1
|
Hakim MH, Brindise MC, Ahmadzadegan A, Buno KP, Dos Santos ACF, Cragg KR, Dou Z, Ladisch MR, Ardekani AM, Vlachos PP, Solorio L. Rose Bengal Labeled Bovine Serum Albumin for Protein Transport Imaging in Subcutaneous Tissues Using Computed Tomography and Fluorescence Microscopy. Bioconjug Chem 2024; 35:1044-1052. [PMID: 38875443 DOI: 10.1021/acs.bioconjchem.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Subcutaneous (SC) injection of protein-based therapeutics is a convenient and clinically established drug delivery method. However, progress is needed to increase the bioavailability. Transport of low molecular weight (Mw) biotherapeutics such as insulin and small molecule contrast agents such as lipiodol has been studied using X-ray computed tomography (CT). This analysis, however, does not translate to the investigation of higher Mw therapeutics, such as monoclonal antibodies (mAbs), due to differences in molecular and formulation properties. In this study, an iodinated fluorescein analog rose bengal (RB) was used as a radiopaque and fluorescent label to track the distribution of bovine serum albumin (BSA) compared against unconjugated RB and sodium iodide (NaI) via CT and confocal microscopy following injection into ex vivo porcine SC tissue. Importantly, the high concentration BSA-RB exhibited viscosities more like that of viscous biologics than the small molecule contrast agents, suggesting that the labeled protein may serve as a more suitable formulation for the investigation of injection plumes. Three-dimensional (3D) renderings of the injection plumes showed that the BSA-RB distribution was markedly different from unconjugated RB and NaI, indicating the need for direct visualization of large protein therapeutics using conjugated tags rather than using small molecule tracers. Whereas this proof-of-concept study shows the novel use of RB as a label for tracking BSA distribution, our experimental approach may be applied to high Mw biologics, including mAbs. These studies could provide crucial information about diffusion in SC tissue and the influence of injection parameters on distribution, transport, and downstream bioavailability.
Collapse
Affiliation(s)
- Mazin H Hakim
- Weldon School of Biomedical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Melissa C Brindise
- School of Mechanical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Adib Ahmadzadegan
- School of Mechanical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Kevin P Buno
- Weldon School of Biomedical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Antonio C F Dos Santos
- Laboratory of Renewable Resources Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
- Department of Agricultural and Biological Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Kevin R Cragg
- Weldon School of Biomedical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Zhongwang Dou
- School of Mechanical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Michael R Ladisch
- Weldon School of Biomedical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
- Laboratory of Renewable Resources Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
- Department of Agricultural and Biological Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Pavlos P Vlachos
- Weldon School of Biomedical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
- School of Mechanical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
- Purdue Center for Cancer Research, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Simmons JA, Davis J, Thomas J, Lopez J, Le Blanc A, Allison H, Slook H, Lewis P, Holtz J, Fisher P, Broderick KE, Marston JO. Characterization of skin blebs from intradermal jet injection: Ex-vivo studies. J Control Release 2019; 307:200-210. [PMID: 31252035 DOI: 10.1016/j.jconrel.2019.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/14/2019] [Accepted: 06/24/2019] [Indexed: 01/27/2023]
Abstract
This paper presents results from an ex-vivo study of intradermal jet injections, which is an attractive method to achieve both needle-free and fractional dose delivery of vaccines. Due to the fact that fluid properties of many novel therapeutics and vaccines can vary significantly, a key parameter for our study is the fluid viscosity, whilst the main focus is on determining the best correlation between the delivered volume and geometrical dimensions of the fluid deposit. For this we use a combination of top-view (skin wheal), underside (below the dermis), and cross-section (true skin bleb) perspectives and find that the top-view alone, as done in clinical practice, is insufficient to estimate the volume deposited in the dermis. Overall, the best correlation is found between the injection volume and cross-sectional diameter, however there is significant variation amongst the different fluids. For mean injection volumes of 60 μL the mean bleb diameter is ≈8 mm, with mean aspect ratio h¯/d=0.38, indicating the blebs are mostly oblate. However, the shape varies with viscosity and the higher viscosity does not spread laterally to the same degree as lower viscosity fluids. In addition, our high-speed video observations of the injection process, reveal some interesting dynamics of the jet injection method, and we modeled the bleb growth with an exponential saturation.
