enhances fetal lung development via the administration of extracellular vesicles (EVs) derived from amniotic fluid stem cells (AFSCs). Using fetal rodent models of pulmonary hypoplasia (primary epithelial cells, organoids, explants, and in vivo), we demonstrated that AFSC-EV administration promoted branching morphogenesis and alveolarization, rescued tissue homeostasis, and stimulated epithelial cell and fibroblast differentiation. We confirmed this regenerative ability in in vitro models of lung injury using human material, where human AFSC-EVs obtained following good manufacturing practices restored pulmonary epithelial homeostasis. Investigating EV mechanism of action, we found that AFSC-EV beneficial effects were exerted via the release of RNA cargo. MicroRNAs regulating the expression of genes involved in lung development, such as the miR17-92 cluster and its paralogs, were highly enriched in AFSC-EVs and were increased in AFSC-EV-treated primary lung epithelial cells compared to untreated cells. Our findings suggest that AFSC-EVs hold regenerative ability for underdeveloped fetal lungs, demonstrating potential for therapeutic application in patients with pulmonary hypoplasia.
Collapse
Affiliation(s)
- Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Vincenzo D Catania
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Louise Montalva
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Benjamin D Liu
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Huayun Hou
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Cadia Chan
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Andreea C Matei
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Areti Tzanetakis
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada.,Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
| | - Rebeca L Figueira
- Laboratory of Experimental Fetal and Neonatal Surgery, Division of Pediatric Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paolo, 14049-900, Brazil
| | - Karina M da Costa
- Laboratory of Experimental Fetal and Neonatal Surgery, Division of Pediatric Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paolo, 14049-900, Brazil
| | - Amy P Wong
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
| | - Robert Mitchell
- School of Biological Sciences, University of Reading, Reading RG6 6AS, UK
| | - Anna L David
- Institute for Women's Health, University College London, London WC1E 6HU, UK.,NIHR University College London Hospitals Biomedical Research Centre, London W1T 7HA, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6AS, UK.,FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg 79104, Germany
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College of London, London WC1N 1EH, UK.,NIHR Biomedical Research Centre and Specialist Neonatal and Paediatric Unit, Great Ormond Street Hospital, London WC1N 1EH, UK
| | - Lourenço Sbragia
- Laboratory of Experimental Fetal and Neonatal Surgery, Division of Pediatric Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paolo, 14049-900, Brazil
| | - Michael D Wilson
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Janet Rossant
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, Canada. .,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, M5G 1X8, Canada.,Department of Surgery, University of Toronto, Toronto, M5T 1P5, Canada
| |
Collapse
|
12
|
Marulanda K, Tsihlis ND, McLean SE, Kibbe MR. Emerging antenatal therapies for congenital diaphragmatic hernia-induced pulmonary hypertension in preclinical models. Pediatr Res 2021; 89:1641-1649. [PMID: 33038872 PMCID: PMC8035353 DOI: 10.1038/s41390-020-01191-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Congenital diaphragmatic hernia (CDH)-related deaths are the largest contributor to in-hospital neonatal deaths in children with congenital malformations. Morbidity and mortality in CDH are directly related to the development of pulmonary hypertension (PH). Current treatment consists of supportive measures. To date, no pharmacotherapy has been shown to effectively reverse the hallmark finding of pulmonary vascular remodeling that is associated with pulmonary hypertension in CDH (CDH-PH). As such, there is a great need for novel therapies to effectively manage CDH-PH. Our review aims to evaluate emerging therapies, and specifically focuses on those that are still under investigation and not approved for clinical use by the Food and Drug Administration. Therapies were categorized into antenatal pharmacotherapies or antenatal regenerative therapies and assessed on their method of administration, safety profile, the effect on pulmonary vascular pathophysiology, and overall efficacy. In general, emerging antenatal pharmaceutical and regenerative treatments primarily aim to alleviate pulmonary vascular remodeling by restoring normal function and levels of key regulatory factors involved in pulmonary vascular development and/or in promoting angiogenesis. Overall, while these emerging therapies show great promise for the management of CDH-PH, most require further assessment of safety and efficacy in preclinical models before translation into the clinical setting. IMPACT: Emerging antenatal therapies for congenital diaphragmatic hernia-induced pulmonary hypertension (CDH-PH) show promise to effectively mitigate vascular remodeling in preclinical models. Further investigation is needed in preclinical and human studies to evaluate safety and efficacy prior to translation into the clinical arena. This review offers a comprehensive and up-to-date summary of emerging therapies currently under investigation in experimental animal models. There is no cure for CDH-PH. This review explores emerging therapeutic options for the treatment of CDH-PH and evaluates their impact on key molecular pathways and clinical markers of disease to determine efficacy in the preclinical stage.
