1
|
Wen J, Wei W, Zhang L, Xu J, Wang X, Chen S, Li J, Du K, Chang Y. Intelligent characterization multi-components in Yangxinshi tablet by online comprehensive two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry combined with deep learning-assisted mass defect filtering classification and multidimensional data annotation strategy. Talanta 2025; 290:127821. [PMID: 40020613 DOI: 10.1016/j.talanta.2025.127821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
A comprehensive characterization strategy for the intelligent analysis of multiple chemical components in Yangxinshi Tablet (YXST) was established. The strategy developed the deep learning-assisted mass defect filtering intelligent classification, preferred ions capture list and active exclusion (DLA-MDF-PIL-AE) data acquisition mode by online comprehensive two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (2DLC-Q-TOF-MS/MS). Firstly, the online 2DLC-Q-TOF-MS/MS system was constructed and the orthogonality was evaluated. Secondly, the user interface for deep learning-assisted MDF intelligent classification technology was developed and applied to compounds classification to generate preferred ion capture lists of various types compounds. Finally, molecular networking (MN), associated neutral loss (NL) fragments, and characteristic diagnosis ion (CDI) were utilized for the automatic and manual annotation of compounds, respectively. As a result, a total of 228 compounds including 80 flavanoids, 52 alkaloids, 36 phenolic acids, 15 terpenoids, 17 saponins and 28 others were preliminary identified from YXST and source attribution was assigned to them. Furthermore, 39 compounds were simultaneously quantified by ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-MS/MS) method. Conclusively, the proposed integrated strategy proved to be a powerful method for characterizing multiple components in complex natural products.
Collapse
Affiliation(s)
- Jiake Wen
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wei Wei
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Lili Zhang
- School of Science, Tianjin University of Technology and Education, Tianjin, 300222, China
| | - Jixiang Xu
- School of Science, Tianjin University of Technology and Education, Tianjin, 300222, China
| | - Xiaoyan Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanxu Chang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
2
|
Xu R, Yu H, Wang Y, Li B, Chen Y, Liu X, Xu T. Natural product virtual-interact-phenotypic target characterization: A novel approach demonstrated with Salvia miltiorrhiza extract. J Pharm Anal 2025; 15:101101. [PMID: 39957901 PMCID: PMC11830376 DOI: 10.1016/j.jpha.2024.101101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 02/18/2025] Open
Abstract
Natural products (NPs) have historically been a fundamental source for drug discovery. Yet the complex nature of NPs presents substantial challenges in pinpointing bioactive constituents, and corresponding targets. In the present study, an innovative natural product virtual screening-interaction-phenotype (NP-VIP) strategy that integrates virtual screening, chemical proteomics, and metabolomics to identify and validate the bioactive targets of NPs. This approach reduces false positive results and enhances the efficiency of target identification. Salvia miltiorrhiza (SM), a herb with recognized therapeutic potential against ischemic stroke (IS), was used to illustrate the workflow. Utilizing virtual screening, chemical proteomics, and metabolomics, potential therapeutic targets for SM in the IS treatment were identified, totaling 29, 100, and 78, respectively. Further analysis via the NP-VIP strategy highlighted five high-confidence targets, including poly [ADP-ribose] polymerase 1 (PARP1), signal transducer and activator of transcription 3 (STAT3), amyloid precursor protein (APP), glutamate-ammonia ligase (GLUL), and glutamate decarboxylase 67 (GAD67). These targets were subsequently validated and found to play critical roles in the neuroprotective effects of SM. The study not only underscores the importance of SM in treating IS but also sets a precedent for NP research, proposing a comprehensive approach that could be adapted for broader pharmacological explorations.