Collapse
Affiliation(s)
- Jonathan A Simmons
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America; Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Justin Davis
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - James Thomas
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Juan Lopez
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Andrew Le Blanc
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Haley Allison
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Haley Slook
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Paul Lewis
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Joshua Holtz
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Paul Fisher
- Inovio Pharmaceuticals, 10480 Wateridge Circle, San Diego, CA 92121, United States of America
| | - Kate E Broderick
- Inovio Pharmaceuticals, 10480 Wateridge Circle, San Diego, CA 92121, United States of America
| | - Jeremy O Marston
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America.
| |
Collapse
|
3
|
Expanding the applications of microneedles in dermatology. Eur J Pharm Biopharm 2019; 140:121-140. [DOI: 10.1016/j.ejpb.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022]
|
4
|
Marston JO, Lacerda CMR. Characterization of jet injection efficiency with mouse cadavers. J Control Release 2019; 305:101-109. [PMID: 31112720 DOI: 10.1016/j.jconrel.2019.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 01/29/2023]
Abstract
Needle-free drug delivery is highly sought after for reduction in sharps waste, prevention of needle-stick injuries, and potential for improved drug dispersion and uptake. Whilst there is a wealth of literature on the array of different delivery methods, jet injection is proposed as the sole candidate for delivery of viscous fluids, which is especially relevant with the advent of DNA-based vaccines. The focus of this study was therefore to assess the role of viscosity and jet configuration (i.e. stand-off relative to the skin) upon injection efficiency for a fixed spring-loaded system (Bioject ID Pen). We performed this assessment in the context of mouse cadavers and found that the dominant factor in determining success rates was the time from euthanasia, which was taken as a proxy for the stiffness of the underlying tissue. For overall injection efficiency, ANOVA tests indicated that stiffness was highly significant (P < < 0.001), stand-off was moderately significant (P < 0.1), and viscosity was insignificant. In contrast, both viscosity and standoff were found to be significant (P < 0.01) when evaluating the percentage delivered intradermally. Using high-resolution micro-computed tomography (μ-CT), we also determined the depth and overall dispersion pattern immediately after injection.
Collapse
Affiliation(s)
- Jeremy O Marston
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America.
| | - Carla M R Lacerda
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| |
Collapse
|
5
|
|
6
|
Evaluation of Hydrogel Suppositories for Delivery of 5-Aminolevulinic Acid and Hematoporphyrin Monomethyl Ether to Rectal Tumors. Molecules 2016; 21:molecules21101347. [PMID: 27754333 PMCID: PMC6274069 DOI: 10.3390/molecules21101347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 01/05/2023] Open
Abstract
We evaluated the potential utility of hydrogels for delivery of the photosensitizing agents 5-aminolevulinic acid (ALA) and hematoporphyrin monomethyl ether (HMME) to rectal tumors. Hydrogel suppositories containing ALA or HMME were administered to the rectal cavity of BALB/c mice bearing subcutaneous tumors of SW837 rectal carcinoma cells. For comparison, ALA and HMME were also administered by three common photosensitizer delivery routes; local administration to the skin and intratumoral or intravenous injection. The concentration of ALA-induced protoporphyrin IX or HMME in the rectal wall, skin, and subcutaneous tumor was measured by fluorescence spectrophotometry, and their distribution in vertical sections of the tumor was measured using a fluorescence spectroscopy system. The concentration of ALA-induced protoporphyrin IX in the rectal wall after local administration of suppositories to the rectal cavity was 9.76-fold (1 h) and 5.8-fold (3 h) higher than in the skin after cutaneous administration. The maximal depth of ALA penetration in the tumor was ~3–6 mm at 2 h after cutaneous administration. Much lower levels of HMME were observed in the rectal wall after administration as a hydrogel suppository, and the maximal depth of tumor penetration was <2 mm after cutaneous administration. These data show that ALA more readily penetrates the mucosal barrier than the skin. Administration of ALA as an intrarectal hydrogel suppository is thus a potential delivery route for photodynamic therapy of rectal cancer.