Collapse
Affiliation(s)
- Kathleen Marulanda
- Department of Surgery, University of North Carolina, Chapel Hill, NC, USA
| | - Nick D Tsihlis
- Department of Surgery, University of North Carolina, Chapel Hill, NC, USA
| | - Sean E McLean
- Department of Surgery, University of North Carolina, Chapel Hill, NC, USA
- Division of Pediatric Surgery, University of North Carolina, Chapel Hill, NC, USA
| | - Melina R Kibbe
- Department of Surgery, University of North Carolina, Chapel Hill, NC, USA.
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Singh S, Varshney A, Borkar N, Jindal A, Padhi P, Ahmed I, Srivastava N. Clinical Utility of Stem Cells in Congenital Anomalies: New Horizons in Pediatric Surgery. Indian J Surg 2020. [DOI: 10.1007/s12262-020-02264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Kunisaki SM, Jiang G, Biancotti JC, Ho KKY, Dye BR, Liu AP, Spence JR. Human induced pluripotent stem cell-derived lung organoids in an ex vivo model of the congenital diaphragmatic hernia fetal lung. Stem Cells Transl Med 2020; 10:98-114. [PMID: 32949227 PMCID: PMC7780804 DOI: 10.1002/sctm.20-0199] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/03/2020] [Accepted: 08/09/2020] [Indexed: 01/06/2023] Open
Abstract
Three‐dimensional lung organoids (LOs) derived from pluripotent stem cells have the potential to enhance our understanding of disease mechanisms and to enable novel therapeutic approaches in neonates with pulmonary disorders. We established a reproducible ex vivo model of lung development using transgene‐free human induced pluripotent stem cells generated from fetuses and infants with Bochdalek congenital diaphragmatic hernia (CDH), a polygenic disorder associated with fetal lung compression and pulmonary hypoplasia at birth. Molecular and cellular comparisons of CDH LOs revealed impaired generation of NKX2.1+ progenitors, type II alveolar epithelial cells, and PDGFRα+ myofibroblasts. We then subjected these LOs to disease relevant mechanical cues through ex vivo compression and observed significant changes in genes associated with pulmonary progenitors, alveolar epithelial cells, and mesenchymal fibroblasts. Collectively, these data suggest both primary cell‐intrinsic and secondary mechanical causes of CDH lung hypoplasia and support the use of this stem cell‐based approach for disease modeling in CDH.
