1
|
Atef B, Ishak RAH, Badawy SS, Osman R. Novel composite fatty acid vesicles-in-Pluronic lecithin organogels for enhanced magnolol delivery in skin cancer treatment. Eur J Pharm Biopharm 2024; 201:114379. [PMID: 38908488 DOI: 10.1016/j.ejpb.2024.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
A novel composite carrier composed of Pluronic lecithin organogels and fatty acid vesicles was used to enhance the stability and facilitate the topical delivery of a natural bioactive drug, magnolol (Mag), for treatment of skin cancer. Jojoba oil was incorporated in the organogel (OG) base to provide a synergistic effect in treatment of skin cancer. The organoleptic properties, rheological behavior, morphology, and drug content of the OG formulations were investigated with emphasis on the impact of vesicle loading on the OG characteristics. The effect of OG on Mag release and ex-vivo permeation studies were evaluated and compared to free Mag in OG. The biological anti-tumor activity of the OG formulae was assessed using a skin cancer model in mice. All OG formulations exhibited uniform drug distribution with drug content ranging from 92.22 ± 0.91 to 100.45 ± 0.77 %. Rheological studies confirmed the OG shear-thinning flow behavior. Ex-vivo permeation studies demonstrated that the permeation of Mag from all OG formulations surpassed that obtained with free Mag in the OG. The anti-tumor activity studies revealed the superior efficacy of 10-hydroxy-decanoic acid (HDA)-based vesicles incorporated in OG formulations in mitigating 7,12- dimethylbenz(a)anthracene (DMBA)-induced skin cancer, thereby offering a promising platform for the local delivery of Mag.
Collapse
Affiliation(s)
- Bassant Atef
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt; Department of Pharmaceutical Technology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Rania A H Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt
| | - Sabry S Badawy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Rihab Osman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt.
| |
Collapse
|
2
|
Görlitz M, Justen L, Rochette PJ, Buonanno M, Welch D, Kleiman NJ, Eadie E, Kaidzu S, Bradshaw WJ, Javorsky E, Cridland N, Galor A, Guttmann M, Meinke MC, Schleusener J, Jensen P, Söderberg P, Yamano N, Nishigori C, O'Mahoney P, Manstein D, Croft R, Cole C, de Gruijl FR, Forbes PD, Trokel S, Marshall J, Brenner DJ, Sliney D, Esvelt K. Assessing the safety of new germicidal far-UVC technologies. Photochem Photobiol 2024; 100:501-520. [PMID: 37929787 DOI: 10.1111/php.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023]
Abstract
The COVID-19 pandemic underscored the crucial importance of enhanced indoor air quality control measures to mitigate the spread of respiratory pathogens. Far-UVC is a type of germicidal ultraviolet technology, with wavelengths between 200 and 235 nm, that has emerged as a highly promising approach for indoor air disinfection. Due to its enhanced safety compared to conventional 254 nm upper-room germicidal systems, far-UVC allows for whole-room direct exposure of occupied spaces, potentially offering greater efficacy, since the total room air is constantly treated. While current evidence supports using far-UVC systems within existing guidelines, understanding the upper safety limit is critical to maximizing its effectiveness, particularly for the acute phase of a pandemic or epidemic when greater protection may be needed. This review article summarizes the substantial present knowledge on far-UVC safety regarding skin and eye exposure and highlights research priorities to discern the maximum exposure levels that avoid adverse effects. We advocate for comprehensive safety studies that explore potential mechanisms of harm, generate action spectra for crucial biological effects and conduct high-dose, long-term exposure trials. Such rigorous scientific investigation will be key to determining safe and effective levels for far-UVC deployment in indoor environments, contributing significantly to future pandemic preparedness and response.
