1
|
Athiel Y, Jouannic JM, Lépine M, Maillet C, de Saint Denis T, Larghero J, Guilbaud L. Role of Amniotic Fluid Toxicity in the Pathophysiology of Myelomeningocele: A Narrative Literature Review. Prenat Diagn 2024; 44:1530-1535. [PMID: 39370541 DOI: 10.1002/pd.6681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Myelomeningocele is a birth defect whose clinical manifestations are due both to incomplete neural tube closure and the progressive destruction of exposed neuroepithelium during pregnancy. Two hypotheses have been formulated to explain the spinal cord damage in utero: mechanical trauma and chemical factors. The objective of this review was to summarize the current insights about the potential role of amniotic fluid in spinal cord damage in myelomeningocele. Numerous histological and clinical data on animals and humans strongly suggest a progressive degeneration of neural tissue including loss of neural cells, astrogliosis, inflammation, and loss of normal architecture. However, few data have been published about the direct toxicity of amniotic fluid in this neural degeneration, including the potentially toxic effect of meconium. Finally, the chemical and cellular modifications of amniotic fluid composition in myelomeningocele could reflect both the process (toxic effect of meconium) and the consequences of neuroepithelium destruction (release of neural cells). Fetal surgery not only stops the leakage of the cerebrospinal fluid but also reduces the toxic effect of amniotic fluid by restoring the intrauterine environment. Identification of amniotic fluid neurotoxic factors could lead to the development of therapeutic agents designed to protect spinal tissue and improve fetal myelomeningocele outcomes.
Collapse
Affiliation(s)
- Yoann Athiel
- Department of Fetal Medicine, Armand Trousseau Hospital, AP-HP, DMU ORIGYNE, National Reference Center for Rare Disease: Spin@, Sorbonne University, Paris, France
- Stem Cell Biotechnologies Unit, INSERM 976, CIC-BT, AP-HP, Saint-Louis Hospital, Université Paris Cité, Paris, France
| | - Jean-Marie Jouannic
- Department of Fetal Medicine, Armand Trousseau Hospital, AP-HP, DMU ORIGYNE, National Reference Center for Rare Disease: Spin@, Sorbonne University, Paris, France
- Working Group Spina Bifida and Other Dysraphisms, European Reference Network ITHACA, Paris, France
| | - Matthieu Lépine
- Stem Cell Biotechnologies Unit, INSERM 976, CIC-BT, AP-HP, Saint-Louis Hospital, Université Paris Cité, Paris, France
| | - Corentin Maillet
- Department of Fetal Medicine, Armand Trousseau Hospital, AP-HP, DMU ORIGYNE, National Reference Center for Rare Disease: Spin@, Sorbonne University, Paris, France
- Stem Cell Biotechnologies Unit, INSERM 976, CIC-BT, AP-HP, Saint-Louis Hospital, Université Paris Cité, Paris, France
| | - Timothée de Saint Denis
- Department of Pediatric Orthopedic and Reconstructive Surgery, Armand Trousseau Hospital, AP-HP, Sorbonne University, Paris, France
| | - Jérôme Larghero
- Stem Cell Biotechnologies Unit, INSERM 976, CIC-BT, AP-HP, Saint-Louis Hospital, Université Paris Cité, Paris, France
| | - Lucie Guilbaud
- Department of Fetal Medicine, Armand Trousseau Hospital, AP-HP, DMU ORIGYNE, National Reference Center for Rare Disease: Spin@, Sorbonne University, Paris, France
- Stem Cell Biotechnologies Unit, INSERM 976, CIC-BT, AP-HP, Saint-Louis Hospital, Université Paris Cité, Paris, France
- Working Group Spina Bifida and Other Dysraphisms, European Reference Network ITHACA, Paris, France
| |
Collapse
|
2
|
Dallatana A, Cremonesi L, Pezzini F, Fontana G, Innamorati G, Giacomello L. The Placenta as a Source of Human Material for Neuronal Repair. Biomedicines 2024; 12:1567. [PMID: 39062139 PMCID: PMC11275125 DOI: 10.3390/biomedicines12071567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Stem cell therapy has the potential to meet unsolved problems in tissue repair and regeneration, particularly in the neural tissues. However, an optimal source has not yet been found. Growing evidence indicates that positive effects produced in vivo by mesenchymal stem cells (MSCs) can be due not only to their plasticity but also to secreted molecules including extracellular vesicles (EVs) and the extracellular matrix (ECM). Trophic effects produced by MSCs may reveal the key to developing effective tissue-repair strategies, including approaches based on brain implants or other implantable neural electrodes. In this sense, MSCs will become increasingly valuable and needed in the future. The placenta is a temporary organ devoted to protecting and supporting the fetus. At the same time, the placenta represents an abundant and extremely convenient source of MSCs. Nonetheless, placenta-derived MSCs (P-MSCs) remain understudied as compared to MSCs isolated from other sources. This review outlines the limited literature describing the neuroregenerative effects of P-MSC-derived biomaterials and advocates for exploiting the potential of this untapped source for human regenerative therapies.
Collapse
Affiliation(s)
| | | | | | | | - Giulio Innamorati
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy; (A.D.); (L.C.); (F.P.); (G.F.); (L.G.)
| | | |
Collapse
|
3
|
Athiel Y, Jouannic JM, Mauffré V, Dehan C, Adam C, Blot S, Lallemant P, De Saint Denis T, Larghero J, Nasone J, Guilbaud L. Allogenic umbilical cord-derived mesenchymal stromal cells improve motor function in prenatal surgical repair of myelomeningocele: An ovine model study. BJOG 2024; 131:759-767. [PMID: 37492999 DOI: 10.1111/1471-0528.17624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVE To investigate the effects of an adjuvant allogenic umbilical cord mesenchymal stromal cell (UC-MSC) patch applied during fetal surgery on motor and sphincter function in the ovine MMC model. DESIGN MMC defects were surgically created at 75 days of gestation and repaired 14 days later. POPULATION Ovine MMC model: fetal lambs. METHODS We compared lambs that received a UC-MSC patch with a control group of lambs that received an acellular patch. MAIN OUTCOME MEASURES Clinical neurological assessment was performed at 2 and 24 hours of life and included determination of the Sheep Locomotor Rating scale (SLR), which has been validated in the ovine MMC model. Electrophysical examinations, spine scans and histological analyses were also performed. RESULTS Of the 13 operated lambs, nine were born alive: five had of these had received a UC-MSC patch and four an acellular patch. At 24 hours of life, lambs in the UC-MSC group had a significantly higher score (14 versus 5, P = 0.04). Amyotrophy was significantly more common in the control group (75% versus 0%, P = 0.02). All the lambs in the control group and none of those in the UC-MSC group were incontinent. No significant differences were observed between the UC-MSC and control groups in terms of the presence of spontaneous EMG activity, nerve conduction or spinal evoked potentials. In the microscopic examination, lambs in the UC-MSC group had less fibrosis between the spinal cord and the dermis (mean thickness, 453 versus 3921 μm, P = 0.03) and around the spinal cord (mean thickness, 47 versus 158 μm, P < 0.001). Examination of the spinal cord in the area of the MMC defect showed a higher large neuron density in the UC-MSC group (14.5 versus 5.6 neurons/mm2, P < 0.001). No tumours were observed. CONCLUSIONS Fetal repair of MMC using UC-MSC patches improves motor and sphincter function as well as spinal preservation and reduction of fibrosis.
Collapse
Affiliation(s)
- Yoann Athiel
- Université Paris Cité, INSERM, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France
- Service de médecine fœtale, APHP, Hôpital Trousseau, DMU ORIGYNE, Sorbonne Université, Paris, France
| | - Jean-Marie Jouannic
- Université Paris Cité, INSERM, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France
- Service de médecine fœtale, APHP, Hôpital Trousseau, DMU ORIGYNE, Sorbonne Université, Paris, France
- Working Group Spina Bifida and Other Dysraphisms, European Reference Network ITHACA, Paris, France
| | - Vincent Mauffré
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- École Nationale Vétérinaire d'Alfort, BREED, Maison-Alfort, France
| | - Coralie Dehan
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- École Nationale Vétérinaire d'Alfort, BREED, Maison-Alfort, France
| | - Clovis Adam
- Service d'anatomopathologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Stéphane Blot
- U955-IMRB, Inserm, École Nationale Vétérinaire d'Alfort, Unité de Neurologie, Maisons-Alfort, France
| | - Pauline Lallemant
- National Reference Center for Rare Disease: Vertebral and Spinal Cord Anomalies (MAVEM Center), AP-HP, Trousseau Hospital, Paris, France
- Sorbonne University, AP-HP, Trousseau Hospital, Paris, France
| | - Timothé De Saint Denis
- Service de Neurochirurgie Pédiatrique, Centre de Référence Chiari, Syringomyélie et Malformations du Rachis et de la Moelle C-MAVEM, et Centre de Référence des Malformations Craniofaciales-CRMR, Paris, France
| | - Jérôme Larghero
- Université Paris Cité, INSERM, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France
- Unité de Thérapie Cellulaire et Centre MEARY de Thérapie Cellulaire et Génique, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Justine Nasone
- Université Paris Cité, INSERM, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France
- Unité de Thérapie Cellulaire et Centre MEARY de Thérapie Cellulaire et Génique, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Lucie Guilbaud
- Université Paris Cité, INSERM, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France
- Service de médecine fœtale, APHP, Hôpital Trousseau, DMU ORIGYNE, Sorbonne Université, Paris, France
| |
Collapse
|
4
|
Lee SY, Du Y, Hassan AES, Brown E, Saadai P, Hirose S, Wang A, Farmer DL. Evolution and Variations of the Ovine Model of Spina Bifida. Fetal Diagn Ther 2023; 50:491-500. [PMID: 37393899 PMCID: PMC10757987 DOI: 10.1159/000531750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023]
Abstract
Spina bifida is the most common congenital anomaly of the central nervous system and the first non-fatal fetal lesions to be addressed by fetal intervention. While research in spina bifida has been performed in rodent, nonhuman primate, and canine models, sheep have been a model organism for the disease. This review summarizes the history of development of the ovine model of spina bifida, previous applications, and translation into clinical studies. Initially used by Meuli et al. [Nat Med. 1995;1(4):342-7], fetal myelomeningocele defect creation and in utero repair demonstrated motor function preservation. The addition of myelotomy in this model can reproduce hindbrain herniation malformations, which is the leading cause of mortality and morbidity in humans. Since inception, the ovine models have been validated numerous times as the ideal large animal model for fetal repair, with both locomotive scoring and spina bifida defect scoring adding to the rigor of this model. The ovine model has been used to study different methods of myelomeningocele defect repair, the application of various tissue engineering techniques for neuroprotection and bowel and bladder function. The results of these large animal studies have been translated into human clinical trials including Management of Meningocele Study (MOMS) trial that established current standard of care for prenatal repair of spina bifida defects, and the ongoing trials including the Cellular Therapy for In Utero Repair of Myelomeningocele (CuRe) trial using a stem cell patch for repair. The advancement of these life savings and life-altering therapies began in sheep models, and this notable model continues to be used to further the field including current work with stem cell therapy.