Collapse
Affiliation(s)
- Shaun M Kunisaki
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Guihua Jiang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Juan C Biancotti
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland, USA.,Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kenneth K Y Ho
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Briana R Dye
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Amniotic fluid and breast milk: a rationale for breast milk stem cell therapy in neonatal diseases. Pediatr Surg Int 2020; 36:999-1007. [PMID: 32671487 DOI: 10.1007/s00383-020-04710-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Amniotic fluid and breast milk play important roles in structural development throughout fetal growth and infancy. Given their significance in physical maturation, many studies have investigated the therapeutic and protective roles of amniotic fluid and breast milk in neonatal diseases. Of particular interest to researchers are stem cells found in the two fluids. These stem cells have been investigated due to their ability to self-replicate, differentiate, reduce tissue damage, and their expression of pluripotent markers. While amniotic fluid stem cells have received some attention regarding their ability to treat neonatal diseases, breast milk stem cells have not been investigated to the same extent given the recency of their discovery. The purpose of this review is to compare the functions of amniotic fluid, breast milk, and their stem cells to provide a rationale for the use of breast milk stem cells as a therapy for neonatal diseases. Breast milk stem cells present as an important tool for treating neonatal diseases given their ability to reduce inflammation and tissue damage, as well as their multilineage differentiation potential, easy accessibility, and ability to be used in disease modelling.
Collapse
|
16
|
Kirby E, Keijzer R. Congenital diaphragmatic hernia: current management strategies from antenatal diagnosis to long-term follow-up. Pediatr Surg Int 2020; 36:415-429. [PMID: 32072236 DOI: 10.1007/s00383-020-04625-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a developmental birth defect consisting of a diaphragmatic defect and abnormal lung development. CDH complicates 2.3-2.8 per 10,000 live births. Despite efforts to standardize clinical practice, management of CDH remains challenging. Frequent re-evaluation of clinical practices in CDH reveals that management of CDH is evolving from one of postnatal stabilization to prenatal optimization. Translational research reveals promising avenues for in utero therapeutic intervention, including fetoscopic endoluminal tracheal occlusion. These remain highly experimental and demand improved antenatal diagnostics. Timely diagnosis of CDH and identification of severely affected fetuses allow time for delivery planning or in utero therapeutics. Optimal perinatal care and surgical treatment strategies are highly debated. Improved CDH mortality rates have placed increased emphasis on identifying and monitoring the long-term sequelae of disease throughout childhood and into adulthood. We review the current management strategies for CDH, highlighting where progress has been made, and where future developments have the potential to revolutionize care in this vulnerable patient population.
Collapse
Affiliation(s)
- Eimear Kirby
- Trinity College Dublin School of Medicine, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Richard Keijzer
- Thorlakson Chair in Surgical Research, Division of Pediatric Surgery, Department of Surgery and Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada. .,Department of Pediatrics and Child Health and Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada. .,Department of Physiology and Pathophysiology and Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
17
|
Wagner R, Montalva L, Zani A, Keijzer R. Basic and translational science advances in congenital diaphragmatic hernia. Semin Perinatol 2020; 44:151170. [PMID: 31427115 DOI: 10.1053/j.semperi.2019.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Congenital Diaphragmatic Hernia (CDH) is a birth defect that is characterized by lung hypoplasia, pulmonary hypertension and a diaphragmatic defect that allows herniation of abdominal organs into the thoracic cavity. Although widely unknown to the public, it occurs as frequently as cystic fibrosis (1:2500). There is no monogenetic cause, but different animal models revealed various biological processes and epigenetic factors involved in the pathogenesis. However, the pathobiology of CDH is not sufficiently understood and its mortality still ranges between 30 and 50%. Future collaborative initiatives are required to improve our basic knowledge and advance novel strategies to (prenatally) treat the abnormal lung development. This review focusses on the genetic, epigenetic and protein background and the latest advances in basic and translational aspects of CDH research.
Collapse
Affiliation(s)
- Richard Wagner
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology & Pathophysiology (Adjunct), University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada; Department of Pediatric Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Louise Montalva
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Canada and Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Pediatric Surgery, Hospital Robert Debré, Paris, France
| | - Augusto Zani
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Canada and Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Richard Keijzer
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology & Pathophysiology (Adjunct), University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada.
