1
|
Taufeeq M, Choudhury A, Hussain A, Alajmi MF, Mohammad T, Shamsi A, Hassan MI. Discovering potential ERK1 inhibitors from natural products for therapeutic targeting of Alzheimer's disease. J Alzheimers Dis 2025:13872877241309592. [PMID: 39814427 DOI: 10.1177/13872877241309592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
BACKGROUND Extracellular signal-regulated kinase 1 (ERK1) belongs to mitogen-activated protein kinases, which are essential for memory formation, cognitive function, and synaptic plasticity. During Alzheimer's disease (AD), ERK1 phosphorylates tau at 15 phosphorylation sites, leading to the formation of neurofibrillary tangles. The overactivation of ERK1 in microglia promotes the release of pro-inflammatory cytokines, which results in neuroinflammation. Additionally, elevated oxidative stress during AD stimulates the ERK1 pathway, leading to neuronal loss. OBJECTIVE Because ERK1 signaling plays a significant role in tau phosphorylation, targeting ERK1 may be therapeutically beneficial by either preventing excessive activation of the signaling pathway or altering its pathway to enhance neuroprotective effects during AD. METHODS This study employed structure-based virtual screening of phytoconstituents from the IMPPAT library. Subsequently, in-depth docking and molecular dynamics (MD) simulation studies were implemented to identify potential ERK1 inhibitors with desirable pharmacological properties. RESULTS Silandrin and Hydroxytuberosone were found to be potential ERK1 inhibitors with higher affinity and specificity than the control molecule Tizaterkib. These compounds specifically bind to the ERK1 substrate binding pocket and interact with crucial residues. Finally, the elucidated compounds with ERK1 were evaluated using an all-atom molecular MD simulation to analyze structural dynamics, structural compactness, hydrogen bond dynamics, principal component analysis, and free energy landscape. CONCLUSIONS The study suggested that Silandrin and Hydroxytuberosone can further be exploited as potential lead molecules for therapeutic development against ERK1-mediated AD.
Collapse
Affiliation(s)
- Mohammad Taufeeq
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
2
|
Zhang C, Zhou J, Zhuo L, Zhang W, Lv L, Zhu L, Zhang J, Feng F, Liu W, Han L, Liao W. The TLR4/NF-κB/NLRP3 and Nrf2/HO-1 pathways mediate the neuroprotective effects of alkaloids extracted from Uncaria rhynchophylla in Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118391. [PMID: 38797377 DOI: 10.1016/j.jep.2024.118391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is the second most common neurodegenerative disorder with limited therapeutic options available. Neuroinflammation plays an important role in the occurrence and development of PD. Alkaloids extracted from Uncaria rhynchophylla (URA), have emerged as a potential neuroprotective agent because of its anti-inflammatory and anti-oxidant properties. Nevertheless, the underlying mechanism by which URA exerts neuroprotective effects in PD remains obscure. AIM OF THE STUDY The main aim of this study was to investigate the neuroprotective effects and underlying mechanism of URA in the treatment of PD through in vivo and in vitro models, focusing on the neuroinflammation and oxidative stress pathways. MATERIALS AND METHODS The protective effects of URA against PD were evaluated by neurobehavioral tests, immunohistochemistry, serum biochemical assays, and real-time quantitative polymerase chain reaction in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice. The role of the TLR4/NF-κB/NLRP3 pathway and the Nrf2/HO-1 pathway in URA-mediated effects was examined in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells and a microglia-neuron coculture system. RESULTS URA significantly alleviated motor deficits and dopaminergic neurotoxicity, and reversed the abnormal secretion of inflammatory and oxidative stress factors in the serum of MPTP-induced mice. URA suppressed the gene expression of Toll-like receptor 4 (TLR4), NOD-like receptor protein 3, and cyclooxygenase 2 (COX2) in the striatum of PD mice. Further studies indicated that URA inhibited activation of the TLR4/NF-κB/NLRP3 pathway and enhanced activation of the Nrf2/HO-1 pathway, reduced reactive oxygen species (ROS) production, and reversed the secretion of inflammatory mediators in LPS-stimulated BV-2 microglial cells, thereby alleviating neuroinflammatory damage to SH-SY5Y neuronal cells. CONCLUSION URA exerted neuroprotective effects against PD mainly by the inhibition of the TLR4/NF-κB/NLRP3 pathway and activation of the Nrf2/HO-1 antioxidant pathway, highlighting URA as a promising candidate for PD treatment.