Collapse
Affiliation(s)
- Maximilian Görlitz
- Massachusetts Institute of Technology, Media Lab, Cambridge, Massachusetts, USA
- SecureBio, Inc., Cambridge, Massachusetts, USA
| | - Lennart Justen
- Massachusetts Institute of Technology, Media Lab, Cambridge, Massachusetts, USA
- SecureBio, Inc., Cambridge, Massachusetts, USA
| | - Patrick J Rochette
- Centre de recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice Quebec, Quebec City, Quebec, Canada
| | - Manuela Buonanno
- Center for Radiological Research, Columbia University Medical Center, New York City, New York, USA
| | - David Welch
- Center for Radiological Research, Columbia University Medical Center, New York City, New York, USA
| | - Norman J Kleiman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, New York, USA
| | - Ewan Eadie
- Photobiology Unit, Ninewells Hospital, Dundee, UK
| | - Sachiko Kaidzu
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| | - William J Bradshaw
- Massachusetts Institute of Technology, Media Lab, Cambridge, Massachusetts, USA
- SecureBio, Inc., Cambridge, Massachusetts, USA
| | - Emilia Javorsky
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
- Future of Life Institute, Cambridge, Massachusetts, USA
| | - Nigel Cridland
- Radiation, Chemicals and Environment Directorate, UK Health Security Agency, Didcot, UK
| | - Anat Galor
- Miami Veterans Affairs Medical Center, University of Miami Health System Bascom Palmer Eye Institute, Miami, Florida, USA
| | | | - Martina C Meinke
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Schleusener
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Paul Jensen
- Final Approach Inc., Port Orange, Florida, USA
| | - Per Söderberg
- Ophthalmology, Department of Surgical Sciences, Uppsala Universitet, Uppsala, Sweden
| | - Nozomi Yamano
- Division of Dermatology, Department of Internal Related, Kobe University, Kobe, Japan
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Kobe University, Kobe, Japan
- Japanese Red Cross Hyogo Blood Center, Kobe, Japan
| | - Paul O'Mahoney
- Optical Radiation Effects, UK Health Security Agency, Chilton, UK
| | - Dieter Manstein
- Department of Dermatology, Cutaneous Biology Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rodney Croft
- International Commission on Non-Ionizing Radiation Protection (ICNIRP), Chair, Wollongong, New South Wales, Australia
- University of Wollongong, Wollongong, New South Wales, Australia
| | - Curtis Cole
- Sun & Skin Consulting LLC, New Holland, Pennsylvania, USA
| | - Frank R de Gruijl
- Department of Dermatology, Universiteit Leiden, Leiden, South Holland, The Netherlands
| | | | - Stephen Trokel
- Department of Ophthalmology, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA
| | - John Marshall
- Institute of Ophthalmology, University College London, London, UK
| | - David J Brenner
- Center for Radiological Research, Columbia University Medical Center, New York City, New York, USA
| | - David Sliney
- IES Photobiology Committee, Chair, Fallston, Maryland, USA
- Consulting Medical Physicist, Fallston, Maryland, USA
| | - Kevin Esvelt
- Massachusetts Institute of Technology, Media Lab, Cambridge, Massachusetts, USA
- SecureBio, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Paculová V, Prasad A, Sedlářová M, Pospíšil P. Oxidative modification of collagen by malondialdehyde in porcine skin. Arch Biochem Biophys 2024; 752:109850. [PMID: 38065250 DOI: 10.1016/j.abb.2023.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/07/2023] [Accepted: 12/03/2023] [Indexed: 12/22/2023]
Abstract
Human skin is exposed to various physical and chemical stress factors, which commonly cause the oxidation of lipids and proteins. In this study, azo initiator AAPH [2,2' -azobis(2-methylpropionamidine) dihydrochloride] was employed to initiate lipid peroxidation in porcine skin as an ex vivo model for human skin. We demonstrate that malondialdehyde (MDA), a secondary product of lipid peroxidation, is covalently bound to collagen in the dermis, forming MDA-collagen adducts. The binding of MDA to collagen results in an unfolding of the collagen triple helix, formation of the dimer of α-chains of collagen, and fragmentation of the collagen α-chain. It is proposed here that the MDA is bound to the lysine residues of α-chain collagen, which are involved in electrostatic interaction and hydrogen bonding with the glutamate and aspartate of other α-chains of the triple helix. Our data provide crucial information about the MDA binding topology in the skin, which is necessary to understand better the various types of skin-related diseases and the aging process in the skin under stress.