Collapse
Affiliation(s)
- Su Yeon Lee
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California, USA,
- Center for Surgical Bioengineering, University of California Davis, Sacramento, California, USA,
| | - Yimeng Du
- University of California Davis School of Medicine, Sacramento, California, USA
| | - Abd-Elrahman Said Hassan
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California, USA
- Center for Surgical Bioengineering, University of California Davis, Sacramento, California, USA
| | - Erin Brown
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Payam Saadai
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Shinjiro Hirose
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Aijun Wang
- Center for Surgical Bioengineering, University of California Davis, Sacramento, California, USA
| | - Diana L Farmer
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California, USA
- Center for Surgical Bioengineering, University of California Davis, Sacramento, California, USA
| |
Collapse
|
5
|
Kunpalin Y, Vergote S, Joyeux L, Telli O, David AL, Belfort M, De Coppi P, Deprest J. Local host response of commercially available dural patches for fetal repair of spina bifida aperta in rabbit model. Prenat Diagn 2023; 43:370-381. [PMID: 36650109 DOI: 10.1002/pd.6315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/05/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Fetal surgery for spina bifida aperta (SBA) by open hysterotomy typically repairs anatomical native tissue in layers. Increasingly, fetoscopic repair is performed using a dural patch followed by skin closure. We studied the host response to selected commercially available patches currently being used in a fetal rabbit model for spina bifida repair. METHODS SBA was surgically induced at 23-24 days of gestation (term = 31 days). Fetal rabbits were assigned to unrepaired (SBA group), or immediate repair with Duragen™ or Durepair™. Non-operated littermates served as normal controls. At term, spinal cords underwent immunohistochemical staining including Nissl and glial fibrillary acidic protein. We hypothesized that spinal cord coverage with a dural patch and skin closure would preserve motor neuron density within the non-inferiority limit of 201.65 cells/mm2 and reduce inflammation compared to unrepaired SBA fetuses. RESULTS Motor neuron density assessed by Nissl staining was conserved both by Duragen (n = 6, 89.5; 95% CI -158.3 to -20.6) and Durepair (n = 6, 37.0; 95% CI -132.6 to -58.5), whereas density of GFAP-positive cells to quantify inflammation was lower than in unrepaired SBA-fetuses (SBA 2366.0 ± 669.7 cells/mm2 vs. Duragen 1274.0 ± 157.2 cells/mm2 ; p = 0.0002, Durepair 1069.0 ± 270.7 cells/mm2 ; p < 0.0001). CONCLUSIONS Covering the rabbit spinal cord with either Duragen or Durepair followed by skin closure preserves motor neuron density and reduces the inflammatory response.
Collapse
Affiliation(s)
- Yada Kunpalin
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, MyFetUZ Fetal Research Center, KU Leuven, Leuven, Belgium.,Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Simen Vergote
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, MyFetUZ Fetal Research Center, KU Leuven, Leuven, Belgium.,Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Luc Joyeux
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Onur Telli
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, MyFetUZ Fetal Research Center, KU Leuven, Leuven, Belgium
| | - Anna L David
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, MyFetUZ Fetal Research Center, KU Leuven, Leuven, Belgium.,Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Michael Belfort
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Paolo De Coppi
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, MyFetUZ Fetal Research Center, KU Leuven, Leuven, Belgium.,Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, MyFetUZ Fetal Research Center, KU Leuven, Leuven, Belgium.,Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium.,Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
6
|
Lee SY, Papanna R, Farmer D, Tsao K. Fetal Repair of Neural Tube Defects. Clin Perinatol 2022; 49:835-848. [PMID: 36328602 DOI: 10.1016/j.clp.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Myelomeningocele is the most common congenital neurologic defect, and the only nonlethal disease addressed by fetal surgery. A randomized control trial has established amelioration of the Arnold-Chiari II malformation, reduced ventriculoperitoneal shunt rate, and improvement in distal neurologic function in patients that receive in utero repair. Long-term follow-up of these school-age children demonstrates the persistence of these effects. The use of stem cells in fetal repair is being investigated to further improve distal motor function.
Collapse
Affiliation(s)
- Su Yeon Lee
- Department of Surgery, Division of Pediatric, Thoracic and Fetal Surgery, University of California Davis Medical Center, 2335 Stockton Boulevard, Room 5107, Sacramento, CA 95817, USA.
| | - Ramesha Papanna
- Department of Obstetrics, Gynecology and Reproductive Sciences, UT Health Science Center at Houston, 6410 Fannin Street, Suite 210, Houston, TX 77030, USA
| | - Diana Farmer
- Department of Surgery, University of California Davis Medical Center, 2335 Stockton Boulevard, Sacramento, CA 95817, USA
| | - KuoJen Tsao
- Department of Pediatric Surgery, UT Health Science Center at Houston, 6410 Fannin Street, Suite 950, Houston, TX 77030, USA
| |
Collapse
|
7
|
Athiel Y, Nasone J, Arakelian L, Faivre L, Dugas A, Jouannic JM, Larghero J, Guilbaud L. Biodistribution of allogenic umbilical cord-derived mesenchymal stromal cells after fetal repair of myelomeningocele in an ovine model. Stem Cell Res Ther 2022; 13:300. [PMID: 35841029 PMCID: PMC9284777 DOI: 10.1186/s13287-022-02991-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Myelomeningocele (MMC) is a spinal cord congenital defect that leads to paraplegia, sphincter disorders and potential neurocognitive disabilities. Prenatal surgery of MMC provides a significant benefit compared to surgery at birth. Mesenchymal stromal cell (MSC) therapy as an adjuvant treatment for prenatal surgery showed promising results in animal experiments which could be considered for clinical use in human fetuses. Despite numerous reassuring studies on the safety of MSCs administration in humans, no study focused on MSCs biodistribution after a local MSCs graft on the fetal spinal cord. Aim The purpose of our study was to assess the biodistribution of umbilical cord-derived mesenchymal stromal cells (UC-MSCs) at birth in lambs who had a prenatal myelomeningocele repair using a fibrin patch seeded with allogenic UC-MSCs. Methods After isolation, UC-MSCs were tagged using a green fluorescent protein (GFP)-containing lentiviral vector. MMC defects were surgically created at 75 days of gestation and repaired 15 days later using UC-MSCs patch. Lambs were delivered at 142 days and sacrificed. DNA extraction was performed among biopsies of the different organs and q-PCR analysis was used to detect the expression of GFP (GFP DNA coding sequence). Results In our 6 surviving lambs grafted with UC-MSCs, GFP lentivirus genomic DNA was not detected in the organs. Conclusion These reassuring data will support translational application in humans, especially since the first human clinical trial using mesenchymal stromal cells for in-utero treatment of MMC started recently in U.S.A.
