1
|
Isobe H, Shoji M, Suzuki T, Shen JR, Yamaguchi K. Roles of the Flexible Primary Coordination Sphere of the Mn 4CaO x Cluster: What Are the Immediate Decay Products of the S3 State? J Phys Chem B 2022; 126:7212-7228. [DOI: 10.1021/acs.jpcb.2c02596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroshi Isobe
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Mitsuo Shoji
- Center for Computational Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Takayoshi Suzuki
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Kizashi Yamaguchi
- Institute for NanoScience Design, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
2
|
Evidence for the Mn4-Yz Magnetic Interaction in Ca2+- depleted Photosystem II. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Kaur D, Khaniya U, Zhang Y, Gunner MR. Protein Motifs for Proton Transfers That Build the Transmembrane Proton Gradient. Front Chem 2021; 9:660954. [PMID: 34211960 PMCID: PMC8239185 DOI: 10.3389/fchem.2021.660954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Biological membranes are barriers to polar molecules, so membrane embedded proteins control the transfers between cellular compartments. Protein controlled transport moves substrates and activates cellular signaling cascades. In addition, the electrochemical gradient across mitochondrial, bacterial and chloroplast membranes, is a key source of stored cellular energy. This is generated by electron, proton and ion transfers through proteins. The gradient is used to fuel ATP synthesis and to drive active transport. Here the mechanisms by which protons move into the buried active sites of Photosystem II (PSII), bacterial RCs (bRCs) and through the proton pumps, Bacteriorhodopsin (bR), Complex I and Cytochrome c oxidase (CcO), are reviewed. These proteins all use water filled proton transfer paths. The proton pumps, that move protons uphill from low to high concentration compartments, also utilize Proton Loading Sites (PLS), that transiently load and unload protons and gates, which block backflow of protons. PLS and gates should be synchronized so PLS proton affinity is high when the gate opens to the side with few protons and low when the path is open to the high concentration side. Proton transfer paths in the proteins we describe have different design features. Linear paths are seen with a unique entry and exit and a relatively straight path between them. Alternatively, paths can be complex with a tangle of possible routes. Likewise, PLS can be a single residue that changes protonation state or a cluster of residues with multiple charge and tautomer states.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - Yingying Zhang
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - M R Gunner
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
4
|
The S3 State of the Oxygen-Evolving Complex: Overview of Spectroscopy and XFEL Crystallography with a Critical Evaluation of Early-Onset Models for O–O Bond Formation. INORGANICS 2019. [DOI: 10.3390/inorganics7040055] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The catalytic cycle of the oxygen-evolving complex (OEC) of photosystem II (PSII) comprises five intermediate states Si (i = 0–4), from the most reduced S0 state to the most oxidized S4, which spontaneously evolves dioxygen. The precise geometric and electronic structure of the Si states, and hence the mechanism of O–O bond formation in the OEC, remain under investigation, particularly for the final steps of the catalytic cycle. Recent advances in protein crystallography based on X-ray free-electron lasers (XFELs) have produced new structural models for the S3 state, which indicate that two of the oxygen atoms of the inorganic Mn4CaO6 core of the OEC are in very close proximity. This has been interpreted as possible evidence for “early-onset” O–O bond formation in the S3 state, as opposed to the more widely accepted view that the O–O bond is formed in the final state of the cycle, S4. Peroxo or superoxo formation in S3 has received partial support from computational studies. Here, a brief overview is provided of spectroscopic information, recent crystallographic results, and computational models for the S3 state. Emphasis is placed on computational S3 models that involve O–O formation, which are discussed with respect to their agreement with structural information, experimental evidence from various spectroscopic studies, and substrate exchange kinetics. Despite seemingly better agreement with some of the available crystallographic interpretations for the S3 state, models that implicate early-onset O–O bond formation are hard to reconcile with the complete line of experimental evidence, especially with X-ray absorption, X-ray emission, and magnetic resonance spectroscopic observations. Specifically with respect to quantum chemical studies, the inconclusive energetics for the possible isoforms of S3 is an acute problem that is probably beyond the capabilities of standard density functional theory.