Collapse
Affiliation(s)
- Rui Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hengyuan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yichen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310058, China
| | - Boyu Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xuesong Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310058, China
| | - Tengfei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Hong L, Wang W, Wang S, Hu W, Sha Y, Xu X, Wang X, Li K, Wang H, Gao X, Guo DA, Yang W. Software-aided efficient identification of the components of compound formulae and their metabolites in rats by UHPLC/IM-QTOF-MS and an in-house high-definition MS 2 library: Sishen formula as a case. J Pharm Anal 2024; 14:100994. [PMID: 39850233 PMCID: PMC11755337 DOI: 10.1016/j.jpha.2024.100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/31/2024] [Accepted: 04/29/2024] [Indexed: 01/25/2025] Open
Abstract
Identifying the compound formulae-related xenobiotics in bio-samples is full of challenges. Conventional strategies always exhibit the insufficiencies in overall coverage, analytical efficiency, and degree of automation, and the results highly rely on the personal knowledge and experience. The goal of this work was to establish a software-aided approach, by integrating ultra-high performance liquid chromatography/ion-mobility quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) and in-house high-definition MS2 library, to enhance the identification of prototypes and metabolites of the compound formulae in vivo, taking Sishen formula (SSF) as a template. Seven different MS2 acquisition methods were compared, which demonstrated the potency of a hybrid scan approach (namely high-definition data-independent/data-dependent acquisition (HDDIDDA)) in the identification precision, MS1 coverage, and MS2 spectra quality. The HDDIDDA data for 55 reference compounds, four component drugs, and SSF, together with the rat bio-samples (e.g., plasma, urine, feces, liver, and kidney), were acquired. Based on the UNIFI™ platform (Waters), the efficient data processing workflows were established by combining mass defect filtering (MDF)-induced classification, diagnostic product ions (DPIs), and neutral loss filtering (NLF)-dominated structural confirmation. The high-definition MS2 spectral libraries, dubbed in vitro-SSF and in vivo-SSF, were elaborated, enabling the efficient and automatic identification of SSF-associated xenobiotics in diverse rat bio-samples. Consequently, 118 prototypes and 206 metabolites of SSF were identified, with the identification rate reaching 80.51% and 79.61%, respectively. The metabolic pathways mainly involved the oxidation, reduction, hydrolysis, sulfation, methylation, demethylation, acetylation, glucuronidation, and the combined reactions. Conclusively, the proposed strategy can drive the identification of compound formulae-related xenobiotics in vivo in an intelligent manner.
Collapse
Affiliation(s)
- Lili Hong
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Wei Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Shiyu Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Wandi Hu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yuyang Sha
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, Rua de Luís Gonzaga Gomes, Macao, 999078, China
| | - Xiaoyan Xu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiaoying Wang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kefeng Li
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, Rua de Luís Gonzaga Gomes, Macao, 999078, China
| | - Hongda Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiumei Gao
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - De-an Guo
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenzhi Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
4
|
Hu YS, Zhang JQ, Wei WL, Yang HY, Sha F, Shen XJ, Yao S, Li JY, Qu H, Li P, Chen XM, Guo D. Comprehensive HRMS Screening and Risk Assessments of Aristolochic Acid Analogues in Asari Radix et Rhizoma and Related Commercial Health Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7438-7456. [PMID: 38513720 DOI: 10.1021/acs.jafc.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Aristolochic acid analogues (AAAs) are well-known toxins. We performed the first comprehensive screening on AAAs in Asari Radix et Rhizoma (underground part of Asarum heterotropoides Schmidt), the only Aristolochiaceae plant widely used in clinical practice. LC-HRMS revealed 70 trace AAAs using polygonal mass defect filtering and precursor ion list strategies, 38 of which were newly discovered in A. heterotropoides. UHPLC-QTrap-MS/MS was then utilized for quantitative/semiquantitative analysis of 26 abundant compounds. Seventeen AAAs were detected from 91 batches of A. heterotropoides and 20 AAAs from 166 consumable products. For 141 Asari-containing proprietary products, aristolactam I and aristolactam II-glucoside exhibited the widest distribution, present in 98% products. AA IVa was the most abundant, detected in 91%. Notably, 60% of the products contained AA I (0.03-0.79 ppm). The safety was assessed using linear extrapolation, permitted daily exposure, cumulative amount, and the margin of exposure. It is recommended that AA I content be limited to 3 ppm.