Collapse
Affiliation(s)
- Chunxia Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Jiayu Zhou
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Lingxin Zhuo
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Wenxin Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Lingrui Lv
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Lingmeng Zhu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Jiayi Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China
| | - Feng Feng
- Nanjing Medical University, Nanjing, 211166, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Zhejiang Center for safety study of drug substances (Industrial Technology Innovation Platform), Hangzhou, 310018, China
| | - Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China.
| | - Wenting Liao
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, China.
| |
Collapse
|
3
|
Kellogg CM, Pham K, Ko S, Cox JE, Machalinski AH, Stout MB, Sharpe AL, Beckstead MJ, Chucair-Elliott AJ, Ocañas SR, Freeman WM. Specificity and efficiency of tamoxifen-mediated Cre induction is equivalent regardless of age. iScience 2023; 26:108413. [PMID: 38058312 PMCID: PMC10696116 DOI: 10.1016/j.isci.2023.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/15/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023] Open
Abstract
Temporally controlling Cre recombination through tamoxifen (Tam) induction has many advantages for biomedical research. Most studies report early post-natal/juvenile (<2 m.o.) Tam induction, but age-related neurodegeneration and aging studies can require Cre induction in older mice (>12 m.o.). While anecdotally reported as problematic, there are no published comparisons of Tam-mediated Cre induction at early and late ages. Here, microglial-specific Cx3cr1creERT2 mice were crossed to a floxed NuTRAP reporter to compare Cre induction at early (3-6 m.o.) and late (20 m.o.) ages. Specificity and efficiency of microglial labeling at 21-22 m.o. were identical in mice induced with Tam at early and late ages. Age-related microglial translatomic changes were also similar regardless of Tam induction age. Each Cre and flox mouse line should be independently validated, however, these findings demonstrate that Tam-mediated Cre induction can be performed even into older mouse ages and should be generalizable to other inducible Cre models.
Collapse
Affiliation(s)
- Collyn M. Kellogg
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sunghwan Ko
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience Graduate Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jillian E.J. Cox
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience Graduate Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Adeline H. Machalinski
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael B. Stout
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Amanda L. Sharpe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Neuroscience Graduate Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael J. Beckstead
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Ana J. Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sarah R. Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience Graduate Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M. Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Neuroscience Graduate Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
4
|
Kellogg CM, Pham K, Ko S, Cox JEJ, Machalinski AH, Stout MB, Sharpe AL, Beckstead MJ, Chucair-Elliott AJ, Ocañas SR, Freeman WM. Consistent specificity and efficiency of tamoxifen-mediated cre induction across ages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558482. [PMID: 37781585 PMCID: PMC10541132 DOI: 10.1101/2023.09.19.558482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Temporally controlling cre recombination through tamoxifen (Tam) induction has many advantages for biomedical research. Most studies report Tam induction at early post-natal/juvenile (<2 m.o.) mouse ages, but age-related neurodegeneration and aging studies can require cre induction in older mice (>12 m.o.). While anecdotally reported as problematic, there are no published comparisons of Tam mediated cre induction at early and late ages. Here, microglial-specific Cx3cr1 creERT 2 mice were crossed to a floxed NuTRAP reporter to compare cre induction at early (3-6 m.o.) and late (20 m.o.) ages. Specificity and efficiency of microglial labeling at 21-22 m.o. were identical in mice induced with Tam at 3-6 m.o. or 20 m.o. of age. Age-related microglial translatomic changes were also similar regardless of Tam induction age. Each cre and flox mouse line should be validated independently, however, these findings demonstrate that Tam-mediated cre induction can be performed even into older mouse ages.
Collapse
|