Collapse
|
7
|
Kearney MC, Brown S, McCrudden MTC, Brady AJ, Donnelly RF. Potential of microneedles in enhancing delivery of photosensitising agents for photodynamic therapy. Photodiagnosis Photodyn Ther 2014; 11:459-66. [PMID: 25291556 DOI: 10.1016/j.pdpdt.2014.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/17/2014] [Accepted: 09/20/2014] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy can be used in the treatment of pre-malignant and malignant diseases. It offers advantages over other therapies currently used in the treatment of skin lesions including avoidance of damage to surrounding tissue and minimal or no scarring. Unfortunately, systemic delivery of photosensitising agents can result in adverse effects, such as prolonged cutaneous photosensitivity; while topical administration lacks efficacy in the clearance of deeper skin lesions and those with a thick overlying keratotic layer. Therefore, enhancement of conventional photosensitiser delivery is desired. However, the physicochemical properties of photosensitising agents, such as extreme hydrophilicity or lipophilicity and large molecular weights make this challenging. This paper reviews the potential of microneedles as a viable method to overcome these delivery-limiting physicochemical characteristics and discusses the current benefits and limitations of solid, dissolving and hydrogel-forming microneedles. Clinical studies in which microneedles have successfully improved photodynamic therapy are also discussed, along with benefits which microneedles offer, such as precise photosensitiser localisation, painless application and reduction in waiting times between photosensitiser administration and irradiation highlighted.
Collapse
Affiliation(s)
- Mary-Carmel Kearney
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Sarah Brown
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | - Aaron J Brady
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
8
|
Abstract
INTRODUCTION Topical photodynamic therapy (PDT) refers to topical application of a photosensitizer onto the site of skin disease which is followed by illumination and results in death of selected cells. The main problem in topical PDT is insufficient penetration of the photosensitizer into the skin, which limits its use to superficial skin lesions. In order to overcome this problem, recent studies tested liposomes as delivery systems for photosensitizers. AREAS COVERED This paper reviews the use of different types of liposomes for encapsulating photosensitizers for topical PDT. Liposomes should enhance the photosensitizers' penetration into the skin, while decreasing its absorption into systemic circulation. Only few photosensitizers have currently been encapsulated in liposomes for topical PDT: 5-aminolevulinic acid (5-ALA), temoporfin (mTHPC) and methylene blue. EXPERT OPINION Investigated liposomes enhanced the skin penetration of 5-ALA and mTHPC, reduced their systemic absorption and reduced their cytotoxicity compared with free drugs. Their high tissue penetration should enable the treatment of deep and hyperkeratotic skin lesions, which is the main goal of using liposomes. However, liposomes still do not attract enough attention as drug carriers in topical PDT. In vivo studies of their therapeutic effectiveness are needed in order to obtain enough evidence for their potential clinical use as carriers for photosensitizers in topical PDT.