Collapse
Affiliation(s)
- Yoann Athiel
- Stem Cell Biotechnologies, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France.,Department of Fetal Medicine, APHP, Trousseau Hospital, DMU ORIGYNE, Sorbonne University, Paris, France
| | - Justine Nasone
- Stem Cell Biotechnologies, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France.,Unité de Thérapie Cellulaire et Centre MEARY de Thérapie Cellulaire et Génique, Saint Louis Hospital, Université Paris Cité, Paris, France
| | - Lousineh Arakelian
- Stem Cell Biotechnologies, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France
| | - Lionel Faivre
- Stem Cell Biotechnologies, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France.,Unité de Thérapie Cellulaire et Centre MEARY de Thérapie Cellulaire et Génique, Saint Louis Hospital, Université Paris Cité, Paris, France
| | - Anaïs Dugas
- Stem Cell Biotechnologies, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France.,Department of Fetal Medicine, APHP, Trousseau Hospital, DMU ORIGYNE, Sorbonne University, Paris, France
| | - Jean-Marie Jouannic
- Stem Cell Biotechnologies, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France.,Department of Fetal Medicine, APHP, Trousseau Hospital, DMU ORIGYNE, Sorbonne University, Paris, France
| | - Jérôme Larghero
- Stem Cell Biotechnologies, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France.,Unité de Thérapie Cellulaire et Centre MEARY de Thérapie Cellulaire et Génique, Saint Louis Hospital, Université Paris Cité, Paris, France
| | - Lucie Guilbaud
- Stem Cell Biotechnologies, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France. .,Department of Fetal Medicine, APHP, Trousseau Hospital, DMU ORIGYNE, Sorbonne University, Paris, France.
| |
Collapse
|
8
|
Dural substitutes for spina bifida repair: past, present, and future. Childs Nerv Syst 2022; 38:873-891. [PMID: 35378616 PMCID: PMC9968456 DOI: 10.1007/s00381-022-05486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/28/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE The use of materials to facilitate dural closure during spina bifida (SB) repair has been a highly studied aspect of the surgical procedure. The overall objective of this review is to present key findings pertaining to the success of the materials used in clinical and pre-clinical studies. Additionally, this review aims to aid fetal surgeons as they prepare for open or fetoscopic prenatal SB repairs. METHODS Relevant publications centered on dural substitutes used during SB repair were identified. Important information from each article was extracted including year of publication, material class and sub-class, animal model used in pre-clinical studies, whether the repair was conducted pre-or postnatally, the bioactive agent delivered, and key findings from the study. RESULTS Out of 1,121 publications, 71 were selected for full review. We identified the investigation of 33 different patches where 20 and 63 publications studied synthetic and natural materials, respectively. From this library, 43.6% focused on clinical results, 36.6% focused on pre-clinical results, and 19.8% focused on tissue engineering approaches. Overall, the use of patches, irrespective of material, have shown to successfully protect the spinal cord and most have shown promising survival and neurological outcomes. CONCLUSION While most have shown significant promise as a therapeutic strategy in both clinical and pre-clinical studies, none of the patches developed so far are deemed perfect for SB repair. Therefore, there is an opportunity to develop new materials and strategies that aim to overcome these challenges and further improve the outcomes of SB patients.
Collapse
|
9
|
Stokes SC, Kabagambe SK, Lee CJ, Wang A, Farmer DL, Kumar P. Impact of Gestational Age on Neuroprotective Function of Placenta-Derived Mesenchymal Stromal Cells. J Surg Res 2022; 273:201-210. [PMID: 35093836 PMCID: PMC9396930 DOI: 10.1016/j.jss.2021.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/29/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The Management of Myelomeningocele Study demonstrated that in utero repair of myelomeningocele improved motor outcomes compared with postnatal repair. However, even after in utero repair, many children were still unable to walk. We have previously demonstrated that augmentation of in utero repair with early-gestation placental mesenchymal stromal cells (PMSCs) improves motor outcomes in lambs compared with standard in utero repair. The neuroprotective potential of PMSCs of all gestational ages has not been evaluated previously. METHODS PMSCs were isolated from discarded first trimester (n = 3), second trimester (n = 3), and term (n = 3) placentas by explant culture. Cytokine array analysis was performed. Secretion of two neurotrophic factors, brain-derived neurotrophic factor and hepatocyte growth factor, was evaluated by enzyme-linked immunosorbent assay. An in vitro neuroprotective assay demonstrated to be associated with in vivo function was performed. RESULTS All cell lines secreted immunomodulatory and neuroprotective cytokines and secreted the neurotrophic factors evaluated. Increased neuroprotective capabilities relative to no PMSCs were demonstrated in two of the three first trimester cell lines (5.61, 4.96-6.85, P < 0.0001 and 2.67, 1.67-4.12, P = 0.0046), two of the three second trimester cell lines (2.82, 2.45-3.43, P = 0.0004 and 3.25, 2.62-3.93, P < 0.0001), and two of the three term cell lines (2.72, 2.32-2.92, P = 0.0033 and 2.57, 1.41-4.42, P = 0.0055). CONCLUSIONS We demonstrated variation in neuroprotective function between cell lines and found that some cell lines from each trimester had neuroprotective properties. This potentially expands the donor pool of PMSCs for clinical use. Further in-depth studies are needed to understand potential subtle differences in cell function at different gestational ages.
Collapse
|
10
|
Theodorou CM, Jackson JE, Stokes SC, Pivetti CD, Kumar P, Paxton ZJ, Matsukuma KE, Yamashiro KJ, Reynaga L, Hyllen AA, de Lorimier AJ, Hassan M, Wang A, Farmer DL, Saadai P. Early investigations into improving bowel and bladder function in fetal ovine myelomeningocele repair. J Pediatr Surg 2022; 57:941-948. [PMID: 35093254 PMCID: PMC10372624 DOI: 10.1016/j.jpedsurg.2021.12.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Fetal myelomeningocele (MMC) repair improves lower extremity motor function. We have previously demonstrated that augmentation of fetal MMC repair with placental mesenchymal stromal cells (PMSCs) seeded on extracellular matrix (PMSC-ECM) further improves motor function in the ovine model. However, little progress has been made in improving bowel and bladder function, with many patients suffering from neurogenic bowel and bladder. We hypothesized that fetal MMC repair with PMSC-ECM would also improve bowel and bladder function. METHODS MMC defects were surgically created in twelve ovine fetuses at median gestational age (GA) 73 days, followed by defect repair at GA101 with PMSC-ECM. Fetuses were delivered at GA141. Primary bladder function outcomes were voiding posture and void volumes. Primary bowel function outcome was anorectal manometry findings including resting anal pressure and presence of rectoanal inhibitory reflex (RAIR). Secondary outcomes were anorectal and bladder detrusor muscle thickness. PMSC-ECM lambs were compared to normal lambs (n = 3). RESULTS Eighty percent of PMSC-ECM lambs displayed normal voiding posture compared to 100% of normal lambs (p = 1). Void volumes were similar (PMSC-ECM 6.1 ml/kg vs. normal 8.8 ml/kg, p = 0.4). Resting mean anal pressures were similar between cohorts (27.0 mmHg PMSC-ECM vs. normal 23.5 mmHg, p = 0.57). RAIR was present in 3/5 PMSC-ECM lambs that underwent anorectal manometry and all normal lambs (p = 0.46). Thicknesses of anal sphincter complex, rectal wall muscles, and bladder detrusor muscles were similar between cohorts. CONCLUSION Ovine fetal MMC repair augmented with PMSC-ECM results in near-normal bowel and bladder function. Further work is needed to evaluate these outcomes in human patients.
Collapse
Affiliation(s)
- Christina M Theodorou
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA, United States.
| | - Jordan E Jackson
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA, United States
| | - Sarah C Stokes
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA, United States
| | - Christopher D Pivetti
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA, United States
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA, United States
| | - Zachary J Paxton
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA, United States
| | - Karen E Matsukuma
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, United States
| | - Kaeli J Yamashiro
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA, United States
| | - Lizette Reynaga
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA, United States
| | - Alicia A Hyllen
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA, United States
| | - Arthur J de Lorimier
- Department of Pediatrics, Division of Gastroenterology. University of California Davis Medical Center. Sacramento, CA, United States
| | - Maheen Hassan
- Department of Pediatrics, Division of Gastroenterology. University of California Davis Medical Center. Sacramento, CA, United States
| | - Aijun Wang
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA, United States
| | - Diana L Farmer
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA, United States
| | - Payam Saadai
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA, United States
| |
Collapse
|
11
|
Theodorou CM, Stokes SC, Jackson JE, Pivetti CD, Kumar P, Yamashiro KJ, Paxton ZJ, Reynaga L, Hyllen AA, Wang A, Farmer DL. Efficacy of clinical-grade human placental mesenchymal stromal cells in fetal ovine myelomeningocele repair. J Pediatr Surg 2022; 57:753-758. [PMID: 34217509 PMCID: PMC9365331 DOI: 10.1016/j.jpedsurg.2021.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND While fetal repair of myelomeningocele (MMC) revolutionized management, many children are still unable to walk independently. Preclinical studies demonstrated that research-grade placental mesenchymal stromal cells (PMSCs) prevent paralysis in fetal ovine MMC, however this had not been replicated with clinical-grade cells that could be used in an upcoming human clinical trial. We tested clinical-grade PMSCs seeded on an extracellular matrix (PMSC-ECM) in the gold standard fetal ovine model of MMC. METHODS Thirty-five ovine fetuses underwent MMC defect creation at a median of 76 days gestational age, and defect repair at 101 days gestational age with application of clinical-grade PMSC-ECM (3 × 105 cells/cm2, n = 12 fetuses), research-grade PMSC-ECM (3 × 105 cells/cm2, three cell lines with n = 6 (Group 1), n = 6 (Group 2), and n = 3 (Group 3) fetuses, respectively) or ECM without PMSCs (n = 8 fetuses). Three normal lambs underwent no surgical interventions. The primary outcome was motor function measured by the Sheep Locomotor Rating scale (SLR, range 0: complete paralysis to 15: normal ambulation) at 24 h of life. Correlation of lumbar spine large neuron density with SLR was evaluated. RESULTS Clinical-grade PMSC-ECM lambs had significantly better motor function than ECM-only lambs (SLR 14.5 vs. 6.5, p = 0.04) and were similar to normal lambs (14.5 vs. 15, p = 0.2) and research-grade PMSC-ECM lambs (Group 1: 14.5 vs. 15, p = 0.63; Group 2: 14.5 vs. 14.5, p = 0.86; Group 3: 14.5 vs. 15, p = 0.50). Lumbar spine large neuron density was strongly correlated with motor function (r = 0.753, p<0.001). CONCLUSIONS Clinical-grade placental mesenchymal stromal cells seeded on an extracellular matrix rescued ambulation in a fetal ovine myelomeningocele model. Lumbar spine large neuron density correlated with motor function, suggesting a neuroprotective effect of the PMSC-ECM in prevention of paralysis. A first-in-human clinical trial of PMSCs in human fetal myelomeningocele repair is underway.
