1
|
Armstrong GB, Burley GA, Lewis W, Rattray Z. Assessing the Manufacturability and Critical Quality Attribute Profiles of Anti-IL-8 Immunoglobulin G Mutant Variants. Mol Pharm 2024; 21:6423-6432. [PMID: 39509699 PMCID: PMC11615950 DOI: 10.1021/acs.molpharmaceut.4c01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Early-phase manufacturability assessment of high-concentration therapeutic monoclonal antibodies (mAbs) involves screening of process-related risks impacting their translation into the clinic. Manufacturing a mAb at scale relies on cost-effective and robust approaches to derisk manufacturability parameters, such as viscosity, conformational stability, aggregation, and process-related impurities. Using a panel of model anti-IL-8 IgG1 mutants, we investigate upstream and downstream processability, phase behavior, and process-related impurities. We correlate trends in the biophysical properties of mAbs with their cell growth, expression, filtration flux, solubility, and post-translational modifications. We find significant trends in increased relative free light chain expression with heavy chain mutants and detect a requirement for adjusted operation pH for cation exchange polishing steps with charge-altering variants. Moreover, trends between phase stability and high-concentration viscosity were observed. We also investigated unique correlations between increased glycosylation and biophysical behavior. Further in-depth analysis and modeling are required to elucidate the impact of the mAb sequence on the metabolism of the expression system, solubility limits, and alternative gelation models as future directions.
Collapse
Affiliation(s)
- Georgina Bethany Armstrong
- Drug
Substance Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NFX, U.K.
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K.
| | - Glenn A. Burley
- Pure
and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K.
| | - William Lewis
- Drug
Substance Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NFX, U.K.
| | - Zahra Rattray
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K.
| |
Collapse
|
2
|
Cui X, Meng X, Hu Z, Wu P, Yao H, Li M, Lin L. Analysis of multi-disulfide bridges for insulin aspart by stepwise reduction and differentiated alkylation. Anal Bioanal Chem 2024; 416:6725-6733. [PMID: 39472333 DOI: 10.1007/s00216-024-05597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024]
Abstract
Disulfide bridge, an important post-translation modification in protein, plays a key role in stabilizing three-dimensional structure of proteins, maintaining correct folded conformation, and thus regulating the biological activities. Disulfide bridge assignment is essential to understand the essence of life process and to develop protein pharmaceutical. In this study, a novel method termed as stepwise reduction and differentiated alkylation (SRDA) was developed analyzing disulfide connectivity for proteins. As a demonstration, three disulfide bridges in insulin aspart were successfully characterized using this SRDA method combined with LC-HRMSn. Firstly, tris (2-carboxyethyl) phosphine (TCEP) was used to partially reduce disulfide bridges with N-ethylmaleimide (NEM) used to block the generated free thiol. Then, dithiothreitol (DTT) was used to reduce the rest disulfide bonds with iodoacetamide (IAM) used to block the newly generated free thiol. After that, an LC-HRMSn method was established to assign disulfide connectivity for an insulin aspart study material, based on the different mass shifts arising from differentiated alkylation. Moreover, this approach allows for the quantitative analysis of various disulfide bond pairings, which can be applied to studies on the consistency and stability among different batches of samples. The results show that SRDA is a valuable tool for reliable quality control and quality assessment of disulfide-rich proteins such as insulin analogues.
Collapse
Affiliation(s)
- Xinling Cui
- Department of Bioengineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Xiaoguang Meng
- National Engineering Research Center for Protein Drugs, Beijing C&N International Sci-tech Co., Ltd., Beijing, 102206, PR China
| | - Zhishang Hu
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Peize Wu
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Huan Yao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Ming Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, PR China.
| | - Ling Lin
- Department of Bioengineering, Beijing Technology and Business University, Beijing, 100048, PR China.