Collapse
|
5
|
Chrysina M, de Mendonça Silva JC, Zahariou G, Pantazis DA, Ioannidis N. Proton Translocation via Tautomerization of Asn298 During the S 2-S 3 State Transition in the Oxygen-Evolving Complex of Photosystem II. J Phys Chem B 2019; 123:3068-3078. [PMID: 30888175 PMCID: PMC6727346 DOI: 10.1021/acs.jpcb.9b02317] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
In biological water oxidation, a
redox-active tyrosine residue
(D1-Tyr161 or YZ) mediates electron transfer between the
Mn4CaO5 cluster of the oxygen-evolving complex
and the charge-separation site of photosystem II (PSII), driving the
cluster through progressively higher oxidation states Si (i = 0–4). In contrast to
lower S-states (S0, S1), in higher S-states
(S2, S3) of the Mn4CaO5 cluster, YZ cannot be oxidized at cryogenic temperatures
due to the accumulation of positive charge in the S1 →
S2 transition. However, oxidation of YZ by illumination
of S2 at 77–190 K followed by rapid freezing and
charge recombination between YZ• and
the plastoquinone radical QA•– allows trapping of an S2 variant, the so-called S2trapped state (S2t), that
is capable of forming YZ• at cryogenic
temperature. To identify the differences between the S2 and S2t states, we used the S2tYZ• intermediate as a probe for
the S2t state and followed the S2tYZ•/QA•– recombination kinetics at 10 K using time-resolved electron paramagnetic
resonance spectroscopy in H2O and D2O. The results
show that while S2tYZ•/QA•– recombination can be described
as pure electron transfer occurring in the Marcus inverted region,
the S2t → S2 reversion depends
on proton rearrangement and exhibits a strong kinetic isotope effect.
This suggests that YZ oxidation in the S2t state is facilitated by favorable proton redistribution in
the vicinity of YZ, most likely within the hydrogen-bonded
YZ–His190–Asn298 triad. Computational models
show that tautomerization of Asn298 to its imidic acid form enables
proton translocation to an adjacent asparagine-rich cavity of water
molecules that functions as a proton reservoir and can further participate
in proton egress to the lumen.
Collapse
Affiliation(s)
- Maria Chrysina
- Institute of Nanoscience & Nanotechnology , NCSR "Demokritos" , Athens 15310 , Greece.,Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Juliana Cecília de Mendonça Silva
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , 45470 Mülheim an der Ruhr , Germany.,Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Georgia Zahariou
- Institute of Nanoscience & Nanotechnology , NCSR "Demokritos" , Athens 15310 , Greece
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Nikolaos Ioannidis
- Institute of Nanoscience & Nanotechnology , NCSR "Demokritos" , Athens 15310 , Greece
| |
Collapse
|
6
|
Affiliation(s)
- Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
7
|
Kawashima K, Saito K, Ishikita H. Mechanism of Radical Formation in the H-Bond Network of D1-Asn298 in Photosystem II. Biochemistry 2018; 57:4997-5004. [DOI: 10.1021/acs.biochem.8b00574] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Keisuke Kawashima
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
8
|
Beal NJ, Corry TA, O'Malley PJ. A Comparison of Experimental and Broken Symmetry Density Functional Theory (BS-DFT) Calculated Electron Paramagnetic Resonance (EPR) Parameters for Intermediates Involved in the S 2 to S 3 State Transition of Nature's Oxygen Evolving Complex. J Phys Chem B 2018; 122:1394-1407. [PMID: 29300480 DOI: 10.1021/acs.jpcb.7b10843] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A broken symmetry density functional theory (BS-DFT) magnetic analysis of the S2, S2YZ•, and S3 states of Nature's oxygen evolving complex is performed for both the native Ca and Sr substituted forms. Good agreement with experiment is observed between the tyrosyl calculated g-tensor and 1H hyperfine couplings for the native Ca form. Changes in the hydrogen bonding environment of the tyrosyl radical in S2YZ• caused by Sr substitution lead to notable changes in the calculated g-tensor of the tyrosyl radical. Comparison of calculated and experimental 55Mn hyperfine couplings for the S3 state presently favors an open cubane form of the complex with an additional OH ligand coordinating to MnD. In Ca models, this additional ligation can arise by closed-cubane form deprotonation of the Ca ligand W3 in the S2YZ• state accompanied by spontaneous movement to the vacant Mn coordination site or by addition of an external OH group. For the Sr form, no spontaneous movement of W3 to the vacant Mn coordination site is observed in contrast to the native Ca form, a difference which may lead to the reduced catalytic activity of the Sr substituted form. BS-DFT studies on peroxo models of S3 as indicated by a recent X-ray free electron laser (XFEL) crystallography study give rise to a structural model compatible with experimental data and an S = 3 ground state compatible with EPR studies.