Collapse
Affiliation(s)
- Christina M. Theodorou
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA,Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA,Corresponding author information: Christina Theodorou, Department of Surgery, University of California Davis Medical Center, 2335 Stockton Blvd, Room 5107, Sacramento, CA 95817, , Phone: 916-453-2080
| | - Sarah C. Stokes
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA,Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Jordan E. Jackson
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA,Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Christopher D. Pivetti
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Kaeli J. Yamashiro
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA,Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Zachary J. Paxton
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Lizette Reynaga
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Alicia A. Hyllen
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Aijun Wang
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA,Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Diana L. Farmer
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA,Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| |
Collapse
|
12
|
Stokes SC, Theodorou CM, Jackson JE, Pivetti C, Kumar P, Yamashiro KJ, Paxton ZJ, Reynaga L, Hyllen A, Wang A, Farmer DL. Long-term safety evaluation of placental mesenchymal stromal cells for in utero repair of myelomeningocele in a novel ovine model. J Pediatr Surg 2022; 57:18-25. [PMID: 34657738 PMCID: PMC9415987 DOI: 10.1016/j.jpedsurg.2021.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Augmentation of in utero myelomeningocele repair with human placental mesenchymal stromal cells seeded onto extracellular matrix (PMSC-ECM) improves motor outcomes in an ovine myelomeningocele model. This study evaluated the safety of PMSC-ECM application directly onto the fetal spinal cord in preparation for a clinical trial. METHODS Laminectomy of L5-L6 with PMSC-ECM placement directly onto the spinal cord was performed in five fetal lambs at gestational age (GA) 100-106 days. Lambs and ewes were monitored for three months following delivery. Lambs underwent magnetic resonance imaging (MRI) of the brain and spine at birth and at three months. All organs from lambs and uteri from ewes underwent histologic evaluation. Lamb spinal cords and brains and ewe placentas were evaluated for persistence of PMSCs by polymerase chain reaction for presence of human DNA. RESULTS MRIs demonstrated no evidence of abnormal tissue growth or spinal cord tethering. Histological analysis demonstrated no evidence of abnormal tissue growth or treatment related adverse effects. No human DNA was identified in evaluated tissues. CONCLUSION There was no evidence of abnormal tissue growth or PMSC persistence at three months following in utero application of PMSC-ECM to the spinal cord. This supports proceeding with clinical trials of PMSC-ECM for in utero myelomeningocele repair. LEVEL OF EVIDENCE N/A TYPE OF STUDY: Basic science.
Collapse
Affiliation(s)
- Sarah C Stokes
- Division of Pediatric General, Thoracic and Fetal Surgery, Department of Surgery, University of California Davis Medical Center, 2335 Stockton Blvd, Room 5107, Sacramento, CA 95817, USA.
| | - Christina M Theodorou
- Division of Pediatric General, Thoracic, and Fetal Surgery, Department of Surgery, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Jordan E Jackson
- Division of Pediatric General, Thoracic, and Fetal Surgery, Department of Surgery, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Christopher Pivetti
- Surgical Bioengineering Laboratory, University of California Davis, Sacramento, CA 95817, USA
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, University of California Davis, Sacramento, CA 95817, USA
| | - Kaeli J Yamashiro
- Division of Pediatric General, Thoracic, and Fetal Surgery, Department of Surgery, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Zachary J Paxton
- Surgical Bioengineering Laboratory, University of California Davis, Sacramento, CA 95817, USA
| | - Lizette Reynaga
- Surgical Bioengineering Laboratory, University of California Davis, Sacramento, CA 95817, USA
| | - Alicia Hyllen
- Surgical Bioengineering Laboratory, University of California Davis, Sacramento, CA 95817, USA
| | - Aijun Wang
- Surgical Bioengineering Laboratory, University of California Davis, Sacramento, CA 95817, USA.,Shriners Hospital for Children Northern California, 3425 Stockton Blvd, Sacramento, CA 95817, USA
| | - Diana L Farmer
- Division of Pediatric General, Thoracic, and Fetal Surgery, Department of Surgery, University of California Davis Medical Center, Sacramento, CA 95817, USA.,Surgical Bioengineering Laboratory, University of California Davis, Sacramento, CA 95817, USA.,Shriners Hospital for Children Northern California, 3425 Stockton Blvd, Sacramento, CA 95817, USA
| |
Collapse
|
13
|
Jackson JE, Pivetti C, Stokes SC, Theodorou CM, Kumar P, Paxton ZJ, Hyllen A, Reynaga L, Wang A, Farmer DL. Placental Mesenchymal Stromal Cells: Preclinical Safety Evaluation for Fetal Myelomeningocele Repair. J Surg Res 2021; 267:660-668. [PMID: 34273796 PMCID: PMC9365330 DOI: 10.1016/j.jss.2021.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Myelomeningocele (MMC) is the congenital failure of neural tube closure in utero, for which the standard of care is prenatal surgical repair. We developed clinical-grade placental mesenchymal stromal cells seeded on a dural extracellular matrix (PMSC-ECM), which have been shown to improve motor outcomes in preclinical ovine models. To evaluate the long-term safety of this product prior to use in a clinical trial, we conducted safety testing in a murine model. METHODS Clinical grade PMSCs obtained from donor human placentas were seeded onto a 6 mm diameter ECM at a density of 3 × 105 cells/cm2. Immunodeficient mice were randomized to receive either an ECM only or PMSC-ECM administered into a subcutaneous pocket. Mice were monitored for tumor formation until two study endpoints: 4 wk and 6 mo. Pathology and histology on all tissues was performed to evaluate for tumors. Quantitative polymerase chain reaction (qPCR) was performed to evaluate for the presence of human DNA, which would indicate persistence of PMSCs. RESULTS Fifty-four mice were included; 13 received ECM only and 14 received PMSC-ECM in both the 4-wk and 6-mo groups. No mice had gross or microscopic evidence of tumor development. A nodular focus of mature fibrous connective tissue was identified at the subcutaneous implantation pocket in the majority of mice with no significant difference between ECM only and PMSC-ECM groups (P = 0.32 at 4 wk, P > 0.99 at 6 mo). Additionally, no human DNA was detected by qPCR in any mice at either time point. CONCLUSIONS Subcutaneous implantation of the PMSC-ECM product did not result in tumor formation and we found no evidence that PMSCs persisted. These results support the safety of the PMSC-ECM product for use in a Phase 1/2a human clinical trial evaluating fetal MMC repair augmented with PMSC-ECM.
Collapse
Affiliation(s)
- Jordan E Jackson
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California; Department of Surgery, University of California Davis, Sacramento, California.
| | - Christopher Pivetti
- Department of Surgery, University of California Davis, Sacramento, California
| | - Sarah C Stokes
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California; Department of Surgery, University of California Davis, Sacramento, California
| | - Christina M Theodorou
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California; Department of Surgery, University of California Davis, Sacramento, California
| | - Priyadarsini Kumar
- Department of Surgery, University of California Davis, Sacramento, California
| | - Zachary J Paxton
- Department of Surgery, University of California Davis, Sacramento, California
| | - Alicia Hyllen
- Department of Surgery, University of California Davis, Sacramento, California
| | - Lizette Reynaga
- Department of Surgery, University of California Davis, Sacramento, California
| | - Aijun Wang
- Department of Surgery, University of California Davis, Sacramento, California
| | - Diana L Farmer
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California; Department of Surgery, University of California Davis, Sacramento, California
| |
Collapse
|
14
|
In utero treatment of myelomeningocele with allogenic umbilical cord-derived mesenchymal stromal cells in an ovine model. Curr Res Transl Med 2021; 70:103314. [PMID: 34731725 DOI: 10.1016/j.retram.2021.103314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF THE STUDY The purpose of our study was to investigate the effects of ovine umbilical cord-derived mesenchymal stromal cells (UC-MSCs) seeded in a fibrin patch as an adjuvant therapy for fetal myelomeningocele repair in the ovine model. MATERIALS AND METHODS MMC defects were surgically created at 75 days of gestation and repaired 15 days later with UC-MSCs patch or an acellular patch. At birth, motor function, tail movements, and voiding abilities were recorded. Histological and immunohistochemical analysis included study of MMC defect's healing, spinal cord, UC-MSCs survival, and screening for tumors. RESULTS Six lambs were born alive in each group. There was no difference between the two groups on the median sheep locomotor rating score but all lambs in the control group had a score between lower than 3 compared to 50% in UC-MSCs group. There were more lambs with tail movements and voiding ability in UC-MSCs group (83% vs 0% and 50% vs 0%, respectively). gray matter area and large neurons density were higher in UC-MSCs group (2.5 vs 0.8 mm2 and 19.3 vs 1.6 neurons/mm2 of gray matter, respectively). Fibrosis thickness at the myelomeningocele scar level was reduced in UC-MSCs group (1269 µm vs 2624 µm). No tumors were observed. CONCLUSION Fetal repair of myelomeningocele using allogenic UC-MSCs patch provides a moderate improvement in neurological functions, gray matter and neuronal preservation and prevented from fibrosis development at the myelomeningocele scar level.
Collapse
|
15
|
The Unique Properties of Placental Mesenchymal Stromal Cells: A Novel Source of Therapy for Congenital and Acquired Spinal Cord Injury. Cells 2021; 10:cells10112837. [PMID: 34831060 PMCID: PMC8616037 DOI: 10.3390/cells10112837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Spinal cord injury (SCI) is a devasting condition with no reliable treatment. Spina bifida is the most common cause of congenital SCI. Cell-based therapies using mesenchymal stem/stromal cells (MSCS) have been largely utilized in SCI. Several clinical trials for acquired SCI use adult tissue-derived MSC sources, including bone-marrow, adipose, and umbilical cord tissues. The first stem/stromal cell clinical trial for spina bifida is currently underway (NCT04652908). The trial uses early gestational placental-derived mesenchymal stem/stromal cells (PMSCs) during the fetal repair of myelomeningocele. PMSCs have been shown to exhibit unique neuroprotective, angiogenic, and antioxidant properties, all which are promising applications for SCI. This review will summarize the unique properties and current applications of PMSCs and discuss their therapeutic role for acquired SCI.
