1
|
Chen G, Yuan H, Zhang L, Zhang J, Li K, Wang X. Pancreatic lipase immobilization on cellulose filter paper for inhibitors screening and network pharmacology study of anti-obesity mechanism. Talanta 2024; 280:126750. [PMID: 39213890 DOI: 10.1016/j.talanta.2024.126750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The discovery of pancreatic lipase (PL) inhibitors is an essential route to develop new anti-obesity drugs. In this experiment, chitosan was used to add amino groups to cellulose filter paper (CFP) and then glutaraldehyde was used to covalently combine PL with amino-modified CFP through the Schiff base reaction. Under optimal immobilization conditions, CFP immobilized PL has a wide range of pH and temperature tolerance, as well as excellent reproducibility, reusability and storage stability. Subsequently, 26 natural products (NPs) were screened by immobilized PL with black tea extract having the highest inhibition rate. Three compounds with binding effects on PL (epigallocatechin gallate, theaflavin-3-gallate and theaflavin-3,3'-digallate) were captured. Molecular docking proved that these three compounds have a strong binding affinity for PL. Fluorescence spectra further revealed that theaflavin-3,3'-digallate could statically quench the intrinsic fluorescence of pancreatic lipase. The molecular docking and thermodynamic parameters indicated that electrostatic interaction was considered as the main interaction force between PL and theaflavin-3,3'-digallate. Finally, the potential anti-obesity targets and pathways of the three compounds were discussed through network pharmacology. This study not only proposes a simple and efficient method for screening PL inhibitors, but also sheds light on the anti-obesity mechanism of active compounds in black tea.
Collapse
Affiliation(s)
- Guangxuan Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Huicong Yuan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Lumei Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jingran Zhang
- SCIEX, Analytical Instrument Trading Co., Ltd, Beijing, 100015, China
| | - Kefeng Li
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, China.
| | - Xu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
2
|
Yi Y, Gong X, Cui M, Liang Y, Mei J, Ying G, Wu Y. Screening of inhibitors on successful covalent tyrosinase coupling with help from SpyBank. Biomed Chromatogr 2024; 38:e5957. [PMID: 38973567 DOI: 10.1002/bmc.5957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Microbial metabolites are an important source of tyrosinase (TYR) inhibitors because of their rich chemical diversity. However, because of the complex metabolic environment of microbial products, it is difficult to rapidly locate and identify natural TYR inhibitors. Affinity-based ligand screening is an important method for capturing active ingredients in complex samples, but ligand immobilization is an important factor affecting the screening process. In this paper, TYR was used as ligand, and the SpyTag/SpyCatcher coupling system was used to rapidly construct affinity chromatography vectors for screening TYR inhibitors and separating active components from complex samples. We successfully expressed SpyTag-TYR fusion protein and SpyCatcher protein, and incubated SpyCatcher protein with epoxy-activated agarose. The SpyTag-TYR protein was spontaneously coupled with SpyCatcher to obtain an affinity chromatography filler for immobilization of TYR, and the performance of the packaging material was characterized. Finally, compound 1 with enzyme inhibitory activity was successfully obtained from the fermentation product of marine microorganism C. Through HPLC, MS, 1H NMR and 13C NMR analyses, its structure was deduced as azelaic acid, and its activity was analyzed. The results showed that this is a feasible method for screening TYR inhibitors in complex systems.
Collapse
Affiliation(s)
- Yu Yi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xuewang Gong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Mengyuan Cui
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuting Liang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jianfeng Mei
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Guoqing Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yinfei Wu
- Hangzhou Alltests Biotech Co., Ltd, Hangzhou, China
| |
Collapse
|
3
|
Zhu H, Zheng X, Ou Y, Wang G, Qu L, Li Q, Zhao X, Zhao X. A universal method for surface-based binding assays by preparing immobilized β 2-adrenergic receptor stationary phase using solid binding peptide as a fusion tag. J Chromatogr A 2024; 1730:465037. [PMID: 38889580 DOI: 10.1016/j.chroma.2024.465037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Protein functionalized surface has the potential to develop new assays for determining the drug-like properties of potential compounds and discovering specific partners of G protein-coupled receptors (GPCRs). However, a universal method for purifying and immobilizing functional GPCRs has remained elusive. To this end, we developed a general and rapid way to purify and immobilize β2-adrenergic receptor (β2AR) by silicon-specific peptide. We screened CotB1p as a tag from six silica-binding peptides (minTBP-1, CotB1p, SB7, Car9, and Si4-1) by examining their affinity to macroporous silica gel. We investigated the adsorption and desorption of CotB1p-tagged β2-adrenoceptor (β2AR-CotB1p) under diverse conditions to propose a protocol for receptor purification and immobilization. Under optimized conditions, β2AR immobilization were achieved by directly immersing cell lysates harboring the receptor with silica gel, and the elution of the receptor without demonstratable contaminants was realized by including l-arginine/L-lysine in the elutes. This allows purification of the receptor from Escherichia coli (E.coli) lysates with a purity of 95 %. The immobilized receptor was utilized as a stationary phase to reveal the tag impact on ligand-binding outputs by comparing the CotB1p-strategy with a typical covalent method. The KAs of salbutamol, chlorprenaline, tulobuterol, and terbutaline on β2AR-CotB1p column were 1.26 × 106, 6.59 × 106, 7.90 × 106, and 8.97 × 105 M-1 respectively, which were two orders of magnitude higher than those on the Halo-β2AR column. The whole immobilization was accomplished within 30 min without the requirement of any special treatment, resulting in enhanced accuracy for determining receptor-ligand binding parameters. Taken together, CotB1p-mediated strategy is simple, rapid, and universal for purification or immobilization of unstable biomolecules like GPCRs for analytical and biological applications.