| |
Collapse
|
18
|
Chalphin AV, Tracy SA, Lazow SP, Kycia I, Zurakowski D, Fauza DO. Congenital diaphragmatic hernia as a potential target for transamniotic stem cell therapy. J Pediatr Surg 2020; 55:249-252. [PMID: 31753611 DOI: 10.1016/j.jpedsurg.2019.10.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE We sought to determine whether TRASCET could impact congenital diaphragmatic hernia (CDH). METHODS Twelve pregnant dams received Nitrofen on gestational day 9.5 (E9; term = 22 days) to induce fetal CDH. Fetuses were divided into three groups: untreated (n = 31) and two groups receiving volume-matched intraamniotic injections of either saline (n = 37) or a suspension of 2 × 106 cells/mL of amniotic fluid-derived mesenchymal stem cells (afMSCs; n = 65) on E17. Animals were euthanized at term. Expression of fibroblast growth factor-10 (FGF-10), vascular endothelial growth factor-A (VEGF-A), and surfactant protein-C (SPC) was quantified by qRT-PCR. Statistical analysis was by the Mann-Whitney U test with Bonferroni adjusted criterion (p ≤ 0.01). RESULTS Among survivors with CDH (n = 27/133), the TRASCET group showed significant downregulation of FGF-10 and VEGF-A gene expressions compared to the untreated (p < 0.001 for both) and saline groups (p = 0.005 and p = 0.004, respectively). SPC expression was higher in the TRASCET group compared to the untreated group (p = 0.01), but not the saline group (p = 0.043). Lung laterality had minimal impact on these comparisons. CONCLUSIONS Transamniotic stem cell therapy affects select processes of lung development in experimental congenital diaphragmatic hernia. Further scrutiny into this novel therapy as a potential component of the prenatal management of this disease is warranted. LEVEL OF EVIDENCE N/A (animal and laboratory study).
Collapse
Affiliation(s)
- Alexander V Chalphin
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah A Tracy
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Stefanie P Lazow
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ina Kycia
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - David Zurakowski
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dario O Fauza
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Takayama S, Sakai K, Fumino S, Furukawa T, Kishida T, Mazda O, Tajiri T. An intra-amniotic injection of mesenchymal stem cells promotes lung maturity in a rat congenital diaphragmatic hernia model. Pediatr Surg Int 2019; 35:1353-1361. [PMID: 31559457 DOI: 10.1007/s00383-019-04561-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE We aimed to evaluate the effect of human mesenchymal stem cells (hMSCs) on congenital diaphragmatic hernia (CDH) by intra-amniotic injection in a rat CDH model. METHODS Nitrofen (100 mg) was administered to pregnant rats at E9.5. hMSCs (1.0 × 106) or PBS was injected into each amniotic cavity at E18, and fetuses were harvested at E21. The fetal lungs were classified into normal, CDH, and CDH-hMSCs groups. To determine the lung maturity, we assessed the alveolar histological structure by H&E and Weigert staining and the alveolar arteries by Elastica Van Gieson (EVG) staining. TTF-1, a marker of type II alveolar epithelial cells, was also evaluated by immunohistochemical staining and real-time reverse transcription polymerase chain reaction. RESULTS The survival rate after intra-amniotic injection was 72.1%. The CDH-hMSCs group had significantly more alveoli and secondary septa than the CDH group (p < 0.05). The CDH-hMSCs group had larger air spaces and thinner alveolar walls than the CDH group (p < 0.05). The medial and adventitial thickness of the pulmonary artery in the CDH-hMSCs group were significantly better (p < 0.001), and there were significantly fewer TTF-1-positive cells than in the CDH group (p < 0.001). CONCLUSION These results suggest that intra-amniotic injection of hMSCs has therapeutic potential for CDH.