Collapse
Affiliation(s)
- Vendula Paculová
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Ankush Prasad
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
4
|
Kuzucu M. Extremophilic Solutions: The Role of Deinoxanthin in Counteracting UV-Induced Skin Harm. Curr Issues Mol Biol 2023; 45:8372-8394. [PMID: 37886971 PMCID: PMC10605247 DOI: 10.3390/cimb45100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
This research delved into the protective capacities of deinoxanthin, a carotenoid present in Deinococcus radiodurans, against UVA- and UVB-mediated skin damage using human fibroblast foreskin cells (HFF-1). Using the MTT assay, HFF-1 cells treated with 10 µM DNX displayed 20% and 31.7% higher viability than the positive (Vitamin C-treated) and negative (DNX-untreated) control groups, respectively, upon 100 mJ/cm2 UVB exposure. At 24 J/cm2 UVA, 20 µM DNX-treated cells showed 80.6% viability, exceeding the positive and negative control groups by 28.6% and 33.6%, respectively. Flow cytometry analysis revealed that cells treated with DNX and exposed to 24 J/cm2 UVA exhibited a 69.32% reduction in apoptotic processes compared to untreated cells. Similarly, when exposed to 100 mJ/cm2 UVB, DNX-treated cells demonstrated a 72.35% decrease in apoptotic processes relative to their untreated counterparts. DNX also displayed dose-dependent inhibition on tyrosinase activity. The study emphasized DNX's antioxidative capacity, evident in its modulation of superoxide dismutase activity and measurements of Malondialdehyde and intracellular reactive oxygen species levels. DNX-treated cells exhibited higher hydroxyproline levels, suggesting healthier collagen production. Additionally, the wound-healing assay method confirmed an accelerated healing rate in DNX-treated cells. Conclusively, DNX offers significant protection against UV-induced skin damage, emphasizing its potential for skincare and therapeutics.
Collapse
Affiliation(s)
- Mehmet Kuzucu
- Department of Biology, Faculty of Arts and Sciences, Erzincan Binali Yildirim University, Erzincan 24100, Türkiye
| |
Collapse
|
5
|
D’Arino A, Caputo S, Eibenschutz L, Piemonte P, Buccini P, Frascione P, Bellei B. Skin Cancer Microenvironment: What We Can Learn from Skin Aging? Int J Mol Sci 2023; 24:14043. [PMID: 37762344 PMCID: PMC10531546 DOI: 10.3390/ijms241814043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is a natural intrinsic process associated with the loss of fibrous tissue, a slower cell turnover, and a reduction in immune system competence. In the skin, the continuous exposition of environmental factors superimposes extrinsic damage, mainly due to ultraviolet radiation causing photoaging. Although not usually considered a pathogenic event, photoaging affects cutaneous biology, increasing the risk of skin carcinogenesis. At the cellular level, aging is typified by the rise of senescence cells a condition characterized by reduced or absent capacity to proliferate and aberrant hyper-secretory activity. Senescence has a double-edged sword in cancer biology given that senescence prevents the uncontrolled proliferation of damaged cells and favors their clearance by paracrine secretion. Nevertheless, the cumulative insults and the poor clearance of injured cells in the elderly increase cancer incidence. However, there are not conclusive data proving that aged skin represents a permissive milieu for tumor onset. On the other hand, tumor cells are capable of activating resident fibroblasts onto a pro-tumorigenic phenotype resembling those of senescent fibroblasts suggesting that aged fibroblasts might facilitate cancer progression. This review discusses changes that occur during aging that can prime neoplasm or increase the aggressiveness of melanoma and non-melanoma skin cancer.