| |
Collapse
|
3
|
Wysor SK, Synoground BF, Harcum SW, Marcus RK. In-line buffer exchange in the coupling of Protein A chromatography with weak cation exchange chromatography for the determination of charge variants of immunoglobulin G derived from chinese hamster ovary cell cultures. J Chromatogr A 2024; 1718:464722. [PMID: 38359690 DOI: 10.1016/j.chroma.2024.464722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Immunoglobulin G (IgG) is the most common monoclonal antibody (mAb) grown for therapeutic applications. While IgG is often selectively isolated from cell lines using protein A (ProA) chromatography, this is only a stepping stone for complete characterization. Further classification can be obtained from weak cation exchange chromatography (WCX) to determine IgG charge variant distributions. The charge variants of monoclonal antibodies can influence the stability and efficacy in vivo, and deviations in charge heterogeneity are often cell-specific and sensitive to upstream process variability. Current methods to characterize IgG charge variants are often performed off-line, meaning that the IgG eluate from the ProA separation is collected, diluted to adjust the pH, and then transferred to the WCX separation, adding time, complexity, and potential contamination to the sample analysis process. More recently, reports have appeared to streamline this separation using in-line two-dimensional liquid chromatography (2D-LC). Presented here is a novel, 2D-LC coupling of ProA in the first dimension (1D) and WCX in the second dimension (2D) chromatography. As anticipated, the initial direct column coupling proved to be challenging due to the pH incompatibility between the mobile phases for the two stages. To solve the solvent compatibility issue, a size exclusion column was placed in the switching valve loop of the 2D-LC instrument to act as a means for the on-line solvent exchange. The efficacy of the methodology presented was confirmed through a charge variant determination using the NIST monoclonal antibody standard (NIST mAb), yielding correct acidic, main, and basic variant compositions. The methodology was employed to determine the charge variant profile of IgG from an in-house cultured Chinese hamster ovary (CHO) cell supernatant. It is believed that this methodology can be easily implemented to provide higher-throughput assessment of IgG charge variants for process monitoring and cell line development.
Collapse
Affiliation(s)
- Sarah K Wysor
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA
| | - Benjamin F Synoground
- Department of Bioengineering, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA
| | - Sarah W Harcum
- Department of Bioengineering, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA.
| |
Collapse
|
4
|
Yang J, Zhou A, Li M, He Q, Zhou J, Crommen J, Wang W, Jiang Z, Wang Q. Mimotope peptide modified pompon mum-like magnetic microparticles for precise recognition, capture and biotransformation analysis of rituximab in biological fluids. Acta Pharm Sin B 2024; 14:1317-1328. [PMID: 38487009 PMCID: PMC10935506 DOI: 10.1016/j.apsb.2023.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 03/17/2024] Open
Abstract
Due to low immobilized ligand density, limited binding capacity, and severe interference from serum proteins, developing ideal peptide-based biomaterials for precise recognition and in vivo analysis of biopharmaceuticals remains a huge challenge. In this study, mimotope peptide modified pompon mum-like biomimetic magnetic microparticles (MMPs, 3.8 μm) that mimic the specific functionalities of CD20 on malignant B cells were developed for the first time. Benefit from the numerous ligand binding sites (Ni2+) on the pompon mum-like MMPs, these novel materials achieved ≥10 times higher peptide ligand densities (>2300 mg/g) and antibody binding capacities (1380 mg/g) compared to previous reported biomaterials. Leveraging the high specificity of the mimotope peptide, rituximab can be precisely recognized and enriched from cell culture media or serum samples. We also established an LC‒MS/MS method using the MMPs for tracking rituximab biotransformation in patient serum. Intriguingly, deamidation of Asn55 and Asn33, as well as oxidation of Met81 and Met34 were observed at the key complementarity determining regions of rituximab, which could potentially influence antibody function and require careful monitoring. Overall, these versatile biomimetic MMPs demonstrate superior recognition and enrichment capabilities for target antibodies, offering interesting possibilities for biotransformation analysis of biopharmaceuticals in patient serum.