Collapse
Affiliation(s)
- Nathan J Beal
- School of Chemistry, The University of Manchester , Manchester M13 9PL, U.K
| | - Thomas A Corry
- School of Chemistry, The University of Manchester , Manchester M13 9PL, U.K
| | - Patrick J O'Malley
- School of Chemistry, The University of Manchester , Manchester M13 9PL, U.K
| |
Collapse
|
9
|
Zahariou G, Ioannidis N. Theoretical study of the EPR spectrum of the S 3TyrZ • metalloradical intermediate state of the O 2-evolving complex of photosystem II. PHOTOSYNTHESIS RESEARCH 2016; 130:417-426. [PMID: 27166961 DOI: 10.1007/s11120-016-0274-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/03/2016] [Indexed: 05/21/2023]
Abstract
The intermediates trapped during the transitions between the consecutive S-states of the oxygen-evolving complex (OEC) of photosystem II (PSII) contain the free radical TyrZ• interacting magnetically with the Mn-cluster (Mn4Ca). In this paper, we present a theoretical study of the EPR spectrum of the S3TyrZ• metalloradical intermediate state, which has been recently detected in MeOH-containing PSII preparations. For this analysis, we use two different approximations: the first, simpler one, is the point-dipole approach, where the two interacting spins are the S = 1/2 of TyrZ• and the ground spin state of S = 3 of the OEC being in the S3 state. The second approximation is based on previous proposals indicating that the ground spin state (S G = 3) of the S3 state arises from an antiferromagnetic exchange coupling between the S = 9/2 of the Mn(IV)3CaO4 and the S = 3/2 of the external Mn(IV) of the OEC. Under the above assumption, the second approximation involves three interacting spins, denoted S A(Mn(IV)3Ca) = 9/2, S B(Mn(IV)) = 3/2 and S C(TyrZ•) = 1/2. Accordingly, the tyrosine radical is exposed to dipolar interactions with both fragments of the OEC, while an antiferromagnetic exchange coupling within the "3 + 1" structural motif of the OEC is also considered. By application of the first-point-dipole approach, the inter-spin distance that simulates the experimental spectrum is not consistent with the theoretical models that were recently reported for the OEC in the S3 state. Instead, the recent models are consistent with the results of the analysis that is performed by using the second, more detailed, approach.
Collapse
Affiliation(s)
- Georgia Zahariou
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", 15310, Athens, Greece.
| | - Nikolaos Ioannidis
- Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", 15310, Athens, Greece
| |
Collapse
|
10
|
Retegan M, Pantazis DA. Interaction of methanol with the oxygen-evolving complex: atomistic models, channel identification, species dependence, and mechanistic implications. Chem Sci 2016; 7:6463-6476. [PMID: 28451104 PMCID: PMC5355959 DOI: 10.1039/c6sc02340a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/28/2016] [Indexed: 12/29/2022] Open
Abstract
Methanol has long being used as a substrate analogue to probe access pathways and investigate water delivery at the oxygen-evolving complex (OEC) of photosystem-II. In this contribution we study the interaction of methanol with the OEC by assembling available spectroscopic data into a quantum mechanical treatment that takes into account the local channel architecture of the active site. The effect on the magnetic energy levels of the Mn4Ca cluster in the S2 state of the catalytic cycle can be explained equally well by two models that involve either methanol binding to the calcium ion of the cluster, or a second-sphere interaction in the vicinity of the "dangler" Mn4 ion. However, consideration of the latest 13C hyperfine interaction data shows that only one model is fully consistent with experiment. In contrast to previous hypotheses, methanol is not a direct ligand to the OEC, but is situated at the end-point of a water channel associated with the O4 bridge. Its effect on magnetic properties of plant PS-II results from disruption of hydrogen bonding between O4 and proximal channel water molecules, thus enhancing superexchange (antiferromagnetic coupling) between the Mn3 and Mn4 ions. The same interaction mode applies to the dark-stable S1 state and possibly to all other states of the complex. Comparison of protein sequences from cyanobacteria and plants reveals a channel-altering substitution (D1-Asn87 versus D1-Ala87) in the proximity of the methanol binding pocket, explaining the species-dependence of the methanol effect. The water channel established as the methanol access pathway is the same that delivers ammonia to the Mn4 ion, supporting the notion that this is the only directly solvent-accessible manganese site of the OEC. The results support the pivot mechanism for water binding at a component of the S3 state and would be consistent with partial inhibition of water delivery by methanol. Mechanistic implications for enzymatic regulation and catalytic progression are discussed.