Collapse
Affiliation(s)
- Andrea D’Arino
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Silvia Caputo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Laura Eibenschutz
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Paolo Piemonte
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Pierluigi Buccini
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Pasquale Frascione
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| |
Collapse
|
6
|
Atef B, Ishak RAH, Badawy SS, Osman R. 10-Hydroxy Decanoic Acid-Based Vesicles as a Novel Topical Delivery System: Would It Be a Better Platform Than Conventional Oleic Acid Ufasomes for Skin Cancer Treatment? Pharmaceutics 2023; 15:pharmaceutics15051461. [PMID: 37242703 DOI: 10.3390/pharmaceutics15051461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/11/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
10-hydroxy decanoic acid (HDA), a naturally derived fatty acid, was used for the preparation of novel fatty acid vesicles for comparison with oleic acid (OA) ufasomes. The vesicles were loaded with magnolol (Mag), a potential natural drug for skin cancer. Different formulations were prepared using the thin film hydration method and were statistically evaluated according to a Box-Behnken design in terms of particle size (PS), polydispersity index (PDI), zeta potential (ZP), and entrapment efficiency (EE). The ex vivo skin permeation and deposition were assessed for Mag skin delivery. In vivo, an assessment of the optimized formulae using 7,12-dimethylbenz[a]anthracene (DMBA)-induced skin cancer in mice was also conducted. The PS and ZP of the optimized OA vesicles were 358.9 ± 3.2 nm and -82.50 ± 7.13 mV compared to 191.9 ± 6.28 nm and -59.60 ± 3.07 mV for HDA vesicles, respectively. The EE was high (>78%) for both types of vesicles. Ex vivo permeation studies revealed enhanced Mag permeation from all optimized formulations compared to a drug suspension. Skin deposition demonstrated that HDA-based vesicles provided the highest drug retention. In vivo, studies confirmed the superiority of HDA-based formulations in attenuating DMBA-induced skin cancer during treatment and prophylactic studies.
Collapse
Affiliation(s)
- Bassant Atef
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Misr International University, Cairo 12585, Egypt
| | - Rania A H Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Sabry S Badawy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Misr International University, Cairo 12585, Egypt
| | - Rihab Osman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| |
Collapse
|
7
|
Snell JA, Vaishmapayan P, Dickinson SE, Jandova J, Wondrak GT. The Drinking Water and Swimming Pool Disinfectant Trichloroisocyanuric Acid Causes Chlorination Stress Enhancing Solar UV-Induced Inflammatory Gene Expression in AP-1 Transgenic SKH-1 Luciferase Reporter Mouse Skin. Photochem Photobiol 2023; 99:835-843. [PMID: 35841216 PMCID: PMC10321141 DOI: 10.1111/php.13675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
Freshwater sanitation and disinfection using a variety of chemical entities as chlorination agents is an essential public health intervention ensuring water safety for populations at a global scale. Recently, we have published our observation that the small molecule oxidant, innate immune factor and chlorination agent HOCl antagonize inflammation and photocarcinogenesis in murine skin exposed topically to environmentally relevant concentrations of HOCl. Chlorinated isocyanuric acid derivatives (including the chloramines trichloroisocyanuric acid [TCIC] and dichloroisocyanuric acid [DCIC]) are used worldwide as alternate chlorination agents serving as HOCl precursor and stabilizer compounds ensuring sustained release in aqueous environments including public water systems, recreational pools and residential hot tubs. Here, for the first time, we have examined the cutaneous TCIC-induced transcriptional stress response (in both an organotypic epidermal model and in AP-1 luciferase reporter SKH-1 mouse skin), also examining molecular consequences of subsequent treatment with solar ultraviolet (UV) radiation. Taken together, our findings indicate that cutaneous delivery of TCIC significantly enhances UV-induced inflammation (as profiled at the gene expression level), suggesting a heretofore unrecognized potential to exacerbate UV-induced functional and structural cutaneous changes. These observations deserve further molecular investigations in the context of TCIC-based freshwater disinfection with health implications for populations worldwide.