Collapse
|
9
|
Kim JE, Kim SJ, Hwang JI, Lee KJ, Park HJ, Cho BK. New proposal for the treatment of viral warts with intralesional injection of 5-aminolevulinic acid photodynamic therapy. J DERMATOL TREAT 2011; 23:192-5. [DOI: 10.3109/09546634.2010.551534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Morrow DIJ, McCarron PA, Woolfson AD, Juzenas P, Juzeniene A, Iani V, Moan J, Donnelly RF. Novel patch-based systems for the localised delivery of ALA-esters. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 101:59-69. [PMID: 20634088 DOI: 10.1016/j.jphotobiol.2010.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 06/06/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
In photodynamic therapy (PDT) a combination of visible light and a sensitising drug causes the destruction of selected cells. Aminolaevulinic acid (ALA) has been widely used in topical PDT for over 15 years. However, ALA does not possess favourable physicochemical properties for skin penetration. Consequently, the clearance rates for difficult to treat lesions, such as nodular basal cell carcinomas are relatively low. For the first time, equimolar concentrations of ALA, methyl-ALA (m-ALA) and hexyl-ALA (h-ALA) have been incorporated into a bioadhesive patch-based system. In vitro penetration studies into excised porcine skin revealed that ALA patches containing relatively high loadings (226.7 micromol cm(-2)) were associated with significantly greater tissue concentrations (70.7 micromol cm(-3)) than patches containing m-ALA (16.3 micromol cm(-3)) or h-ALA (17.4 micromol cm(-3)). ALA was also found to be the most efficient inducer of protoporphyrin (PpIX) fluorescence in mice, in vivo (maximum mean fluorescence: ALA=236.2 a.u., m-ALA=175.1 a.u., h-ALA=193.5 a.u.). However, when the lipophilic hexylester was formulated in a pressure sensitive adhesive (PSA) patch, significantly higher PpIX levels were achieved compared to all bioadhesive systems tested. Of major importance, PSA patches containing relatively low h-ALA loadings induced high PpIX levels, which were localised to the application area. This study has highlighted the importance of rational selection of both the active agent and the delivery system. Bioadhesive preparations containing ALA are ideal for delivery to moist environments; whereas h-ALA-loaded PSA systems may facilitate enhanced delivery to dry areas of skin. In addition, owing to the relatively low loadings of h-ALA required in PSA patches, the costs of clinical PDT may potentially be reduced.
Collapse
Affiliation(s)
- Desmond I J Morrow
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Morrow DI, McCarron PA, Woolfson AD, Juzenas P, Juzeniene A, Iani V, Moan J, Donnelly RF. Influence of penetration enhancers on topical delivery of 5-aminolevulinic acid from bioadhesive patches. J Pharm Pharmacol 2010; 62:685-95. [DOI: 10.1211/jpp.62.06.0004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Donnelly RF, Morrow DIJ, McCarron PA, David Woolfson A, Morrissey A, Juzenas P, Juzeniene A, Iani V, McCarthy HO, Moan J. Microneedle Arrays Permit Enhanced Intradermal Delivery of a Preformed Photosensitizer. Photochem Photobiol 2009; 85:195-204. [DOI: 10.1111/j.1751-1097.2008.00417.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Donnelly RF, McCarron PA, Morrow DIJ, Sibani SA, Woolfson AD. Photosensitiser delivery for photodynamic therapy. Part 1: Topical carrier platforms. Expert Opin Drug Deliv 2008; 5:757-66. [PMID: 18590460 DOI: 10.1517/17425247.5.7.757] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is a medical treatment in which a combination of a photosensitising drug and visible light causes destruction of selected cells. Due to the lack of true selectivity of preformed photosensitisers for neoplastic tissue and their high molecular weights, PDT of superficial skin lesions has traditionally been mediated by topical application of the porphyrin precursor 5-aminolevulinic acid (ALA). OBJECTIVE This article aims to review the traditional formulation-based approaches taken to topical delivery of ALA and discusses the more innovative strategies investigated for enhancement of PDT mediated by topical application of ALA and preformed photosensitisers. METHODS All of the available published print and online literature in this area was reviewed. As drug delivery of agents used in PDT is still something of an emerging field, it was not necessary to go beyond literature from the last 30 years. RESULTS/CONCLUSION PDT of neoplastic skin lesions is currently based almost exclusively on topical application of simple semisolid dosage forms containing ALA or its methyl ester. Until expiry of patents on the current market-leading products, there is unlikely to be a great incentive to engage in design and evaluation of innovative formulations for topical PDT, especially those containing the more difficult-to-deliver preformed photosensitisers.
Collapse
Affiliation(s)
- Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, UK.
| | | | | | | | | |
Collapse
|
14
|
Donnelly RF, Morrow DI, McCarron PA, Woolfson AD, Morrissey A, Juzenas P, Juzeniene A, Iani V, McCarthy HO, Moan J. Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: Potential for enhanced topical photodynamic therapy. J Control Release 2008; 129:154-62. [DOI: 10.1016/j.jconrel.2008.05.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/30/2008] [Accepted: 05/05/2008] [Indexed: 10/22/2022]
|