Collapse
Affiliation(s)
- Yun-Shu Hu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu China
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Jian-Qing Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Wen-Long Wei
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Huan-Ya Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu China
| | - Fei Sha
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Xuan-Jing Shen
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Shuai Yao
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Jia-Yuan Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Hua Qu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Ping Li
- National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xiang-Mei Chen
- National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Dean Guo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu China
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| |
Collapse
|
5
|
Chen W, Zhao W, Wu L, Li J, Zhao H, Zhao Y, Song Y. Integrated post-acquisition data processing strategy for rapid steroid sulfate characterization in Toad gall-bladder. J Pharm Biomed Anal 2024; 240:115958. [PMID: 38198886 DOI: 10.1016/j.jpba.2023.115958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
LC-MS serves as a workhorse for chemical profile characterization of Chinese medicinal materials (CMMs) attributing to the ability of measuring fruitful MS/MS spectral information. However, it is laborious to extract the information belonging to the compounds-of-interest from the massive data matrixes even employing those well-defined post-acquisition data processing strategies. Here, efforts were devoted to propose an integrated strategy allowing rapid chemical homologs-focused data filtering through integrating the fit-for-purpose existing strategies, such as molecular weight imprinting (MWI), diagnostic fragment ion filtering (DFIF), neutral loss filtering (NLF), and isotope pattern filtering (IPF). Homologs-focused chemical characterization of a precious CMM namely Toad gall-bladder (Chinese name: Chandan) that is rich of diverse effective steroid sulfates, particularly bufogenin sulfates, bile acid sulfates and bilichol sulfates, was employed as a proof-of-concept. Recombinant human SULT2A1-catalyzed in vitro metabolism was undertaken to generate eight bufogenin sulfates to facilitate summarizing MS/MS spectral behaviors. After in-house data library construction and MS1 and MS2 spectral acquisition, data filtering was conducted as follows: 1) MWI and IPF was utilized in combination to capture deprotonated molecular ions and the 34S isotopic ions for the sulfates of those reported steroids; 2) m/z 79.9568 (SO3-·) and 96.9596 (HSO4-) were applied to DFIF; and 3) SO3 (79.9568 Da) served as the feature to achieve NLF. Those captured MS/MS information subsequently participated in tentatively structural annotation through applying those empirical mass fragmentation rules. As a result, 71 compounds including 7 bufogenin sulfates, 17 bile acid sulfates, 13 bilichol sulfates and a C-23 steroid sulfate were detected from Toad gall-bladder and thereof, 39 ones received plausible identities assignment. Above all, the steroid sulfates in Toad gall-bladder were profiled in depth, and more importantly, the proposed strategy should be a meaningful option for, but not limited to, submetabolome characterization in CMMs.
Collapse
Affiliation(s)
- Wei Chen
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenhui Zhao
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lijuan Wu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yunfang Zhao
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Zhang H, Jiang X, Zhang D, Yang Y, Xie Q, Wu C. An integrated approach for studying the metabolic profiling of herbal medicine in mice using high-resolution mass spectrometry and metabolomics data processing tools. J Chromatogr A 2024; 1713:464505. [PMID: 37976901 DOI: 10.1016/j.chroma.2023.464505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Analysis of exposure to traditional Chinese medicine (TCM) in vivo based on mass spectrometry is helpful for the screening of effective ingredients of TCM and the development of new drugs. The method of screening biomarkers through metabolomics technology is a nontargeted research method to explore the differential components between two sets of biological samples. By taking this advantage, this study aims to takes Forsythia suspensa, which is a TCM also known as Lian Qiao (LQ), as the research object and to study its in vivo exposure by using metabolomics technology. By comparing the significant differences between biological samples before and after administration, it could be focused on the components that were significantly upregulated, where a complete set of analysis strategies for nontargeted TCM in vivo exposure mass spectrometry was established. Furthermore, the threshold parameters for peak extraction, parameter selection during statistical data analysis, and sample concentration multiples in this method have also been optimized. More interestingly, by using the established analysis strategy, we found 393 LQ-related chemical components in mice after administration, including 102 prototypes and 291 LQ-related metabolites, and plotted their metabolic profiles in vivo. In short, this study has obtained a complete mass spectrum of LQ exposure in mice in vivo for the first time, which provides a reference for research on the active ingredients of LQ in vivo. More importantly, compared with other methods, the analysis strategy of nontargeted exposure of TCM in vivo-based mass spectrometry, constructed by using this research method, has good universality and does not require self-developed postprocessing software. It is worth mentioning that, for the identification and characterization of trace amounts of metabolites in vivo, this analysis strategy has no discrimination and has a detection capability similar to that of highly exposed components.