Collapse
Affiliation(s)
- Jeremy A. Snell
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- UA Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Praj Vaishmapayan
- UA Cancer Center, University of Arizona, Tucson, Arizona, USA
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Sally E. Dickinson
- UA Cancer Center, University of Arizona, Tucson, Arizona, USA
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Jana Jandova
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- UA Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, R.K. Coit College of Pharmacy, University of Arizona, Tucson, Arizona, USA
- UA Cancer Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
8
|
de Faria Lopes L, Jandova J, Justiniano R, Perer J, Baptista MS, Wondrak GT. The Glycolysis-derived α-Dicarbonyl Metabolite Methylglyoxal is a UVA-photosensitizer Causing the Photooxidative Elimination of HaCaT Keratinocytes with Induction of Oxidative and Proteotoxic Stress Response Gene Expression †. Photochem Photobiol 2023; 99:826-834. [PMID: 36109156 PMCID: PMC10321145 DOI: 10.1111/php.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/28/2022] [Indexed: 12/01/2022]
Abstract
Cellular oxidative stress contributes to solar ultraviolet (UV) radiation-induced skin photoaging and photocarcinogenesis. Light-driven electron and energy transfer reactions involving non-DNA chromophores are a major source of reactive oxygen species (ROS) in skin, and the molecular identity of numerous endogenous chromophores acting as UV-photosensitizers has been explored. Methylglyoxal (MG), a glycolytic byproduct bearing a UV-active α-dicarbonyl-chromophore, is generated under metabolic conditions of increased glycolytic flux, associated with posttranslational protein adduction in human tissue. Here, we undertook a photophysical and photochemical characterization of MG substantiating its fluorescence properties (Stokes shift), phosphorescence lifetime, and quantum yield of singlet oxygen (1 O2 ) formation. Strikingly, upon UV-excitation (290 nm), a clear emission (around 490 nm) was observed (phosphorescence-lifetime: 224.2 milliseconds). At micromolar concentrations, MG acts as a UVA-photosensitizer targeting human HaCaT-keratinocytes inducing photooxidative stress and caspase-dependent cell death substantiated by zVADfmk-rescue and Alexa-488 caspase-3 flow cytometry. Transcriptomic analysis indicated that MG (photoexcited by noncytotoxic doses of UVA) elicits expression changes not observable upon isolated MG- or UVA-treatment, with upregulation of the proteotoxic (CRYAB, HSPA6) and oxidative (HMOX1) stress response. Given the metabolic origin of MG and its role in human pathology, future investigations should address the potential involvement of MG-photosensitizer activity in human skin photodamage.
Collapse
Affiliation(s)
- Lohanna de Faria Lopes
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jana Jandova
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy, and UA Cancer Center, University of Arizona, Tucson, Arizona
| | - Rebecca Justiniano
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy, and UA Cancer Center, University of Arizona, Tucson, Arizona
| | - Jessica Perer
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy, and UA Cancer Center, University of Arizona, Tucson, Arizona
| | - Maurício S. Baptista
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy, and UA Cancer Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
9
|
Ellistasari EY, Kariosentono H, Purwanto B, Wasita B, Riswiyant RCA, Pamungkasari EP, Soetrisno S. Role of Exosomes Derived from Secretome Human Umbilical Vein Endothelial Cells (Exo-HUVEC) as Anti-Apoptotic, Anti-Oxidant, and Increasing Fibroblast Migration in Photoaging Skin Models. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Prolonged skin exposure to ultraviolet light rays leads to photoaging, which is characterized molecularly by an increase in reactive oxygen species (ROS), cell apoptosis, and a decrease in collagen. Photoaging therapy has been a challenge until recently. Fibroblasts exposed to ultraviolet B (UVB) light proved to be a good model for photoaging skin. They are also the primary dermal cells that stimulate collagen production and extracellular matrix (ECM), which contribute to skin aging. Exo-HUVEC is rich in growth factors, cytokines, and miRNAs, and they all play a vital role in cell-to-cell communication. The migration of fibroblasts is crucial for the development, repair, and regeneration of skin tissue during the repair of skin aging.