Collapse
Affiliation(s)
- Shohei Takayama
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan. .,Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Kohei Sakai
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shigehisa Fumino
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Taizo Furukawa
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tsunao Kishida
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
20
|
The Regenerative Potential of Amniotic Fluid Stem Cell Extracellular Vesicles: Lessons Learned by Comparing Different Isolation Techniques. Sci Rep 2019; 9:1837. [PMID: 30755672 PMCID: PMC6372651 DOI: 10.1038/s41598-018-38320-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022] Open
Abstract
Extracellular vesicles (EVs) derived from amniotic fluid stem cells (AFSCs) mediate anti-apoptotic, pro-angiogenic, and immune-modulatory effects in multiple disease models, such as skeletal muscle atrophy and Alport syndrome. A source of potential variability in EV biological functions is how EV are isolated from parent cells. Currently, a comparative study of different EV isolation strategies using conditioned medium from AFSCs is lacking. Herein, we examined different isolation strategies for AFSC-EVs, using common techniques based on differential sedimentation (ultracentrifugation), solubility (ExoQuick, Total Exosome Isolation Reagent, Exo-PREP), or size-exclusion chromatography (qEV). All techniques isolated AFSC-EVs with typical EV morphology and protein markers. In contrast, AFSC-EV size, protein content, and yield varied depending on the method of isolation. When equal volumes of the different AFSC-EV preparations were used as treatment in a model of lung epithelial injury, we observed a significant variation in how AFSC-EVs were able to protect against cell death. AFSC-EV enhancement of cell survival appeared to be dose dependent, and largely uninfluenced by variation in EV-size distributions, relative EV-purity, or their total protein content. The variation in EV-mediated cell survival obtained with different isolation strategies emphasizes the importance of testing alternative isolation techniques in order to maximize EV regenerative capacity.
Collapse
|
21
|
Tzanetakis A, Antounians L, Belfiore A, Ma Q, Stasiewicz M, Pellerito O, Zani A. Endoplasmic reticulum stress response is activated in pulmonary hypoplasia secondary to congenital diaphragmatic hernia, but is decreased by administration of amniotic fluid stem cells. Pediatr Surg Int 2019; 35:63-69. [PMID: 30386898 DOI: 10.1007/s00383-018-4376-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Pulmonary hypoplasia secondary to congenital diaphragmatic hernia (CDH) is characterized by impaired epithelial homeostasis. Recently, amniotic fluid stem cells (AFSCs) have been shown to promote growth in hypoplastic lungs of rat fetuses with CDH. Herein, we investigated whether CDH hypoplastic lungs mount an endoplasmic reticulum (ER) stress response and whether AFSCs could re-establish pulmonary epithelial homeostasis. METHODS Primary epithelial cells were isolated from fetal rat lungs at E14.5 from control and nitrofen-exposed dams at E9.5. Nitrofen-exposed epithelial cells were grown in medium alone or co-cultured with AFSCs. Epithelial cell cultures were compared for apoptosis (TUNEL), cytotoxicity (LIVE/DEAD assay), proliferation (5'EdU), and ER stress (CHOP, Bcl-2) using one-way ANOVA (Dunn's post-test). RESULTS Compared to control, nitrofen-exposed epithelial cells had increased cytotoxicity and apoptosis, reduced proliferation, and activated ER stress. AFSCs restored apoptosis, proliferation, and ER stress back to control levels, and significantly reduced cytotoxicity. CONCLUSIONS This study shows for the first time that ER stress-induced apoptosis is activated in the pulmonary epithelium of hypoplastic lungs from fetuses with CDH. AFSC treatment restores epithelial cellular homeostasis by attenuating the ER stress response and apoptosis, by increasing proliferation and migration ability, and by reducing cytotoxicity.