Collapse
|
16
|
Jouannic JM, Guilbaud L, Maurice P, Maisonneuve E, de Saint Denis T, du Peuty C, Zerah M. [The ethics of fetal myelomeningocele surgery]. ACTA ACUST UNITED AC 2021; 50:189-193. [PMID: 34656790 DOI: 10.1016/j.gofs.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 10/20/2022]
Abstract
Fetal myelomeningocele surgery was introduced in France in 2014. Developments in prenatal diagnosis of neural tube defects have accompanied the development of prenatal diagnosis. This fetal surgery represents one of the three possible care paths for pregnant women faced with this prenatal diagnosis. The ethical issues of this fetal surgery are discussed and in particular regarding prenatal counselling and patient autonomy of choice.
Collapse
Affiliation(s)
- J-M Jouannic
- Service de médecine fœtale, Sorbonne Université, AP-HP Sorbonne Université, Hôpital Armand-Trousseau, 26, avenue du Docteur-Arnold-Netter, 75012 Paris, France; Centre de référence Maladies Rares C-MAVEM, Hôpital Armand Trousseau, AP-HP Sorbonne Université, 26, avenue du Docteur-Arnold-Netter, 75012 Paris, France.
| | - L Guilbaud
- Service de médecine fœtale, Sorbonne Université, AP-HP Sorbonne Université, Hôpital Armand-Trousseau, 26, avenue du Docteur-Arnold-Netter, 75012 Paris, France; Centre de référence Maladies Rares C-MAVEM, Hôpital Armand Trousseau, AP-HP Sorbonne Université, 26, avenue du Docteur-Arnold-Netter, 75012 Paris, France
| | - P Maurice
- Service de médecine fœtale, Sorbonne Université, AP-HP Sorbonne Université, Hôpital Armand-Trousseau, 26, avenue du Docteur-Arnold-Netter, 75012 Paris, France; Centre de référence Maladies Rares C-MAVEM, Hôpital Armand Trousseau, AP-HP Sorbonne Université, 26, avenue du Docteur-Arnold-Netter, 75012 Paris, France
| | - E Maisonneuve
- Service de médecine fœtale, Sorbonne Université, AP-HP Sorbonne Université, Hôpital Armand-Trousseau, 26, avenue du Docteur-Arnold-Netter, 75012 Paris, France; Centre de référence Maladies Rares C-MAVEM, Hôpital Armand Trousseau, AP-HP Sorbonne Université, 26, avenue du Docteur-Arnold-Netter, 75012 Paris, France
| | - T de Saint Denis
- Centre de référence Maladies Rares C-MAVEM, Hôpital Armand Trousseau, AP-HP Sorbonne Université, 26, avenue du Docteur-Arnold-Netter, 75012 Paris, France; Service de neurochirurgie pédiatrique, Hôpital Necker, Université de Paris, 149, rue du Sèvres, 75015 Paris, France
| | - C du Peuty
- Service de médecine fœtale, Sorbonne Université, AP-HP Sorbonne Université, Hôpital Armand-Trousseau, 26, avenue du Docteur-Arnold-Netter, 75012 Paris, France
| | - M Zerah
- Centre de référence Maladies Rares C-MAVEM, Hôpital Armand Trousseau, AP-HP Sorbonne Université, 26, avenue du Docteur-Arnold-Netter, 75012 Paris, France; Service de neurochirurgie pédiatrique, Hôpital Necker, Université de Paris, 149, rue du Sèvres, 75015 Paris, France
| |
Collapse
|
17
|
Sbragia L, da Costa KM, Nour ALA, Ruano R, Santos MV, Machado HR. State of the art in translating experimental myelomeningocele research to the bedside. Childs Nerv Syst 2021; 37:2769-2785. [PMID: 34333685 DOI: 10.1007/s00381-021-05299-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
Myelomeningocele (MMC), the commonest type of spina bifida (SB), occurs due to abnormal development of the neural tube and manifest as failure of the complete fusion of posterior arches of the spinal column, leading to dysplastic growth of the spinal cord and meninges. It is associated with several degrees of motor and sensory deficits below the level of the lesion, as well as skeletal deformities, bladder and bowel incontinence, and sexual dysfunction. These children might develop varying degrees of neuropsychomotor delay, partly due to the severity of the injuries that affect the nervous system before birth, partly due to the related cerebral malformations (notably hydrocephalus-which may also lead to an increase in intracranial pressure-and Chiari II deformity). Traditionally, MMC was repaired surgically just after birth; however, intrauterine correction of MMC has been shown to have several potential benefits, including better sensorimotor outcomes (since exposure to amniotic fluid and its consequent deleterious effects is shortened) and reduced rates of hydrocephalus, among others. Fetal surgery for myelomeningocele, nevertheless, would not have been made possible without the development of experimental models of this pathological condition. Hence, the aim of the current article is to provide an overview of the animal models of MMC that were used over the years and describe how this knowledge has been translated into the fetal treatment of MMC in humans.
Collapse
Affiliation(s)
- Lourenço Sbragia
- Division of Pediatric Surgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karina Miura da Costa
- Division of Pediatric Surgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Landolffi Abdul Nour
- Division of Pediatric Surgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo Ruano
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas, Houston, TX, USA
| | - Marcelo Volpon Santos
- Division of Pediatric Neurosurgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Hélio Rubens Machado
- Division of Pediatric Neurosurgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
18
|
Stokes SC, Jackson JE, Theodorou CM, Pivetti CD, Kumar P, Yamashiro KJ, Wang A, Farmer DL. A Novel Model of Fetal Spinal Cord Exposure Allowing for Long-Term Postnatal Survival. Fetal Diagn Ther 2021; 48:472-478. [PMID: 34111873 DOI: 10.1159/000516542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/07/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The inherent morbidity associated with fetal ovine models of myelomeningocele (MMC) has created challenges for long-term survival of lambs. We aimed to develop a fetal ovine surgical spinal exposure model which could be used to evaluate long-term safety after direct spinal cord application of novel therapeutics for augmentation of in utero MMC repair. METHODS At gestational age (GA) 100-106, fetal lambs underwent surgical intervention. Laminectomy of L5-L6 was performed, dura was removed, and an experimental product was directly applied to the spinal cord. Paraspinal muscles and skin were closed and the fetus was returned to the uterus. Lambs were delivered via cesarean section at GA 140-142. Lambs were survived for 3 months with regular evaluation of motor function by the sheep locomotor rating scale. Spinal angulation was evaluated by magnetic resonance imaging at 2 weeks and 3 months. RESULTS Five fetal surgical intervention lambs and 6 control lambs who did not undergo surgical intervention were included. All lambs survived to the study endpoint of 3 months. No lambs had motor function abnormalities or increased spinal angulation. CONCLUSION This model allows for long-term survival after fetal spinal cord exposure with product application directly onto the spinal cord.
Collapse
Affiliation(s)
- Sarah C Stokes
- Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Jordan E Jackson
- Department of Surgery, University of California-Davis, Sacramento, California, USA
| | | | - Christopher D Pivetti
- Department of Biomedical Engineering, University of California-Davis, Davis, California, USA
| | - Priyadarsini Kumar
- Department of Biomedical Engineering, University of California-Davis, Davis, California, USA
| | - Kaeli J Yamashiro
- Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Aijun Wang
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Department of Biomedical Engineering, University of California-Davis, Davis, California, USA
| | - Diana L Farmer
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Shriners Hospital for Children Northern California, Sacramento, California, USA
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW To review the advance of maternal--fetal surgery, the research of stem cell transplantation and tissue engineering in prenatal management of fetal meningomyelocele (fMMC). RECENT FINDINGS Advance in the imaging study provides more accurate assessment of fMMC in utero. Prenatal maternal--fetal surgery in fMMC demonstrates favourable postnatal outcome. Minimally invasive fetal surgery minimizes uterine wall disruption. Endoscopic fetal surgery is performed via laparotomy-assisted or entirely percutaneous approach. The postnatal outcome for open and endoscopic fetal surgery shares no difference. Single layer closure during repair of fMMC is preferred to reduce postnatal surgical intervention. All maternal--fetal surgeries impose anesthetic and obstetric risk to pregnant woman. Ruptured of membrane and preterm delivery are common complications. Trans-amniotic stem cell therapy (TRASCET) showed potential tissue regeneration in animal models. Fetal tissue engineering with growth factors and dura substitutes with biosynthetic materials promote spinal cord regeneration. This will overcome the challenge of closure in large fMMC. Planning of the maternal--fetal surgery should adhere to ethical framework to minimize morbidity to both fetus and mother. SUMMARY Combination of endoscopic fetal surgery with TRASCET or tissue engineering will be a new vision to achieve to improve the outcome of prenatal intervention in fMMC.