Collapse
Affiliation(s)
- Huiting Zhu
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xinxin Zheng
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yuanyuan Ou
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ge Wang
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Lejing Qu
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Qian Li
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xue Zhao
- College of Life Sciences, Northwest University, Xi'an, 710069, China.
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
4
|
Zhang Z, Chen J, Chen L, Long K, Qu L, Huang S, Yuan X, Ji X, Li Q, Zhao X. Bivalent affinity binding-inspired PPARγ immobilization with selective conformation and improved ligand-binding activity. J Chromatogr A 2024; 1730:465141. [PMID: 38986402 DOI: 10.1016/j.chroma.2024.465141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Functional protein immobilization forms the basis for bio-detections. A series of one-point, site-specific immobilization methods have been developed, however, it still remains as a challenge how to avoid the proteins to move in all directions as well as conveniently regenerate the bio-devices. Herein, we have developed a bivalent affinity binding-inspired method for PPARγ immobilization using DNA aptamer and nickel-nitrilotriacetic acid (Ni2+-NTA) chelation. The specific DNA aptamer (Apt 2) was selected by an on-column systematic evolution of ligands by exponential enrichment (SELEX) method with affinity of (1.57 ± 0.15) × 105 M-1, determined by isothermal titration calorimetry (ITC). Apt 2 and nickel-nitrilotriacetic acid (Ni2+-NTA) were modified on macroporous silica gels via L-α-allylglycine as a linker. They respectively interacted with PPARγ and 6×His tag via bivalent affinity binding for the receptor immobilization. After comprehensive surface characterization, PPARγ was proved to be successful immobilized. Chromatographic studies revealed that the immobilized PPARγ has conformation selectivity, which discriminated agonist and antagonist of the receptor. Ligand-binding parameters (affinity and rate constant) of four agonists (rosiglitazone, pioglitazone, troglitazone, and magnolol) with PPARγ were determined. Troglitazone showed the lowest dissociation rate constant. The binding affinities (3.28 × 107, 1.91 × 106, 2.25 × 107, and 2.43 × 107 M-1) were highly consistent with the data obtained using purified receptor in solution (2.16 × 107, 4.52 × 106, 1.20 × 107, and 1.56 × 107 M-1), offering reliable bio-detection method for PPARγ and its ligands. Due to the biocompatibility of nuclear receptor with DNA, it is conceivable that the bivalent affinity-based method will be a general method for the immobilization of other nuclear receptors, which may provide selective conformation and improved ligand-binding activity for the receptors.
Collapse
Affiliation(s)
- Zilong Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jiahuan Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Lixiang Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Kaihua Long
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Lejing Qu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Silin Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xinyi Yuan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xu Ji
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
5
|
Hu RD, Lin WY, Feng Q, Liu J, Chen Y, Ji A, Wang C, Cao L, Zhang R, Liu Z, Cui H, Liang Q, Zhang RR. New α-Glucosidase Inhibitors from the Whole Plant of Hypericum beanii Based on Ligand Fishing and Molecular Networking Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11452-11464. [PMID: 38736181 DOI: 10.1021/acs.jafc.4c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
In this work, a new rapid and targeted method for screening α-glucosidase inhibitors from Hypericum beanii was developed and verified. Ten new polycyclic polyprenylated acylphloroglucinols (PPAPs), hyperlagarol A-J (1-10), and nine known PPAPs (11-19) were obtained from H. beanii. Their structures were identified by using comprehensive analyses involving mass spectrometry, ultraviolet spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and electron capture dissociation calculations. 1 and 2 are two new rare 2,3-seco-spirocyclic PPAPs, 3 and 4 are two novel 12,13-seco-spirocyclic PPAPs, 5 and 6 are two novel spirocyclic PPAPs, 7 and 8 are two new unusual spirocyclic PPAPs with complex bridged ring systems, and 9 and 10 are two novel nonspirocyclic PPAPs. α-GC inhibitory activities of all isolated compounds were tested. Most of them displayed inhibitory activities against α-glucosidase, with the IC50 values ranging from 6.85 ± 0.65 to 112.5 ± 9.03 μM. Moreover, the inhibitory type and mechanism of the active compounds were further analyzed using kinetic studies and molecular docking.