Collapse
Affiliation(s)
- Marius Retegan
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany .
| | - Dimitrios A Pantazis
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany .
| |
Collapse
|
11
|
Retegan M, Cox N, Lubitz W, Neese F, Pantazis DA. The first tyrosyl radical intermediate formed in the S2-S3 transition of photosystem II. Phys Chem Chem Phys 2015; 16:11901-10. [PMID: 24760184 DOI: 10.1039/c4cp00696h] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The EPR "split signals" represent key intermediates of the S-state cycle where the redox active D1-Tyr161 (YZ) has been oxidized by the reaction center of the photosystem II enzyme to its tyrosyl radical form, but the successive oxidation of the Mn4CaO5 cluster has not yet occurred (SiYZ˙). Here we focus on the S2YZ˙ state, which is formed en route to the final metastable state of the catalyst, the S3 state, the state which immediately precedes O-O bond formation. Quantum chemical calculations demonstrate that both isomeric forms of the S2 state, the open and closed cubane isomers, can form states with an oxidized YZ˙ residue without prior deprotonation of the Mn4CaO5 cluster. The two forms are expected to lie close in energy and retain the electronic structure and magnetic topology of the corresponding S2 state of the inorganic core. As expected, tyrosine oxidation results in a proton shift towards His190. Analysis of the electronic rearrangements that occur upon formation of the tyrosyl radical suggests that a likely next step in the catalytic cycle is the deprotonation of a terminal water ligand (W1) of the Mn4CaO5 cluster. Diamagnetic metal ion substitution is used in our calculations to obtain the molecular g-tensor of YZ˙. It is known that the gx value is a sensitive probe not only of the extent of the proton shift between the tyrosine-histidine pair, but also of the polarization environment of the tyrosine, especially about the phenolic oxygen. It is shown for PSII that this environment is determined by the Ca(2+) ion, which locates two water molecules about the phenoxyl oxygen, indirectly modulating the oxidation potential of YZ.
Collapse
Affiliation(s)
- Marius Retegan
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-38, 45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | |
Collapse
|
12
|
Pathway for Mn-cluster oxidation by tyrosine-Z in the S2 state of photosystem II. Proc Natl Acad Sci U S A 2014; 111:8723-8. [PMID: 24889635 DOI: 10.1073/pnas.1401719111] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Water oxidation in photosynthetic organisms occurs through the five intermediate steps S0-S4 of the Kok cycle in the oxygen evolving complex of photosystem II (PSII). Along the catalytic cycle, four electrons are subsequently removed from the Mn4CaO5 core by the nearby tyrosine Tyr-Z, which is in turn oxidized by the chlorophyll special pair P680, the photo-induced primary donor in PSII. Recently, two Mn4CaO5 conformations, consistent with the S2 state (namely, S2(A) and S2(B) models) were suggested to exist, perhaps playing a different role within the S2-to-S3 transition. Here we report multiscale ab initio density functional theory plus U simulations revealing that upon such oxidation the relative thermodynamic stability of the two previously proposed geometries is reversed, the S2(B) state becoming the leading conformation. In this latter state a proton coupled electron transfer is spontaneously observed at ∼100 fs at room temperature dynamics. Upon oxidation, the Mn cluster, which is tightly electronically coupled along dynamics to the Tyr-Z tyrosyl group, releases a proton from the nearby W1 water molecule to the close Asp-61 on the femtosecond timescale, thus undergoing a conformational transition increasing the available space for the subsequent coordination of an additional water molecule. The results can help to rationalize previous spectroscopic experiments and confirm, for the first time to our knowledge, that the water-splitting reaction has to proceed through the S2(B) conformation, providing the basis for a structural model of the S3 state.
Collapse
|
13
|
Zahariou G, Chrysina M, Petrouleas V, Ioannidis N. Can we trap the S(3)Y(Z)· metalloradical intermediate during the S-state transitions of Photosystem II? An EPR investigation. FEBS Lett 2014; 588:1827-31. [PMID: 24690319 DOI: 10.1016/j.febslet.2014.03.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/20/2014] [Accepted: 03/21/2014] [Indexed: 11/30/2022]
Abstract
We report the trapping of two metalloradical intermediates corresponding to the transitions S2 to S3 and S3 to S0 of the oxygen evolving complex (OEC) of Photosystem II (PSII), in preparations containing methanol, at temperatures near that of half inhibition of the respective S-state transitions. The first intermediate, with an EPR width of 160 G, is assigned to S2YZ, based on its similarity to the one previously characterized after trapping at 10 K. The second with a splitting of ∼80 G is tentatively assigned to S3YZ. The S3YZ EPR signal is weaker than the S2YZ one, and both are stable at cryogenic temperatures.
