1
|
Gualberto IJN, Medeiros GA, Santos MV, da Silva Lopes L, Machado HR, Sbragia L. Is there a role in the central nervous system development for using corticosteroids to treat meningomyelocele and hydrocephalus? Childs Nerv Syst 2022; 38:1849-1854. [PMID: 35907004 DOI: 10.1007/s00381-022-05615-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/23/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Myelomeningocele (MMC) is the most frequent neural tube defect and is frequently associated (around 80% of cases) with hydrocephalus (HC). Both diseases can have severe clinical consequences, insomuch as they require surgical treatment whose complications are not negligible, either when performed in utero or after birth. Therefore, clinical therapies that could have an impact on the incidence and progression of MMC and HC would be certainly valuable; however, this is not the current picture, and there are no effective pharmacological treatments for such patients to this day. AIM AND METHODS Therefore, knowing that an inflammatory process comes associated with these disorders, mostly due to nervous tissue distension, the present article aimed at reviewing the role of corticosteroids in reducing inflammation and thus improving the outcome of patients with HC and MMC, considering the well-established anti-inflammatory effects of CS. RESULTS The systematic review performed herein has found varying results regarding the role of steroids (even though a positive trend was observed) on the treatment and prevention of hydrocephalus, whereas for MMC. CONCLUSION There are many reports demonstrating beneficial effects of CS therapy, from a clinical and histopathological point of view.
Collapse
Affiliation(s)
- I José Nogueira Gualberto
- Bauru Medical School, Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - G Araújo Medeiros
- Bauru Medical School, Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - M Volpon Santos
- Division of Pediatric Neurosurgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - L da Silva Lopes
- Division of Pediatric Neurosurgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - H Rubens Machado
- Division of Pediatric Neurosurgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - L Sbragia
- Division of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 10th floor, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
2
|
Wolujewicz P, Steele JW, Kaltschmidt JA, Finnell RH, Ross ME. Unraveling the complex genetics of neural tube defects: From biological models to human genomics and back. Genesis 2021; 59:e23459. [PMID: 34713546 DOI: 10.1002/dvg.23459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
Neural tube defects (NTDs) are a classic example of preventable birth defects for which there is a proven-effective intervention, folic acid (FA); however, further methods of prevention remain unrealized. In the decades following implementation of FA nutritional fortification programs throughout at least 87 nations, it has become apparent that not all NTDs can be prevented by FA. In the United States, FA fortification only reduced NTD rates by 28-35% (Williams et al., 2015). As such, it is imperative that further work is performed to understand the risk factors associated with NTDs and their underlying mechanisms so that alternative prevention strategies can be developed. However, this is complicated by the sheer number of genes associated with neural tube development, the heterogeneity of observable phenotypes in human cases, the rareness of the disease, and the myriad of environmental factors associated with NTD risk. Given the complex genetic architecture underlying NTD pathology and the way in which that architecture interacts dynamically with environmental factors, further prevention initiatives will undoubtedly require precision medicine strategies that utilize the power of human genomics and modern tools for assessing genetic risk factors. Herein, we review recent advances in genomic strategies for discovering genetic variants associated with these defects, and new ways in which biological models, such as mice and cell culture-derived organoids, are leveraged to assess mechanistic functionality, the way these variants interact with other genetic or environmental factors, and their ultimate contribution to human NTD risk.
Collapse
Affiliation(s)
- Paul Wolujewicz
- Center for Neurogenetics, Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - John W Steele
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Richard H Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Margaret Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
3
|
Sbragia L, da Costa KM, Nour ALA, Ruano R, Santos MV, Machado HR. State of the art in translating experimental myelomeningocele research to the bedside. Childs Nerv Syst 2021; 37:2769-2785. [PMID: 34333685 DOI: 10.1007/s00381-021-05299-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
Myelomeningocele (MMC), the commonest type of spina bifida (SB), occurs due to abnormal development of the neural tube and manifest as failure of the complete fusion of posterior arches of the spinal column, leading to dysplastic growth of the spinal cord and meninges. It is associated with several degrees of motor and sensory deficits below the level of the lesion, as well as skeletal deformities, bladder and bowel incontinence, and sexual dysfunction. These children might develop varying degrees of neuropsychomotor delay, partly due to the severity of the injuries that affect the nervous system before birth, partly due to the related cerebral malformations (notably hydrocephalus-which may also lead to an increase in intracranial pressure-and Chiari II deformity). Traditionally, MMC was repaired surgically just after birth; however, intrauterine correction of MMC has been shown to have several potential benefits, including better sensorimotor outcomes (since exposure to amniotic fluid and its consequent deleterious effects is shortened) and reduced rates of hydrocephalus, among others. Fetal surgery for myelomeningocele, nevertheless, would not have been made possible without the development of experimental models of this pathological condition. Hence, the aim of the current article is to provide an overview of the animal models of MMC that were used over the years and describe how this knowledge has been translated into the fetal treatment of MMC in humans.