Collapse
Affiliation(s)
- Jiawen Yang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Aixuan Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Minyi Li
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Qiaoxian He
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jingwei Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jacques Crommen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, Liege B-4000, Belgium
| | | | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, Liege B-4000, Belgium
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, Liege B-4000, Belgium
| |
Collapse
|
5
|
Li R, Xia C, Wu S, Downs MJ, Tong H, Tursumamat N, Zaia J, Costello CE, Lin C, Wei J. Direct and Detailed Site-Specific Glycopeptide Characterization by Higher-Energy Electron-Activated Dissociation Tandem Mass Spectrometry. Anal Chem 2024; 96:1251-1258. [PMID: 38206681 PMCID: PMC10885852 DOI: 10.1021/acs.analchem.3c04484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Glycosylation is widely recognized as the most complex post-translational modification due to the widespread presence of macro- and microheterogeneities, wherein its biological consequence is closely related to both the glycosylation sites and the glycan fine structures. Yet, efficient site-specific detailed glycan characterization remains a significant analytical challenge. Here, utilizing an Orbitrap-Omnitrap platform, higher-energy electron-activated dissociation (heExD) tandem mass spectrometry (MS/MS) revealed extraordinary efficacy for the structural characterization of intact glycopeptides. HeExD produced extensive fragmentation within both the glycan and the peptide, including A-/B-/C-/Y-/Z-/X-ions from the glycan motif and a-/b-/c-/x-/y-/z-type peptide fragments (with or without the glycan). The intensity of cross-ring cleavage and backbone fragments retaining the intact glycan was highly dependent on the electron energy. Among the four electron energy levels investigated, electronic excitation dissociation (EED) provided the most comprehensive structural information, yielding a complete series of glycosidic fragments for accurate glycan topology determination, a wealth of cross-ring fragments for linkage definition, and the most extensive peptide backbone fragments for accurate peptide sequencing and glycosylation site localization. The glycan fragments observed in the EED spectrum correlated well with the fragmentation patterns observed in EED MS/MS of the released glycans. The advantages of EED over higher-energy collisional dissociation (HCD), stepped collision energy HCD (sceHCD), and electron-transfer/higher-energy collisional dissociation (EThcD) were demonstrated for the characterization of a glycopeptide bearing a biantennary disialylated glycan. EED can produce a complete peptide backbone and glycan sequence coverage even for doubly protonated precursors. The exceptional performance of heExD MS/MS, particularly EED MS/MS, in site-specific detailed glycan characterization on an Orbitrap-Omnitrap hybrid instrument presents a novel option for in-depth glycosylation analysis.
Collapse
Affiliation(s)
- Ruiqing Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chaoshuang Xia
- Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, United States
| | - Shuye Wu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Margaret J Downs
- Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, United States
| | - Haowei Tong
- School of Life Science, Shanghai Jiao Tong University, Shanghai, 800 Dongchuan Road, Shanghai 200240, China
| | - Nafisa Tursumamat
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, United States
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, United States
| | - Cheng Lin
- Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, United States
| | - Juan Wei
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
6
|
Chen H, Qiu D, Shi J, Wang N, Li M, Wu Y, Tian Y, Bu X, Liu Q, Jiang Y, Hamilton SE, Han P, Sun S. In-Depth Structure and Function Characterization of Heterogeneous Interchain Cysteine-Conjugated Antibody-Drug Conjugates. ACS Pharmacol Transl Sci 2024; 7:212-221. [PMID: 38230295 PMCID: PMC10789146 DOI: 10.1021/acsptsci.3c00235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024]
Abstract
Antibody-drug conjugates (ADCs), integrating high specificity of antigen-targeting antibodies and high potency of cell-killing chemical drugs, have become one of the most rapidly expanding therapeutic biologics in oncology. Although ADCs were widely studied from multiple aspects, overall structural elucidation with comprehensive understanding of variants is scarcely reported. Here, for the first time, we present a holistic and in-depth characterization of an interchain cysteine-conjugated ADC, focusing on conjugation and charge heterogeneity, and in vitro biological activities. Conjugation mapping utilized a bottom-up approach, unraveled positional isomer composition, provided insights into the conjugation process, and elucidated how conjugation affects the physicochemical and biological properties of an ADC. Charge profiling combined bottom-up and top-down approaches to interrogate the origin of charge heterogeneity, its impact on function, and best practice for characterization. Specifically, we pioneered the utilization of capillary isoelectric focusing-mass spectrometry to decode not only critical post-translational modifications but also drug load and positional isomer distribution. The study design provides general guidance for in-depth characterization of ADCs, and the analytical findings in turn benefit the discovery and development of future ADCs.