Collapse
Affiliation(s)
- Georgia Zahariou
- Institute of Advanced Materials, Physicochemical Processes, Nanotechnology & Microsystems, NCSR "Demokritos", Athens 15310, Greece
| | - Maria Chrysina
- Institute of Advanced Materials, Physicochemical Processes, Nanotechnology & Microsystems, NCSR "Demokritos", Athens 15310, Greece
| | - Vasili Petrouleas
- Institute of Advanced Materials, Physicochemical Processes, Nanotechnology & Microsystems, NCSR "Demokritos", Athens 15310, Greece
| | - Nikolaos Ioannidis
- Institute of Advanced Materials, Physicochemical Processes, Nanotechnology & Microsystems, NCSR "Demokritos", Athens 15310, Greece.
| |
Collapse
|
14
|
Sjöholm J, Styring S, Havelius KGV, Ho FM. Visible light induction of an electron paramagnetic resonance split signal in Photosystem II in the S(2) state reveals the importance of charges in the oxygen-evolving center during catalysis: a unifying model. Biochemistry 2012; 51:2054-64. [PMID: 22352968 DOI: 10.1021/bi2015794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cryogenic illumination of Photosystem II (PSII) can lead to the trapping of the metastable radical Y(Z)(•), the radical form of the redox-active tyrosine residue D1-Tyr161 (known as Y(Z)). Magnetic interaction between this radical and the CaMn(4) cluster of PSII gives rise to so-called split electron paramagnetic resonance (EPR) signals with characteristics that are dependent on the S state. We report here the observation and characterization of a split EPR signal that can be directly induced from PSII centers in the S(2) state through visible light illumination at 10 K. We further show that the induction of this split signal takes place via a Mn-centered mechanism, in the same way as when using near-infrared light illumination [Koulougliotis, D., et al. (2003) Biochemistry 42, 3045-3053]. On the basis of interpretations of these results, and in combination with literature data for other split signals induced under a variety of conditions (temperature and light quality), we propose a unified model for the mechanisms of split signal induction across the four S states (S(0), S(1), S(2), and S(3)). At the heart of this model is the stability or instability of the Y(Z)(•)(D1-His190)(+) pair that would be formed during cryogenic oxidation of Y(Z). Furthermore, the model is closely related to the sequence of transfers of protons and electrons from the CaMn(4) cluster during the S cycle and further demonstrates the utility of the split signals in probing the immediate environment of the oxygen-evolving center in PSII.
Collapse
Affiliation(s)
- Johannes Sjöholm
- Photochemistry and Molecular Science, Department of Chemistry, Ångström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
| | | | | | | |
Collapse
|
15
|
Renger G. Mechanism of light induced water splitting in Photosystem II of oxygen evolving photosynthetic organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1164-76. [PMID: 22353626 DOI: 10.1016/j.bbabio.2012.02.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/27/2012] [Accepted: 02/05/2012] [Indexed: 11/24/2022]
Abstract
The reactions of light induced oxidative water splitting were analyzed within the framework of the empirical rate constant-distance relationship of non-adiabatic electron transfer in biological systems (C. C. Page, C. C. Moser, X. Chen , P. L. Dutton, Nature 402 (1999) 47-52) on the basis of structure information on Photosystem II (PS II) (A. Guskov, A. Gabdulkhakov, M. Broser, C. Glöckner, J. Hellmich, J. Kern, J. Frank, W. Saenger, A. Zouni, Chem. Phys. Chem. 11 (2010) 1160-1171, Y. Umena, K. Kawakami, J-R Shen, N. Kamiya, Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å. Nature 47 (2011) 55-60). Comparison of these results with experimental data leads to the following conclusions: 1) The oxidation of tyrosine Y(z) by the cation radical P680(+·) in systems with an intact water oxidizing complex (WOC) is kinetically limited by the non-adiabatic electron transfer step and the extent of this reaction is thermodynamically determined by relaxation processes in the environment including rearrangements of hydrogen bond network(s). In marked contrast, all Y(z)(ox) induced oxidation steps in the WOC up to redox state S(3) are kinetically limited by trigger reactions which are slower by orders of magnitude than the rates calculated for non-adiabatic electron transfer. 3) The overall rate of the triggered reaction sequence of Y(z)(ox) reduction by the WOC in redox state S(3) eventually leading to formation and release of O(2) is kinetically limited by an uphill electron transfer step. Alternative models are discussed for this reaction. The protein matrix of the WOC and bound water molecules provide an optimized dynamic landscape of hydrogen bonded protons for catalyzing oxidative water splitting energetically driven by light induced formation of the cation radical P680(+·). In this way the PS II core acts as a molecular machine formed during a long evolutionary process. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
|