Collapse
Affiliation(s)
- Lourenço Sbragia
- Division of Pediatric Surgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karina Miura da Costa
- Division of Pediatric Surgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Landolffi Abdul Nour
- Division of Pediatric Surgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo Ruano
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas, Houston, TX, USA
| | - Marcelo Volpon Santos
- Division of Pediatric Neurosurgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Hélio Rubens Machado
- Division of Pediatric Neurosurgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
4
|
Finnell RH, Caiaffa CD, Kim SE, Lei Y, Steele J, Cao X, Tukeman G, Lin YL, Cabrera RM, Wlodarczyk BJ. Gene Environment Interactions in the Etiology of Neural Tube Defects. Front Genet 2021; 12:659612. [PMID: 34040637 PMCID: PMC8143787 DOI: 10.3389/fgene.2021.659612] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
Human structural congenital malformations are the leading cause of infant mortality in the United States. Estimates from the United States Center for Disease Control and Prevention (CDC) determine that close to 3% of all United States newborns present with birth defects; the worldwide estimate approaches 6% of infants presenting with congenital anomalies. The scientific community has recognized for decades that the majority of birth defects have undetermined etiologies, although we propose that environmental agents interacting with inherited susceptibility genes are the major contributing factors. Neural tube defects (NTDs) are among the most prevalent human birth defects and as such, these malformations will be the primary focus of this review. NTDs result from failures in embryonic central nervous system development and are classified by their anatomical locations. Defects in the posterior portion of the neural tube are referred to as meningomyeloceles (spina bifida), while the more anterior defects are differentiated as anencephaly, encephalocele, or iniencephaly. Craniorachischisis involves a failure of the neural folds to elevate and thus disrupt the entire length of the neural tube. Worldwide NTDs have a prevalence of approximately 18.6 per 10,000 live births. It is widely believed that genetic factors are responsible for some 70% of NTDs, while the intrauterine environment tips the balance toward neurulation failure in at risk individuals. Despite aggressive educational campaigns to inform the public about folic acid supplementation and the benefits of providing mandatory folic acid food fortification in the United States, NTDs still affect up to 2,300 United States births annually and some 166,000 spina bifida patients currently live in the United States, more than half of whom are now adults. Within the context of this review, we will consider the role of maternal nutritional status (deficiency states involving B vitamins and one carbon analytes) and the potential modifiers of NTD risk beyond folic acid. There are several well-established human teratogens that contribute to the population burden of NTDs, including: industrial waste and pollutants [e.g., arsenic, pesticides, and polycyclic aromatic hydrocarbons (PAHs)], pharmaceuticals (e.g., anti-epileptic medications), and maternal hyperthermia during the first trimester. Animal models for these teratogens are described with attention focused on valproic acid (VPA; Depakote). Genetic interrogation of model systems involving VPA will be used as a model approach to discerning susceptibility factors that define the gene-environment interactions contributing to the etiology of NTDs.
Collapse
Affiliation(s)
- Richard H. Finnell
- Department of Molecular and Human Genetics and Medicine, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Carlo Donato Caiaffa
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Sung-Eun Kim
- Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, TX, United States
| | - Yunping Lei
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - John Steele
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Xuanye Cao
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Gabriel Tukeman
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Ying Linda Lin
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Robert M. Cabrera
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Bogdan J. Wlodarczyk
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
5
|
Zarzycki A, Thomas ZM, Mazrier H. Comparison of inherited neural tube defects in companion animals and livestock. Birth Defects Res 2020; 113:319-348. [PMID: 33615733 DOI: 10.1002/bdr2.1848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/10/2022]
Abstract
Neural tube defects (NTDs) are congenital malformations resulting from the improper or incomplete closure of the neural tube during embryonic development. A number of similar malformations of the protective coverings surrounding the central nervous system are also often included under this umbrella term, which may not strictly fit this definition. A range of NTD phenotypes exist and have been reported in humans and a wide range of domestic and livestock species. In the veterinary literature, these include cases of anencephaly, encephalocele, dermoid sinus, spina bifida, and craniorachischisis. While environmental factors have a role, genetic predisposition may account for a significant part of the risk of NTDs in these animal cases. Studies of laboratory model species (fish, birds, amphibians, and rodents) have been instrumental in improving our understanding of the neurulation process. In mice, over 200 genes that may be involved in this process have been identified and variant phenotypes investigated. Like laboratory mouse models, domestic animals and livestock species display a wide range of NTD phenotypes. They remain, however, a largely underutilized population and could complement already established laboratory models. Here we review reports of NTDs in companion animals and livestock, and compare these to other animal species and human cases. We aim to highlight the potential of nonlaboratory animal models for mutation discovery as well as general insights into the mechanisms of neurulation and the development of NTDs.
Collapse
Affiliation(s)
- Alexandra Zarzycki
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Zoe M Thomas
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Hamutal Mazrier
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|