Collapse
Affiliation(s)
- Areti Tzanetakis
- Developmental and Stem Cell Biology Program, PGCRL, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, PGCRL, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Alyssa Belfiore
- Developmental and Stem Cell Biology Program, PGCRL, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Qi Ma
- Developmental and Stem Cell Biology Program, PGCRL, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Mark Stasiewicz
- Developmental and Stem Cell Biology Program, PGCRL, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Ornella Pellerito
- Developmental and Stem Cell Biology Program, PGCRL, The Hospital for Sick Children, Toronto, ON, Canada.,Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, PGCRL, The Hospital for Sick Children, Toronto, ON, Canada. .,Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
22
|
Kunisaki SM. Amniotic Fluid Stem Cells for the Treatment of Surgical Disorders in the Fetus and Neonate. Stem Cells Transl Med 2018; 7:767-773. [PMID: 30085416 PMCID: PMC6216434 DOI: 10.1002/sctm.18-0018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/14/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022] Open
Abstract
Over the past decade, amniotic fluid‐derived stem cells have emerged as a novel experimental approach aimed at improving outcomes in children with congenital anomalies, including spina bifida, heart defects, and diaphragmatic hernia. Interest in these cells for the treatment of prenatally diagnosed diseases has arisen based on numerous studies demonstrating the relative ease of harvesting an abundant quantity of amniocytes from a small aliquot of fluid, the unique properties of amniocytes themselves, and the beneficial effects of amniotic fluid‐derived stem cells in experimental animal models. This report gives a brief overview of the rationale and current status of amniotic fluid stem cell‐based therapies, focusing on its relevance to birth defects affecting the fetus and neonate. The author proposes a roadmap for further study that would be required prior to clinical application of amniotic fluid stem cell technologies. stem cells translational medicine2018;7:767–773
Collapse
Affiliation(s)
- Shaun M Kunisaki
- Department of Surgery, Fetal Diagnosis and Treatment Center and Section of Pediatric Surgery, University of Michigan, C.S. Mott Children's and Von Voigtlander Women's Hospital, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Fox ZD, Jiang G, Ho KKY, Walker KA, Liu AP, Kunisaki SM. Fetal lung transcriptome patterns in an ex vivo compression model of diaphragmatic hernia. J Surg Res 2018; 231:411-420. [PMID: 30278961 DOI: 10.1016/j.jss.2018.06.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/26/2018] [Accepted: 06/20/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND The purpose of this study was to employ a novel ex vivo lung model of congenital diaphragmatic hernia (CDH) to determine how a mechanical compression affects early pulmonary development. METHODS Day-15 whole fetal rat lungs (n = 6-12/group) from nitrofen-exposed and normal (vehicle only) dams were explanted and cultured ex vivo in compression microdevices (0.2 or 0.4 kPa) for 16 h to mimic physiologic compression forces that occur in CDH in vivo. Lungs were evaluated with significance set at P < 0.05. RESULTS Nitrofen-exposed lungs were hypoplastic and expressed lower levels of surfactant protein C at baseline. Although compression alone did not alter the α-smooth muscle actin (ACTA2) expression in normal lungs, nitrofen-exposed lungs had significantly increased ACTA2 transcripts (0.2 kPa: 2.04 ± 0.15; 0.4 kPa: 2.22 ± 0.11; both P < 0.001). Nitrofen-exposed lungs also showed further reductions in surfactant protein C expression at 0.2 and 0.4 kPa (0.53 ± 0.04, P < 0.01; 0.69 ± 0.23, P < 0.001; respectively). Whereas normal lungs exposed to 0.2 and 0.4 kPa showed significant increases in periostin (POSTN), a mechanical stress-response molecule (1.79 ± 0.10 and 2.12 ± 0.39, respectively; both P < 0.001), nitrofen-exposed lungs had a significant decrease in POSTN expression (0.4 kPa: 0.67 ± 0.15, P < 0.001), which was confirmed by immunohistochemistry. CONCLUSIONS Collectively, these pilot data in a model of CDH lung hypoplasia suggest a primary aberration in response to mechanical stress within the nitrofen lung, characterized by an upregulation of ACTA2 and a downregulation in SPFTC and POSTN. This ex vivo compression system may serve as a novel research platform to better understand the mechanobiology and complex regulation of matricellular dynamics during CDH fetal lung development.