Collapse
|
20
|
Yamashiro KJ, Farmer DL. Fetal myelomeningocele repair: a narrative review of the history, current controversies and future directions. Transl Pediatr 2021; 10:1497-1505. [PMID: 34189108 PMCID: PMC8192992 DOI: 10.21037/tp-20-87] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fetal surgery is a relatively new field of medicine. The purpose of this narrative review is to present the history of how fetal surgery became the standard of care for myelomeningocele (MMC), the current controversies of this treatment, and active areas of research that may change how MMC is treated. Fetal surgery for MMC emerged out of the University of California, San Francisco in the 1980s in the laboratory of Dr. Michael Harrison. Initial research focused on testing the hypothesis that the in utero repair of MMC could improve outcomes in the ovine model. Evidence from this model suggested that in utero repair decreases the secondary damage to the exposed neural tissue and improves post-natal neurologic outcomes, opening the door for human intervention. This was followed by the Management of Myelomeningocele Study (MOMS), which was a multicenter randomized controlled trial comparing the prenatal versus postnatal MMC repair. The MOMS trial was stopped early due to the improved outcomes of the prenatal repair, establishing the open fetal MMC repair as the standard of care. Since the MOMS trial, two primary areas of controversy have arisen: the operative approach and criteria for the repair. The three operative approaches include open, endoscopic and a hybrid approach combining open and endoscopic. Several of the inclusion and exclusion criteria from the MOMS trial have been challenged, to include body mass index, gestational diabetes, other fetal abnormalities, maternal infections and Rh alloimmunization. New areas of research have also emerged, exploring cell based therapies to improve fetal outcomes, alternatives to fetal surgery and alternatives to primary skin closure of the fetus.
Collapse
Affiliation(s)
- Kaeli J Yamashiro
- Department of Surgery, University of California-Davis, Sacramento, CA, USA
| | - Diana L Farmer
- Department of Surgery, University of California-Davis, Sacramento, CA, USA
| |
Collapse
|
21
|
Evans LL, Harrison MR. Modern fetal surgery-a historical review of the happenings that shaped modern fetal surgery and its practices. Transl Pediatr 2021; 10:1401-1417. [PMID: 34189101 PMCID: PMC8192985 DOI: 10.21037/tp-20-114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The history of fetal surgery is one of constant evolution. Over the last 50 years, fetal surgery has progressed from a mere idea to an internationally respected innovative field of surgery. This article aims to provide a historical review of how the enterprise of maternal-fetal surgery came to be its modern version. This review is less focused on the history of specific therapies for a relatively small number of conditions, and more on how the whole field of maternal-fetal surgery evolved. The various internal and external influences that steered the field's evolution are discussed in chronologic order. Since the start of modern fetal surgery in the 1980s, large paradigm shifts have characterized the growth of the field as a whole. Innovative interventions are now based on physiologic manipulation as opposed to simple anatomic repair, fetoscopy has become the more frequently preferred surgical approach, and rigorous scientific evaluation with randomized controlled trials is now the standard expected by the community. In a very similar fashion to when the field first began in the early 1980s, recently community's leaders have risen to protect the integrity of maternal-fetal surgery by publishing ethical guidelines for innovation and clinical practice. This incredible history of innovation, rigorous science and ethical contemplation is the foundation on which modern maternal-fetal surgery rests.
Collapse
Affiliation(s)
- Lauren L Evans
- Department of Surgery, Division of Pediatric Surgery, University of California, San Francisco, CA, USA
| | - Michael R Harrison
- Department of Surgery, Division of Pediatric Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
22
|
Prenatal transplantation of human amniotic fluid stem cell could improve clinical outcome of type III spinal muscular atrophy in mice. Sci Rep 2021; 11:9158. [PMID: 33911155 PMCID: PMC8080644 DOI: 10.1038/s41598-021-88559-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/14/2021] [Indexed: 02/02/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a single gene disorder affecting motor function in uterus. Amniotic fluid is an alternative source of stem cell to ameliorate SMA. Therefore, this study aims to examine the therapeutic potential of Human amniotic fluid stem cell (hAFSC) for SMA. Our SMA model mice were generated by deletion of exon 7 of Smn gene and knock-in of human SMN2. A total of 16 SMA model mice were injected with 1 × 105 hAFSC in uterus, and the other 16 mice served as the negative control. Motor function was analyzed by three behavioral tests. Engraftment of hAFSC in organs were assessed by flow cytometry and RNA scope. Frequency of myocytes, neurons and innervated receptors were estimated by staining. With hAFSC transplantation, 15 fetuses survived (93.75% survival) and showed better performance in all motor function tests. Higher engraftment frequency were observed in muscle and liver. Besides, the muscle with hAFSC transplantation expressed much laminin α and PAX-7. Significantly higher frequency of myocytes, neurons and innervated receptors were observed. In our study, hAFSC engrafted on neuromuscular organs and improved cellular and behavioral outcomes of SMA model mice. This fetal therapy could preserve the time window and treat in the uterus.
Collapse
|
23
|
Soltani Khaboushan A, Shakibaei M, Kajbafzadeh AM, Majidi Zolbin M. Prenatal Neural Tube Anomalies: A Decade of Intrauterine Stem Cell Transplantation Using Advanced Tissue Engineering Methods. Stem Cell Rev Rep 2021; 18:752-767. [PMID: 33742349 DOI: 10.1007/s12015-021-10150-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Neural tube defects (NTDs) are among the most common congenital defects during neurulation. Spina bifida is a type of NTD that can occur in different forms. Since myelomeningocele (MMC) is the most severe form of spina bifida, finding a satisfactory treatment for MMC is a gold standard for the treatment of spina bifida. The Management of Myelomeningocele Study (MOMS) demonstrated that intrauterine treatment of spina bifida could ameliorate the complications associated with spina bifida and would also reduce the placement of ventriculoperitoneal (VP) shunt by 50%. Recently developed tissue engineering (TE) approaches using scaffolds, stem cells, and growth factors allow treatment of the fetus with minimally invasive methods and promising outcomes. The application of novel patches with appropriate stem cells and growth factors leads to better coverage of the defect with fewer complications. These approaches with less invasive surgical procedures, even in animal models with similar characteristics as the human MMC defect, paves the way for the modern application of less invasive surgical methods. Significantly, the early detection of these problems and applying these approaches can increase the potential efficacy of MMC treatment with fewer complications. However, further studies should be conducted to find the most suitable scaffolds and stem cells, and their application should be evaluated in animal models. This review intends to discuss advanced TE methods for treating MMC and recent successes in increasing the efficacy of the treatment.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419433151, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336, Munich, Germany
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419433151, Iran.
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419433151, Iran.
| |
Collapse
|
24
|
Soto J, Ding X, Wang A, Li S. Neural crest-like stem cells for tissue regeneration. Stem Cells Transl Med 2021; 10:681-693. [PMID: 33533168 PMCID: PMC8046096 DOI: 10.1002/sctm.20-0361] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Neural crest stem cells (NCSCs) are a transient population of cells that arise during early vertebrate development and harbor stem cell properties, such as self‐renewal and multipotency. These cells form at the interface of non‐neuronal ectoderm and neural tube and undergo extensive migration whereupon they contribute to a diverse array of cell and tissue derivatives, ranging from craniofacial tissues to cells of the peripheral nervous system. Neural crest‐like stem cells (NCLSCs) can be derived from pluripotent stem cells, placental tissues, adult tissues, and somatic cell reprogramming. NCLSCs have a differentiation capability similar to NCSCs, and possess great potential for regenerative medicine applications. In this review, we present recent developments on the various approaches to derive NCLSCs and the therapeutic application of these cells for tissue regeneration.
Collapse
Affiliation(s)
- Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
| | - Xili Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, People's Republic of China
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA.,Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA.,Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
25
|
Kunpalin Y, Subramaniam S, Perin S, Gerli MFM, Bosteels J, Ourselin S, Deprest J, De Coppi P, David AL. Preclinical stem cell therapy in fetuses with myelomeningocele: A systematic review and meta-analysis. Prenat Diagn 2021; 41:283-300. [PMID: 33427329 PMCID: PMC7611444 DOI: 10.1002/pd.5887] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/16/2020] [Accepted: 12/15/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We performed a systematic review to summarize the efficacy and safety of in utero stem cells application in preclinical models with myelomeningocele (MMC). METHODS The study was registered with PROSPERO (CRD42019160399). We searched MEDLINE, Embase, Web of Science, Scopus and CENTRAL for publications articles on stem cell therapy in animal fetuses with MMC until May 2020. Publication quality was assessed by the SYRCLE's tool. Meta-analyses were pooled if studies were done in the same animal model providing similar type of stem cell used and outcome measurements. Narrative synthesis was performed for studies that could not be pooled. RESULTS Nineteen and seven studies were included in narrative and quantitative syntheses, respectively. Most used mesenchymal stem cells (MSCs) and primarily involved ovine and rodent models. Both intra-amniotic injection of allogeneic amniotic fluid (AF)-MSCs in rat MMC model and the application of human placental (P)-MSCs to the spinal cord during fetal surgery in MMC ovine model did not compromise fetal survival rates at term (rat model, relative risk [RR] 1.03, 95% CI 0.92-1.16; ovine model, RR 0.94, 95% CI 0.78-1.13). A single intra-amniotic injection of allogeneic AF-MSCs into rat MMC model was associated with a higher rate of complete defect coverage compared to saline injection (RR 16.35, 95% CI 3.27-81.79). The incorporation of human P-MSCs as a therapeutic adjunct to fetal surgery in the ovine MMC model significantly improved sheep locomotor rating scale after birth (mean difference 5.18, 95% CI 3.36-6.99). CONCLUSIONS Stem cell application during prenatal period in preclinical animal models is safe and effective.