Collapse
Affiliation(s)
- Huijie Chen
- Analytical
Sciences, WuXi Biologics, 31 Yiwei Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Danye Qiu
- Analytical
Sciences, WuXi Biologics, 1150 Lanfeng Road, Fengxian District, Shanghai 201403, China
| | - Jian Shi
- Analytical
Sciences, WuXi Biologics, 31 Yiwei Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Ningning Wang
- WuXi
Process Development Analytical Science, WuXi Biologics, 200
Meiliang Road, Binhu District, WuXi, Jiangsu 214092, China
| | - Muchen Li
- WuXi
Process Development Analytical Science, WuXi Biologics, 200
Meiliang Road, Binhu District, WuXi, Jiangsu 214092, China
| | - Ying Wu
- Analytical
Sciences, WuXi Biologics, 31 Yiwei Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yu Tian
- Biologics
Innovation & Discovery, WuXi Biologics, 227 Meisheng Road, Waigaoqiao Free
Trade Zone, Shanghai 200131, China
| | - Xiaodong Bu
- Analytical
Research & Development, Merck &
Co., Inc., 126 E. Lincoln
Avenue, Rahway, New Jersey 07065, United States
| | - Qingyuan Liu
- Analytical
Research & Development, Merck &
Co., Inc., 2000 Galloping
Hill Road, Kenilworth, New
Jersey 07033, United States
| | - Yanrui Jiang
- Analytical
Research & Development, MSD, Industrie Nord 1, Schachen (Luzern) CH-6105, Switzerland
| | - Simon E. Hamilton
- Analytical
Research & Development, MSD, 120 Moorgate, London EC2M 6UR, U.K.
| | - Ping Han
- Analytical
Research & Development, Merck &
Co., Inc., 2000 Galloping
Hill Road, Kenilworth, New
Jersey 07033, United States
| | - Shuwen Sun
- Analytical
Research & Development, Merck &
Co., Inc., 126 E. Lincoln
Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
7
|
Kwok T, Zhou M, Schaefer A, Bo T, Li V, Huang T, Chen T. Fractionation and online mass spectrometry based on imaged capillary isoelectric focusing (icIEF) for characterizing charge heterogeneity of therapeutic antibody. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:411-418. [PMID: 36537584 DOI: 10.1039/d2ay01670b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Imaged capillary isoelectric focusing (icIEF) technology has been proved to be robust for the characterization of protein charge heterogeneity due to its high-resolution pI discrimination and high-throughput. Although high performance liquid chromatography (HPLC) tandem mass spectrometry (MS) and offline fraction collection technologies including isoelectric focusing (IEF), ion exchange chromatography (IEX) and free flow electrophoresis (FFE) have been widely utilized for protein charge variant characterization, there are a few applications of MS coupling with icIEF as a front-separation technique and related fractionation technologies for protein charge heterogeneity. However, the application of icIEF-MS has been much less frequent due to difficulties in MS interface, compatible ampholyte and coated capillary cartridge designation, ultimately impeding the breadth of icIEF applications in protein charge heterogeneity. In this study, a therapeutic monoclonal antibody (mAb-M-AT) was used for its charge variant characterization on an integrated icIEF platform with functions including analytical profiling, MS online coupling and fraction collection for charge heterogeneities. The main protein component and its four charge variants were identified using direct icIEF-MS coupling. Additionally, the two major acidic and basic charge variants were collected using preparative fractionation after the protein focused in the separation capillary. The identity of the fractions was confirmed by LC-MS at intact protein level and the results were consistent with those using icIEF-MS online coupling. The multiple operation modes of the icIEF platform described above can be rapidly and flexibly switched just by changing customized capillary separation cartridges without drastically altering instrument configuration. The whole workflow of icIEF-based profiling, fractionation and MS online coupling for protein heterogeneity is straightforward, reliable, and accurate, thus providing comprehensive solutions for in-depth protein heterogeneity characterization.
Collapse
Affiliation(s)
- Teresa Kwok
- Advanced Electrophoresis Solution Ltd, Cambridge, Canada.
| | - Mike Zhou
- Advanced Electrophoresis Solution Ltd, Cambridge, Canada.
| | - Anna Schaefer
- Advanced Electrophoresis Solution Ltd, Cambridge, Canada.
| | - Tao Bo
- Advanced Electrophoresis Solution Ltd, Cambridge, Canada.
| | - Victor Li
- Advanced Electrophoresis Solution Ltd, Cambridge, Canada.
| | - Tiemin Huang
- Advanced Electrophoresis Solution Ltd, Cambridge, Canada.
| | - Tong Chen
- Advanced Electrophoresis Solution Ltd, Cambridge, Canada.
| |
Collapse
|