Collapse
Affiliation(s)
- Zachary D Fox
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Guihua Jiang
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kenneth K Y Ho
- Mechanical Engineering, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kendal A Walker
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Allen P Liu
- Mechanical Engineering, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Shaun M Kunisaki
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
24
|
Abstract
In congenital diaphragmatic hernia (CDH), herniation of the abdominal organs into the fetal chest causes pulmonary hypoplasia and pulmonary hypertension, the main causes of neonatal mortality. As antenatal ultrasound screening improves, the risk of postnatal death can now be better predicted, allowing for the identification of fetuses that might most benefit from a prenatal intervention. Fetoscopic tracheal occlusion is being evaluated in a large international randomized controlled trial. We present the antenatal imaging approaches that can help identify fetuses that might benefit from antenatal therapy, and review the evolution of fetal surgery for CDH to date.
Collapse
Affiliation(s)
- Titilayo Oluyomi-Obi
- Section of Maternal Fetal Medicine, Department of Obstetrics and Gynaecology, University of Calgary, 1403 29 Street NW, Calgary, Alberta.
| | - Tim Van Mieghem
- Fetal Medicine Unit, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Greg Ryan
- Fetal Medicine Unit, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Abstract
Congenital diaphragmatic hernia (CDH) remains a major challenge and associated mortality is still significant. Patients have benefited from current therapeutic options, but most severe cases are still associated to poor outcome. Regenerative medicine is emerging as a valid option in many diseases and clinical trials are currently happening for various conditions in children and adults. We report here the advancement in the field which will help both in the understanding of further CDH development and in offering new treatment options for the difficult situations such as repair of large diaphragmatic defects and lung hypoplasia. The authors believe that advancements in regenerative medicine may lead to increase of CDH patients׳ survival.
Collapse
Affiliation(s)
- Paolo De Coppi
- Institute of Women׳s Health, Great Ormond Street, Institute of Child Health, University College London, London, UK; Academic Department of Development and Regeneration, Clinical Specialties Research Groups, Biomedical Sciences, KU Leuven, Leuven, Belgium.
| | - Jan Deprest
- Institute of Women׳s Health, Great Ormond Street, Institute of Child Health, University College London, London, UK; Academic Department of Development and Regeneration, Clinical Specialties Research Groups, Biomedical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
|
27
|
Laube M, Stolzing A, Thome UH, Fabian C. Therapeutic potential of mesenchymal stem cells for pulmonary complications associated with preterm birth. Int J Biochem Cell Biol 2016; 74:18-32. [PMID: 26928452 DOI: 10.1016/j.biocel.2016.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/22/2022]
Abstract
Preterm infants frequently suffer from pulmonary complications resulting in significant morbidity and mortality. Physiological and structural lung immaturity impairs perinatal lung transition to air breathing resulting in respiratory distress. Mechanical ventilation and oxygen supplementation ensure sufficient oxygen supply but enhance inflammatory processes which might lead to the establishment of a chronic lung disease called bronchopulmonary dysplasia (BPD). Current therapeutic options to prevent or treat BPD are limited and have salient side effects, highlighting the need for new therapeutic approaches. Mesenchymal stem cells (MSCs) have demonstrated therapeutic potential in animal models of BPD. This review focuses on MSC-based therapeutic approaches to treat pulmonary complications and critically compares results obtained in BPD models. Thereby bottlenecks in the translational systems are identified that are preventing progress in combating BPD. Notably, current animal models closely resemble the so-called "old" BPD with profound inflammation and injury, whereas clinical improvements shifted disease pathology towards a "new" BPD in which arrest of lung maturation predominates. Future studies need to evaluate the utility of MSC-based therapies in animal models resembling the "new" BPD though promising in vitro evidence suggests that MSCs do possess the potential to stimulate lung maturation. Furthermore, we address the mode-of-action of MSC-based therapies with regard to lung development and inflammation/fibrosis. Their therapeutic efficacy is mainly attributed to an enhancement of regeneration and immunomodulation due to paracrine effects. In addition, we discuss current improvement strategies by genetic modifications or precondition of MSCs to enhance their therapeutic efficacy which could also prove beneficial for BPD therapies.