Collapse
Affiliation(s)
- Hairong Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaojuan Jiang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Dandan Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuexin Yang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiang Xie
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China.
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
7
|
Wang X, Yang X, Hao E, Xie J, Du Z, Deng J, Hou X, Wei W. An Efficient Integrated Strategy for Comprehensive Metabolite Profiling of Sakurasosaponin from Aegiceras corniculatum in Rats. Curr Drug Metab 2024; 25:340-354. [PMID: 39108113 PMCID: PMC11774310 DOI: 10.2174/0113892002299923240801092101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/12/2024] [Accepted: 07/05/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE Sakurasosaponin, a primary bioactive saponin from Aegiceras corniculatum, shows potential as an anti-cancer agent. However, there is a lack of information on its in vivo metabolism. This study aims to profile the in vivo metabolites of sakurasosaponin in rat feces, urine, and plasma after oral administration. An efficient strategy using ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry was developed, which combined metabolic prediction, multiple mass defects filtering, and highresolution extracted ion chromatograms for rapid and systematic analysis. METHODS Firstly, a theoretical list of metabolites for sakurasosaponin was developed. This was done by considering the metabolic pathways of saponins. Next, the multiple mass defects filtering method was employed to identify potential metabolites in feces and urine, using the unique metabolites of sakurasosaponin as multiple mass defects filtering templates. Subsequently, a high-resolution extracted ion chromatogram was used to quickly determine the metabolites in rat plasma post-identification in feces and urine. Lastly, the analysis of accurate mass, typical neutral loss, and diagnostic ion of the candidate metabolites was carried out to confirm their structural elucidation, and metabolic pathways of sakurasosaponin in vivo were also proposed. RESULTS In total, 30 metabolites were provisionally identified in feces, urine, and plasma. Analysis of metabolic pathways revealed isomerization, deglycosylation, oxidation, hydroxylation, sulfate conjugation, glucuronide conjugation, and other related reactions as the primary biotransformation reactions of sakurasosaponin in vivo. CONCLUSION The findings demonstrate that the designed research strategy effectively minimizes matrix interference, prevents the omission of low-concentration metabolites, and serves as a foundation for the discovery of active metabolites of sakurasosaponin.
Collapse
Affiliation(s)
- Xiangying Wang
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Xiao Yang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Xiaotao Hou
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Wei Wei
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| |
Collapse
|
8
|
Zhang L, Li R, Zheng T, Wu H, Yin Y. An integrated analytical strategy to decipher the metabolic profile of alkaloids in Compound Kushen injection based on UHPLC-ESI-QTOF/MS E. Xenobiotica 2023:1-29. [PMID: 37335262 DOI: 10.1080/00498254.2023.2227976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 06/21/2023]
Abstract
1. Compound Kushen injection (CKI) is a kind of sterilized water-soluble traditional Chinese medicine preparation that has been used for the clinical treatment of a variety of cancers (hepatocellular carcinoma, lung cancer, etc.) for nineteen years. However, to date, the metabolism-related study on CKI in vivo has not been conducted.2. An integrated analytical strategy was established to investigate the metabolic profile of alkaloids of CKI in rat plasma, urine and feces based on ultra-high performance liquid chromatography-electrospray quadrupole time-of-flight mass spectrometry in MSE mode (UHPLC-ESI-QTOF/MSE).3. Nineteen prototype alkaloids (including 12 matrine-type alkaloids, 2 cytisine-type alkaloids, 3 lupinine-type alkaloids, and 2 aloperine-type alkaloids) of CKI were identified in vivo. Furthermore, seventy-one metabolites of alkaloids (including 11 of lupanine-related metabolites, 14 of sophoridine-related metabolites, 14 of lamprolobine-related metabolites and 32 of baptifoline-related metabolites) were tentatively characterized. Metabolic pathways involved in the metabolism of phase I (include oxidation, reduction, hydrolysis, and desaturation), phase II (mainly include glucuronidation, acetylcysteine or cysteine conjugation, methylation, acetylation and sulfation) and associated combination reactions.4. The integrated analytical strategy was successfully used to characterize the prototype alkaloids and their metabolites in CKI, and the results laying a foundation for further study its pharmacodynamic substances in vivo.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Ruijuan Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Ting Zheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine & Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Yanyan Yin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