Collapse
Affiliation(s)
- Yada Kunpalin
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Sindhu Subramaniam
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Silvia Perin
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mattia F M Gerli
- Great Ormond Street Institute of Child Health, University College London, London, UK.,Division of Surgery and Interventional Science, Royal Free Hospital, University College London, London, UK
| | - Jan Bosteels
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium.,Cochrane Belgium, Belgian Centre for Evidence-Based Medicine (Cebam), Leuven, Belgium
| | - Sebastien Ourselin
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Jan Deprest
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium.,Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Paolo De Coppi
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium.,Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Galganski LA, Keller BA, Long C, Yamashiro KJ, Hegazi MS, Pivetti CD, Talken LA, Raff GW, Farmer DL, Chomel BB, Ma B. Minimizing the risk of occupational Q fever exposure: A protocol for ensuring Coxiella burnetii-negative pregnant ewes are used for medical research. Lab Anim 2020; 55:170-176. [PMID: 33108940 DOI: 10.1177/0023677220965628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Q fever is a worldwide zoonosis caused by Coxiella burnetii that can lead to abortion, endocarditis, and death in humans. Researchers utilizing parturient domestic ruminants, including sheep, have an increased risk of occupational exposure. This study evaluated the effectiveness of our screening protocol in eliminating C. burnetii-positive sheep from our facility. From August 2010 to May 2018, all ewes (N = 306) and select lambs (N = 272; ovis aries) were screened twice for C. burnetii utilizing a serum Phase I and Phase II antibody immunofluorescence assay (IFA). The first screen was performed by the vendor prior to breeding, and the second screen was performed on arrival to the research facility. Ewes that were positive on arrival screening were quarantined and retested using repeat IFA serology, enzyme-linked immunosorbent assay, buffy coat polymerase chain reaction (PCR), and amniotic fluid PCR. The overall individual seroprevalence of C. burnetii in the flocks tested by the vendor was 14.2%. Ewes with negative Phase I and Phase II IFA results were selected for transport to the research facility. Upon arrival to the facility, two (0.7%) ewes had positive Phase I IFA results. Repeat testing demonstrated seropositivity in one of these two ewes, though amniotic fluid PCR was negative in both. The repeat seropositive ewe was euthanized prior to use in a research protocol. No Q fever was reported among husbandry, laboratory or veterinary staff during the study period. Serologic testing for C. burnetii with IFA prior to transport and following arrival to a research facility limits potential exposure to research staff.
Collapse
Affiliation(s)
| | | | - Connor Long
- School of Veterinary Medicine, University of California, Davis, USA
| | | | | | - Christopher D Pivetti
- Department of Surgery, University of California, Davis, USA.,School of Veterinary Medicine, University of California, Davis, USA
| | - Linda A Talken
- Office of Research: Campus Veterinary Services, University of California, Davis, USA
| | - Gary W Raff
- Department of Surgery, University of California, Davis, USA
| | - Diana L Farmer
- Department of Surgery, University of California, Davis, USA
| | - Bruno B Chomel
- School of Veterinary Medicine, University of California, Davis, USA
| | - Betty Ma
- Office of Research: Campus Veterinary Services, University of California, Davis, USA
| |
Collapse
|
27
|
Galganski LA, Kumar P, Vanover MA, Pivetti CD, Anderson JE, Lankford L, Paxton ZJ, Chung K, Lee C, Hegazi MS, Yamashiro KJ, Wang A, Farmer DL. In utero treatment of myelomeningocele with placental mesenchymal stromal cells - Selection of an optimal cell line in preparation for clinical trials. J Pediatr Surg 2020; 55:1941-1946. [PMID: 31672407 PMCID: PMC7170747 DOI: 10.1016/j.jpedsurg.2019.09.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/04/2019] [Accepted: 09/01/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND We determined whether in vitro potency assays inform which placental mesenchymal stromal cell (PMSC) lines produce high rates of ambulation following in utero treatment of myelomeningocele in an ovine model. METHODS PMSC lines were created following explant culture of three early-gestation human placentas. In vitro neuroprotection was assessed with a neuronal apoptosis model. In vivo, myelomeningocele defects were created in 28 fetuses and repaired with PMSCs at 3 × 105 cells/cm2 of scaffold from Line A (n = 6), Line B (n = 7) and Line C (n = 5) and compared to no PMSCs (n = 10). Ambulation was scored as ≥13 on the Sheep Locomotor Rating Scale. RESULTS In vitro, Line A and B had higher neuroprotective capability than no PMSCs (1.7 and 1.8 respectively vs 1, p = 0.02, ANOVA). In vivo, Line A and B had higher large neuron densities than no PMSCs (25.2 and 27.9 respectively vs 4.8, p = 0.03, ANOVA). Line C did not have higher neuroprotection or larger neuron density than no PMSCs. In vivo, Line A and B had ambulation rates of 83% and 71%, respectively, compared to 60% with Line C and 20% with no PMSCs. CONCLUSION The in vitro neuroprotection assay will facilitate selection of optimal PMSC lines for clinical use. LEVEL OF EVIDENCE n/a. TYPE OF STUDY Basic science.
Collapse
Affiliation(s)
- Laura A Galganski
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA.
| | - Priyadarsini Kumar
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA.
| | - Melissa A Vanover
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA.
| | - Christopher D Pivetti
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA; Shriners Hospitals for Children Northern California, 2425 Stockton Blvd, Sacramento, CA 95817, USA.
| | - Jamie E Anderson
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA.
| | - Lee Lankford
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA.
| | - Zachary J Paxton
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA.
| | - Karen Chung
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA.
| | - Chelsey Lee
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA.
| | - Mennatalla S Hegazi
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA.
| | - Kaeli J Yamashiro
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA.
| | - Aijun Wang
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA; Shriners Hospitals for Children Northern California, 2425 Stockton Blvd, Sacramento, CA 95817, USA.
| | - Diana L Farmer
- University of California-Davis, 4625 2nd Ave, Suite 3005, Sacramento, CA 95817, USA; Shriners Hospitals for Children Northern California, 2425 Stockton Blvd, Sacramento, CA 95817, USA.
| |
Collapse
|
28
|
Biancotti JC, Walker KA, Jiang G, Di Bernardo J, Shea LD, Kunisaki SM. Hydrogel and neural progenitor cell delivery supports organotypic fetal spinal cord development in an ex vivo model of prenatal spina bifida repair. J Tissue Eng 2020; 11:2041731420943833. [PMID: 32782773 PMCID: PMC7383650 DOI: 10.1177/2041731420943833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Studying how the fetal spinal cord regenerates in an ex vivo model of spina bifida repair may provide insights into the development of new tissue engineering treatment strategies to better optimize neurologic function in affected patients. Here, we developed hydrogel surgical patches designed for prenatal repair of myelomeningocele defects and demonstrated viability of both human and rat neural progenitor donor cells within this three-dimensional scaffold microenvironment. We then established an organotypic slice culture model using transverse lumbar spinal cord slices harvested from retinoic acid–exposed fetal rats to study the effect of fibrin hydrogel patches ex vivo. Based on histology, immunohistochemistry, gene expression, and enzyme-linked immunoabsorbent assays, these experiments demonstrate the biocompatibility of fibrin hydrogel patches on the fetal spinal cord and suggest this organotypic slice culture system as a useful platform for evaluating mechanisms of damage and repair in children with neural tube defects.
Collapse
Affiliation(s)
- Juan C Biancotti
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Kendal A Walker
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Guihua Jiang
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Julie Di Bernardo
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shaun M Kunisaki
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD, USA.,Fetal Program, Johns Hopkins Children's Center, Baltimore, MD, USA
| |
Collapse
|
29
|
Cell therapy for prenatal repair of myelomeningocele: A systematic review. Curr Res Transl Med 2020; 68:183-189. [PMID: 32624428 DOI: 10.1016/j.retram.2020.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 02/01/2023]
Abstract
Myelomeningocele (MMC) is a spinal cord congenital defect that leads to paraplegia, bladder incontinence and bowel dysfunction. A randomized human trial demonstrated that in utero surgical repair of the MMC defect improves lower limb motor function. However, functional recovery remains incomplete. Stem cell therapy has recently generated great interest in the field of prenatal repair of MMC. In this systematic review we attempt to provide an overview of the current application of stem cells in different animal models of MMC. Publications were retrieved from PubMed and Cochrane Library databases. This process yielded twenty-two studies for inclusion in this review, experimenting five different types of stem cells: human embryonic stem cells, neural stem cells, induced pluripotent stem cells, human amniotic fluid stem cells, and mesenchymal stem cells (MSCs). Rodents and ovine were the two major species used for animal model studies. The source, the aims, and the main results were analyzed. Stem cell therapy appears to be a promising candidate for prenatal repair of MMC, especially MSCs. Further explorations in ovine and rodent models, reporting clinical and functional results, are necessary before an application in humans.