Collapse
Affiliation(s)
- Mandy Laube
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany.
| | - Alexandra Stolzing
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Loughborough University, Wolfson School of Mechanical and Manufacturing Engineering, Centre for Biological Engineering, Loughborough, UK.
| | - Ulrich H Thome
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany.
| | - Claire Fabian
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
28
|
Bohlin K. Cell-based strategies to reconstitute vital functions in preterm infants with organ failure. Best Pract Res Clin Obstet Gynaecol 2016; 31:99-111. [DOI: 10.1016/j.bpobgyn.2015.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/31/2015] [Indexed: 12/14/2022]
|
29
|
Jeanty C, Kunisaki SM, MacKenzie TC. Novel non-surgical prenatal approaches to treating congenital diaphragmatic hernia. Semin Fetal Neonatal Med 2014; 19:349-56. [PMID: 25456754 DOI: 10.1016/j.siny.2014.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review focuses on the emerging field of non-surgical in-utero therapies in the management of fetal pulmonary hypoplasia and pulmonary hypertension associated with congenital diaphragmatic hernia (CDH). These experimental approaches include pharmacologic as well as stem-cell-based strategies. Current barriers of non-surgical therapies toward clinical translation are emphasized. As the severity of CDH will likely influence the efficacy of any in-utero therapy, the current status of prenatal imaging and the role of novel biomarkers, especially those related to fetal inflammation, are also reviewed.
Collapse
Affiliation(s)
- Cerine Jeanty
- Department of Surgery, University of California San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine, University of California San Francisco, CA, USA
| | - Shaun M Kunisaki
- Department of Surgery, C.S. Mott Children's Hospital, University of Michigan Health System, Ann Arbor, MI, USA
| | - Tippi C MacKenzie
- Department of Surgery, University of California San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine, University of California San Francisco, CA, USA.
| |
Collapse
|
30
|
Yuniartha R, Alatas FS, Nagata K, Kuda M, Yanagi Y, Esumi G, Yamaza T, Kinoshita Y, Taguchi T. Therapeutic potential of mesenchymal stem cell transplantation in a nitrofen-induced congenital diaphragmatic hernia rat model. Pediatr Surg Int 2014; 30:907-14. [PMID: 25092488 DOI: 10.1007/s00383-014-3576-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE The aim of this study was to evaluate the efficacy of mesenchymal stem cells (MSCs) in a nitrofen-induced congenital diaphragmatic hernia (CDH) rat model. METHODS Pregnant rats were exposed to nitrofen on embryonic day 9.5 (E9.5). MSCs were isolated from the enhanced green fluorescent protein (eGFP) transgenic rat lungs. The MSCs were transplanted into the nitrofen-induced E12.5 rats via the uterine vein, and the E21 lung explants were harvested. The study animals were divided into three: the control group, the nitrofen-induced left CDH (CDH group), and the MSC-treated nitrofen-induced left CDH (MSC-treated CDH group). The specimens were morphologically analyzed using HE and immunohistochemical staining with proliferating cell nuclear antigen (PCNA), surfactant protein-C (SP-C), and α-smooth muscle actin. RESULTS The alveolar and medial walls of the pulmonary arteries were significantly thinner in the MSC-treated CDH group than in the CDH group. The alveolar air space areas were larger, while PCNA and the SP-C positive cells were significantly higher in the MSC-treated CDH group, than in the CDH group. MSC engraftment was identified on immunohistochemical staining of the GFP in the MSC-treated CDH group. CONCLUSIONS MSC transplantation potentially promotes alveolar and pulmonary artery development, thereby reducing the severity of pulmonary hypoplasia.
Collapse
Affiliation(s)
- Ratih Yuniartha
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|