9
|
Qiu Z, Wei C, Li X, Lai C, Zhan Z, Jin Y, Zhou L, Hao Q, Yang J, Wang S, Kang L, Huang L. Rapid authentication of different herbal medicines by heating online extraction electrospray ionization mass spectrometry. J Pharm Anal 2023; 13:296-304. [PMID: 37102106 PMCID: PMC10123936 DOI: 10.1016/j.jpha.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The rapid and accurate authentication of traditional Chinese medicines (TCMs) has always been a key scientific and technical problem in the field of pharmaceutical analysis. Herein, a novel heating online extraction electrospray ionization mass spectrometry (H-oEESI-MS) was developed for the rapid and direct analysis of extremely complex substances without the requirement for any sample pretreatment or pre-separation steps. The overall molecular profile and fragment structure features of various herbal medicines could be completely captured within 10-15 s, with minimal sample (<0.5 mg) and solvent consumption (<20 μL for one sample). Furthermore, a rapid differentiation and authentication strategy for TCMs based on H-oEESI-MS was proposed, including metabolic profile characterization, characteristic marker screening and identification, and multivariate statistical analysis model validation. In an analysis of 52 batches of seven types of Aconitum medicinal materials, 20 and 21 key compounds were screened out as the characteristic markers of raw and processed Aconitum herbal medicines, respectively, and the possible structures of all the characteristic markers were comprehensively identified based on Compound Discoverer databases. Finally, multivariate statistical analysis showed that all the different types of herbal medicines were well differentiated and identified (R2X > 0.87, R2Y > 0.91, and Q2 > 0.72), which further verified the feasibility and reliability of this comprehensive strategy for the rapid authentication of different TCMs based on H-oEESI-MS. In summary, this rapid authentication strategy realized the ultra-high-throughput, low-cost, and standardized detection of various complex TCMs for the first time, thereby demonstrating wide applicability and value for the development of quality standards for TCMs.
Collapse
Affiliation(s)
- Zidong Qiu
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Corresponding author.
| | - Chaofa Wei
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiang Li
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Changjiangsheng Lai
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhilai Zhan
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan Jin
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Zhou
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingxiu Hao
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jian Yang
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuanglong Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, College of Chemistry, Biology and Material Sciences, East China Institute of Technology, Nanchang, 330013, China
| | - Liping Kang
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Corresponding author.
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Corresponding author.
| |
Collapse
|
10
|
Zhao Y, Chen Y, Li R, Zheng T, Huang M, Gao Y, Li Z, Wu H. An ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry method based on a four-step analysis strategy to investigate metabolites of Qi-Yu-San-Long decoction in rat plasma. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9419. [PMID: 36260057 DOI: 10.1002/rcm.9419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Metabolism is undoubtedly significantly correlated with the efficacy and safety of traditional Chinese medicine. In clinic, Qi-Yu-San-Long decoction (QYSLD) has achieved good results in the treatment of non-small-cell lung cancer (NSCLC). Nevertheless, a detailed understanding of the compounds (prototypes and metabolites) of QYSLD and its dynamic metabolic profile in plasma has not been revealed. METHODS In this study, a rapid and sensitive method based on ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF/MSE ), combined with a four-step analysis strategy, was established to investigate QYSLD metabolic profile in rat plasma. RESULTS In all, 101 xenobiotics (41 prototypes and 60 QYSLD-related metabolites) were identified in rat plasma. The research uncovered metabolic profiles of alkaloids, saponins, flavonoids, iridoids, anthraquinones, and phenylpropanoids of QYSLD in rat plasma. The dynamic changes in these xenobiotics were also observed at different time intervals. At 0.5 h after oral administration, only 15 prototypes and 11 metabolites were detected. Within 24 h, 4 prototypes and 20 metabolites can still be detected. Four prototypes and 10 metabolites had the phenomenon of emergence-disappearance-reappearance in vivo. CONCLUSION In rat plasma, 101 xenobiotics of QYSLD were identified and their dynamic metabolic profiles were systematically delineated, which laid a material basis for further research of the pharmacodynamic substances of QYSLD inhibiting NSCLC.
