Overexpression of penicillin V acylase from Streptomyces lavendulae and elucidation of its catalytic residues.
Appl Environ Microbiol 2016;
81:1225-33. [PMID:
25501472 DOI:
10.1128/aem.02352-14]
[Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pva gene from Streptomyces lavendulae ATCC 13664, encoding a novel penicillin V acylase (SlPVA), has been isolated and characterized. The gene encodes an inactive precursor protein containing a secretion signal peptide that is activated by two internal autoproteolytic cleavages that release a 25-amino-acid linker peptide and two large domains of 18.79 kDa (alpha-subunit) and 60.09 kDA (beta-subunit). Based on sequence alignments and the three-dimensional model of SlPVA, the enzyme contains a hydrophobicpocket involved in catalytic activity, including Serbeta1, Hisbeta23, Valbeta70, and Asnbeta272, which were confirmed by site-directed mutagenesis studies. The heterologous expression of pva in S. lividans led to the production of an extracellularly homogeneous heterodimeric enzyme at a 5-fold higher concentration (959 IU/liter) than in the original host and in a considerably shorter time. According to the catalytic properties of SlPVA, the enzyme must be classified as a new member of the Ntn-hydrolase superfamily, which belongs to a novel subfamily of acylases that recognize substrates with long hydrophobic acyl chains and have biotechnological applications in semisynthetic antifungal production.
Collapse