Collapse
|
30
|
Hao D, Swindell HS, Ramasubramanian L, Liu R, Lam KS, Farmer DL, Wang A. Extracellular Matrix Mimicking Nanofibrous Scaffolds Modified With Mesenchymal Stem Cell-Derived Extracellular Vesicles for Improved Vascularization. Front Bioeng Biotechnol 2020; 8:633. [PMID: 32671037 PMCID: PMC7329993 DOI: 10.3389/fbioe.2020.00633] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
The network structure and biological components of natural extracellular matrix (ECM) are indispensable for promoting tissue regeneration. Electrospun nanofibrous scaffolds have been widely used in regenerative medicine to provide structural support for cell growth and tissue regeneration due to their natural ECM mimicking architecture, however, they lack biological functions. Extracellular vesicles (EVs) are potent vehicles of intercellular communication due to their ability to transfer RNAs, proteins, and lipids, thereby mediating significant biological functions in different biological systems. Matrix-bound nanovesicles (MBVs) are identified as an integral and functional component of ECM bioscaffolds mediating significant regenerative functions. Therefore, to engineer EVs modified electrospun scaffolds, mimicking the structure of the natural EV-ECM complex and the physiological interactions between the ECM and EVs, will be attractive and promising in tissue regeneration. Previously, using one-bead one-compound (OBOC) combinatorial technology, we identified LLP2A, an integrin α4β1 ligand, which had a strong binding to human placenta-derived mesenchymal stem cells (PMSCs). In this study, we isolated PMSCs derived EVs (PMSC-EVs) and demonstrated they expressed integrin α4β1 and could improve endothelial cell (EC) migration and vascular sprouting in an ex vivo rat aortic ring assay. LLP2A treated culture surface significantly improved PMSC-EV attachment, and the PMSC-EV treated culture surface significantly enhanced the expression of angiogenic genes and suppressed apoptotic activity. We then developed an approach to enable "Click chemistry" to immobilize LLP2A onto the surface of electrospun scaffolds as a linker to immobilize PMSC-EVs onto the scaffold. The PMSC-EV modified electrospun scaffolds significantly promoted EC survival and angiogenic gene expression, such as KDR and TIE2, and suppressed the expression of apoptotic markers, such as caspase 9 and caspase 3. Thus, PMSC-EVs hold promising potential to functionalize biomaterial constructs and improve the vascularization and regenerative potential. The EVs modified biomaterial scaffolds can be widely used for different tissue engineering applications.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Hila Shimshi Swindell
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Lalithasri Ramasubramanian
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Diana L. Farmer
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
31
|
Gao K, He S, Kumar P, Farmer D, Zhou J, Wang A. Clonal isolation of endothelial colony-forming cells from early gestation chorionic villi of human placenta for fetal tissue regeneration. World J Stem Cells 2020; 12:123-138. [PMID: 32184937 PMCID: PMC7062038 DOI: 10.4252/wjsc.v12.i2.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/03/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Endothelial colony-forming cells (ECFCs) have been implicated in the process of vascularization, which includes vasculogenesis and angiogenesis. Vasculogenesis is a de novo formation of blood vessels, and is an essential physiological process that occurs during embryonic development and tissue regeneration. Angiogenesis is the growth of new capillaries from pre-existing blood vessels, which is observed both prenatally and postnatally. The placenta is an organ composed of a variety of fetal-derived cells, including ECFCs, and therefore has significant potential as a source of fetal ECFCs for tissue engineering.
AIM To investigate the possibility of isolating clonal ECFCs from human early gestation chorionic villi (CV-ECFCs) of the placenta, and assess their potential for tissue engineering.
METHODS The early gestation chorionic villus tissue was dissociated by enzyme digestion. Cells expressing CD31 were selected using magnetic-activated cell sorting, and plated in endothelial-specific growth medium. After 2-3 wks in culture, colonies displaying cobblestone-like morphology were manually picked using cloning cylinders. We characterized CV-ECFCs by flow cytometry, immunophenotyping, tube formation assay, and Dil-Ac-LDL uptake assay. Viral transduction of CV-ECFCs was performed using a Luciferase/tdTomato-containing lentiviral vector, and transduction efficiency was tested by fluorescent microscopy and flow cytometry. Compatibility of CV-ECFCs with a delivery vehicle was determined using an FDA approved, small intestinal submucosa extracellular matrix scaffold.
RESULTS After four passages in 6-8 wks of culture, we obtained a total number of 1.8 × 107 CV-ECFCs using 100 mg of early gestational chorionic villus tissue. Immunophenotypic analyses by flow cytometry demonstrated that CV-ECFCs highly expressed the endothelial markers CD31, CD144, CD146, CD105, CD309, only partially expressed CD34, and did not express CD45 and CD90. CV-ECFCs were capable of acetylated low-density lipoprotein uptake and tube formation, similar to cord blood-derived ECFCs (CB-ECFCs). CV-ECFCs can be transduced with a Luciferase/tdTomato-containing lentiviral vector at a transduction efficiency of 85.1%. Seeding CV-ECFCs on a small intestinal submucosa extracellular matrix scaffold confirmed that CV-ECFCs were compatible with the biomaterial scaffold.
CONCLUSION In summary, we established a magnetic sorting-assisted clonal isolation approach to derive CV-ECFCs. A substantial number of CV-ECFCs can be obtained within a short time frame, representing a promising novel source of ECFCs for fetal treatments.
Collapse
Affiliation(s)
- Kewa Gao
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Siqi He
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Diana Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95817, United States
| |
Collapse
|
32
|
Galganski LA, Yamashiro KJ, Pivetti CD, Keller BA, Becker JC, Brown EG, Saadai P, Hirose S, Wang A, Farmer DL. A Decade of Experience with the Ovine Model of Myelomeningocele: Risk Factors for Fetal Loss. Fetal Diagn Ther 2020; 47:507-513. [PMID: 32097922 DOI: 10.1159/000505400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The ovine model is the gold standard large animal model of myelomeningocele (MMC); however, it has a high rate of fetal loss. We reviewed our experience with the model to determine risk factors for fetal loss. METHODS We performed a retrospective review from 2009 to 2018 to identify operative factors associated with fetal loss (early fetal demise, abortion, or stillbirth). Operative risk factors included gestational age at operation, operative time, reduction of multiple gestations, amount of replaced amniotic fluid, ambient temperature, and method of delivery. RESULTS MMC defects were created in 232 lambs with an overall survival rate of 43%. Of the 128 fetuses that died, 53 (42%) had demise prior to repair, 61 (48%) aborted, and 14 (11%) were stillborn. Selective reduction of multiple gestations in the same uterine horn was associated with increased fetal demise (OR 3.03 [95% CI 1.29-7.05], p = 0.01). Later gestational age at MMC repair and Cesarean delivery were associated with decreased abortion/stillbirth (OR 0.90 [95% CI 0.83-0.90], p = 0.03, and OR 0.37 [95% CI 0.16-0.31], p = 0.02), respectively. CONCLUSION Avoiding selective reduction, repairing MMC later in gestation, and performing Cesarean delivery decreases the rate of fetal loss in the ovine MMC model.
Collapse
Affiliation(s)
- Laura A Galganski
- Department of Surgery, University of California-Davis, Sacramento, California, USA,
| | - Kaeli J Yamashiro
- Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Christopher D Pivetti
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Shriners Hospitals for Children Northern California, Sacramento, California, USA
| | - Benjamin A Keller
- Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - James C Becker
- Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Erin G Brown
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Shriners Hospitals for Children Northern California, Sacramento, California, USA
| | - Payam Saadai
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Shriners Hospitals for Children Northern California, Sacramento, California, USA
| | - Shinjiro Hirose
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Shriners Hospitals for Children Northern California, Sacramento, California, USA
| | - Aijun Wang
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Shriners Hospitals for Children Northern California, Sacramento, California, USA.,Department of Biomedical Engineering, University of California-Davis, Davis, California, USA
| | - Diana L Farmer
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Shriners Hospitals for Children Northern California, Sacramento, California, USA
| |
Collapse
|
33
|
Vanover M, Pivetti C, Galganski L, Kumar P, Lankford L, Rowland D, Paxton Z, Deal B, Wang A, Farmer D. Spinal Angulation: A Limitation of the Fetal Lamb Model of Myelomeningocele. Fetal Diagn Ther 2019; 46:376-384. [PMID: 30970373 DOI: 10.1159/000496201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/13/2018] [Indexed: 01/27/2023]
Abstract
INTRODUCTION The surgically induced fetal lamb model is the most commonly used large animal model of myelomeningocele (MMC) but is subject to variation due to surgical technique during defect creation. MATERIAL AND METHODS Thirty-one fetal lambs underwent creation of the MMC defect, followed by defect repair with either an extracellular matrix (ECM) patch (n = 10) or ECM seeded with placental mesenchymal stromal cells (n = 21). Postnatal hindlimb function was assessed using the Sheep Locomotor Rating (SLR) scale. Postmortem magnetic resonance imaging of the lumbar spine was used to measure the level and degree of spinal angulation, as well as cross-sectional area of remaining vertebral bone. RESULTS Median level of angulation was between the 2nd and 3rd lumbar vertebrae, with a median angle of 24.3 degrees (interquartile range 16.2-35.3). There was a negative correlation between angulation degree and SLR (r = -0.44, p = 0.013). Degree of angulation also negatively correlated with the normalized cross-sectional area of remaining vertebral bone (r = -0.75, p < 0.0001). DISCUSSION Surgical creation of fetal MMC leads to varying severity of spinal angulation in the ovine model, which affects postnatal functional outcomes. Postnatal assessment of spinal angulation aids in standardization of the surgical model of fetal MMC repair.
Collapse
Affiliation(s)
- Melissa Vanover
- Department of Surgery, University of California Davis, Sacramento, California, USA,
| | - Christopher Pivetti
- Department of Surgery, University of California Davis, Sacramento, California, USA
| | - Laura Galganski
- Department of Surgery, University of California Davis, Sacramento, California, USA
| | - Priyadarsini Kumar
- Department of Surgery, University of California Davis, Sacramento, California, USA
| | - Lee Lankford
- Department of Surgery, University of California Davis, Sacramento, California, USA
| | - Douglas Rowland
- Center for Molecular and Genomic Imaging, University of California Davis, Davis, California, USA
| | - Zachary Paxton
- Department of Surgery, University of California Davis, Sacramento, California, USA
| | - Bailey Deal
- Department of Surgery, University of California Davis, Sacramento, California, USA
| | - Aijun Wang
- Department of Surgery, University of California Davis, Sacramento, California, USA
| | - Diana Farmer
- Department of Surgery, University of California Davis, Sacramento, California, USA
| |
Collapse
|