Collapse
Affiliation(s)
- Yue Zhao
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Yang Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruijuan Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Ting Zheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Mengwen Huang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Yating Gao
- Department of Education of Anhui Province, Key Laboratory of Traditional Chinese medicine for Prevention and Treatment of Major Pulmonary Diseases, Hefei, China
| | - Zegeng Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Department of Education of Anhui Province, Key Laboratory of Traditional Chinese medicine for Prevention and Treatment of Major Pulmonary Diseases, Hefei, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
11
|
Comprehensive characterization of the chemical composition of Lurong dabu decoction and its absorbed prototypes and metabolites in rat plasma using UHPLC–Q Exactive Orbitrap–HRMS. Food Res Int 2022; 161:111852. [DOI: 10.1016/j.foodres.2022.111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 11/23/2022]
|
12
|
Zou D, Wang Q, Chen T, Sang D, Yang T, Wang Y, Gao M, He F, Li Y, He L, Longzhu D. Bufadienolides originated from toad source and their anti-inflammatory activity. Front Pharmacol 2022; 13:1044027. [PMID: 36339575 PMCID: PMC9627299 DOI: 10.3389/fphar.2022.1044027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 03/03/2024] Open
Abstract
Bufadienolide, an essential member of the C-24 steroid family, is characterized by an α-pyrone positioned at C-17. As the predominantly active constituent in traditional Chinese medicine of Chansu, bufadienolide has been prescribed in the treatment of numerous ailments. It is a specifically potent inhibitor of Na+/K+ ATPase with excellent anti-inflammatory activity. However, the severe side effects triggered by unbiased inhibition of the whole-body cells distributed α1-subtype of Na+/K+ ATPase, restrict its future applicability. Thus, researchers have paved the road for the structural alteration of desirable bufadienolide derivatives with minimal adverse effects via biotransformation. In this review, we give priority to the present evidence for structural diversity, MS fragmentation principles, anti-inflammatory efficacy, and structure modification of bufadienolides derived from toads to offer a scientific foundation for future in-depth investigations and views.
Collapse
Affiliation(s)
- Denglang Zou
- School of Life Science, Qinghai Normal University, Xining, China
- College of Pharmacy, Jinan University, Guangzhou, China
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Qiqi Wang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Tao Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Duocheng Sang
- School of Life Science, Qinghai Normal University, Xining, China
| | - Tingqin Yang
- School of Life Science, Qinghai Normal University, Xining, China
| | - Yuhan Wang
- School of Life Science, Qinghai Normal University, Xining, China
| | - Mengze Gao
- School of Life Science, Qinghai Normal University, Xining, China
| | - Fangfang He
- School of Life Science, Qinghai Normal University, Xining, China
| | - Yulin Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Liangliang He
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Duojie Longzhu
- School of Life Science, Qinghai Normal University, Xining, China
| |
Collapse
|
13
|
Jia J, Li J, Zheng Q, Li D. A research update on the antitumor effects of active components of Chinese medicine ChanSu. Front Oncol 2022; 12:1014637. [PMID: 36237327 PMCID: PMC9552564 DOI: 10.3389/fonc.2022.1014637] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Clinical data show that the incidence and mortality rates of cancer are rising continuously, and cancer has become an ongoing public health challenge worldwide. Excitingly, the extensive clinical application of traditional Chinese medicine may suggest a new direction to combat cancer, and the therapeutic effects of active ingredients from Chinese herbal medicine on cancer are now being widely studied in the medical community. As a traditional anticancer Chinese medicine, ChanSu has been clinically applied since the 1980s and has achieved excellent antitumor efficacy. Meanwhile, the ChanSu active components (e.g., telocinobufagin, bufotalin, bufalin, cinobufotalin, and cinobufagin) exert great antitumor activity in many cancers, such as breast cancer, colorectal cancer, hepatocellular carcinoma and esophageal squamous cell carcinoma. Many pharmaceutical scientists have investigated the anticancer mechanisms of ChanSu or the ChanSu active components and obtained certain research progress. This article reviews the research progress and antitumor mechanisms of ChanSu active components and proposes that multiple active components of ChanSu may be potential anticancer drugs.
Collapse
|