Collapse
Affiliation(s)
- Rui-Dan Hu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Wei-Yao Lin
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Qian Feng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Jinru Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Yidi Chen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Aijia Ji
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Caiyan Wang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Liping Cao
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518100, People's Republic of China
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Hui Cui
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Qi Liang
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518100, People's Republic of China
| | - Rong-Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| |
Collapse
|
6
|
Huang XF, Xue Y, Yong L, Wang TT, Luo P, Qing LS. Chemical derivatization strategies for enhancing the HPLC analytical performance of natural active triterpenoids. J Pharm Anal 2024; 14:295-307. [PMID: 38618252 PMCID: PMC11010456 DOI: 10.1016/j.jpha.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 04/16/2024] Open
Abstract
Triterpenoids widely exist in nature, displaying a variety of pharmacological activities. Determining triterpenoids in different matrices, especially in biological samples holds great significance. High-performance liquid chromatography (HPLC) has become the predominant method for triterpenoids analysis due to its exceptional analytical performance. However, due to the structural similarities among botanical samples, achieving effective separation of each triterpenoid proves challenging, necessitating significant improvements in analytical methods. Additionally, triterpenoids are characterized by a lack of ultraviolet (UV) absorption groups and chromophores, along with low ionization efficiency in mass spectrometry. Consequently, routine HPLC analysis suffers from poor sensitivity. Chemical derivatization emerges as an indispensable technique in HPLC analysis to enhance its performance. Considering the structural characteristics of triterpenoids, various derivatization reagents such as acid chlorides, rhodamines, isocyanates, sulfonic esters, and amines have been employed for the derivatization analysis of triterpenoids. This review comprehensively summarized the research progress made in derivatization strategies for HPLC detection of triterpenoids. Moreover, the limitations and challenges encountered in previous studies are discussed, and future research directions are proposed to develop more effective derivatization methods.
Collapse
Affiliation(s)
- Xiao-Feng Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Xue
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Sichuan Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Li Yong
- Sichuan Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Tian-Tian Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, China
| | - Pei Luo
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, China
| | - Lin-Sen Qing
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
7
|
Gabriele F, Palerma M, Ippoliti R, Angelucci F, Pitari G, Ardini M. Recent Advances on Affibody- and DARPin-Conjugated Nanomaterials in Cancer Therapy. Int J Mol Sci 2023; 24:ijms24108680. [PMID: 37240041 DOI: 10.3390/ijms24108680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Affibodies and designed ankyrin repeat proteins (DARPins) are synthetic proteins originally derived from the Staphylococcus aureus virulence factor protein A and the human ankyrin repeat proteins, respectively. The use of these molecules in healthcare has been recently proposed as they are endowed with biochemical and biophysical features heavily demanded to target and fight diseases, as they have a strong binding affinity, solubility, small size, multiple functionalization sites, biocompatibility, and are easy to produce; furthermore, impressive chemical and thermal stability can be achieved. especially when using affibodies. In this sense, several examples reporting on affibodies and DARPins conjugated to nanomaterials have been published, demonstrating their suitability and feasibility in nanomedicine for cancer therapy. This minireview provides a survey of the most recent studies describing affibody- and DARPin-conjugated zero-dimensional nanomaterials, including inorganic, organic, and biological nanoparticles, nanorods, quantum dots, liposomes, and protein- and DNA-based assemblies for targeted cancer therapy in vitro and in vivo.
Collapse
Affiliation(s)
- Federica Gabriele
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Marta Palerma
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giuseppina Pitari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Matteo Ardini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
8
|
Ye Q, Jin X, Gao H, Wei N. Site-Specific and Tunable Co-immobilization of Proteins onto Magnetic Nanoparticles via Spy Chemistry. ACS APPLIED BIO MATERIALS 2022; 5:5665-5674. [PMID: 36194637 DOI: 10.1021/acsabm.2c00709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Co-immobilization of multiple proteins onto one nanosupport has large potential in mimicking natural multiprotein complexes and constructing efficient cascade biocatalytic systems. However, control of different proteins regarding their spatial arrangement and loading ratio remains a big challenge, and protein co-immobilization often requires the use of purified proteins. Herein, built upon our recently designed SpyTag-functionalized magnetic nanoparticles (MNPs), we established a modular MNP platform for site-specific, tunable, and cost-effective protein co-immobilization. SpyCatcher-fused enhanced green fluorescent protein (i.e., EGFP-SpyCatcher) and mCherry red fluorescent protein (i.e., RFP-SpyCatcher) were designed and conjugated on MNPs, and the immobilized proteins showed 3-7-fold enhancement in storage stability and greatly improved stability against the freeze-thaw process compared to free proteins. The protein-conjugated MNPs also retained desirable colloidal stability and magnetic responsiveness, enabling facile proteins' recovery. Also, one-pot co-immobilization of the two proteins could be fine-tuned with their feed ratios. In addition, MNPs could selectively and efficiently co-immobilize both SpyCatcher-fused proteins from combined cell lysates without purification, offering a convenient and cost-effective approach for multiprotein immobilization. This MNP platform provides a facile and efficient tool to construct bionano hybrid materials (i.e., protein-based MNPs) and multiprotein systems for a variety of industrial and green chemistry applications.
Collapse
Affiliation(s)
- Quanhui Ye
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, 205 N. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Xiuyu Jin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Haifeng Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, 205 N. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|