Objective: An in vitro experimental study was conducted to analyze the effect of Exo-HUVEC on oxidative stress levels, cell apoptosis, and fibroblast migration rate after UVB ray exposure on fibroblasts.
Methods: The fibroblast cultures were divided into five groups, including one without UVB exposure, one with UVB exposure, and one with UVB+Exo-HUVEC exposure at 0.1%, 0.5%, and 1%, respectively. Oxidative stress levels were measured using the ELISA test for malondialdehyde (MDA). Furthermore, flow cytometry was used to measure apoptosis using PI/Annexin markers, while a scratch assay examination was used to measure fibroblast migration rate using imaging readings.
Results: There were significant differences in the levels of MDA, PI/Annexin, and the rate of fibroblast migration between the UVB-irradiated control group and the Exo-HUVEC treatment group (p<0.001).
Conclusion: Exo-HUVEC is a marker of photoaging improvement, which has anti-apoptotic effects and reduces oxidative stress, as well as increases fibroblast migration rate.
Collapse
|
10
|
Gao J, Li Y, Guan Y, Wei X, Chen S, Li X, Li Y, Huang Z, Liu S, Li G, Xu P, Zhang Y, Zhao Y. The accelerated aging skin in rhino-like SHJH hr mice. Exp Dermatol 2022; 31:1597-1606. [PMID: 35737869 DOI: 10.1111/exd.14632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 05/26/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
SHJHhr mice line is rhino-like mice with a nonsense Hairless (Hr) mutant, which shows the characteristic of shedding hair and wrinkled skin with increasing age. Though histological analysis and aging indexes detection, SHJHhr mice show an increased thickness skin with degraded hair follicle and dermal cysts, and disorganized collagen fibers as well as decreased level of Hyp. Meanwhile, the aging markers p16 and p21 are significantly higher in SHJHhr mouse skin than ICR mouse skin at same age. Moreover, the data of MDA and SOD show a higher oxidative stress in SHJHhr mouse skin, and the levels of Nrf2 and its targets are significantly down-regulated, which suggests SHJHhr mice have a faster aging skin and its reason maybe poor antioxidative protection. Overall, this study shows SHJHhr mice with an accelerated aging skin, which suggests the role of Hr gene in skin aging.
Collapse
Affiliation(s)
- Jinfeng Gao
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongchao Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.,The Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yalun Guan
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Xiaoyue Wei
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Shijian Chen
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Xuejiao Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yunfeng Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Zhongqiang Huang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Shuhua Liu
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Ping Xu
- Shanghai Jihui Laboratory Animal Care Co., Ltd., Shanghai, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yuhong Zhao
- Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
11
|
Assessing the Role of Carbonyl Adducts, Particularly Malondialdehyde Adducts, in the Development of Dermis Yellowing Occurring during Skin Photoaging. Life (Basel) 2022; 12:life12030403. [PMID: 35330154 PMCID: PMC8954757 DOI: 10.3390/life12030403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Solar elastosis is associated with a diffuse yellow hue of the skin. Photoaging is related to lipid peroxidation leading to the formation of carbonyl groups. Protein carbonylation can occur by addition of reactive aldehydes, such as malondialdehyde (MDA), 4-hydroxy-nonenal (4-HNE), and acrolein. All the proteins concerned with this modification, and the biological consequences of adduct formation, are not completely identified. The link between yellowish skin and dermal carbonylated proteins induced by aldehyde adducts was investigated. The study was carried out on ex vivo skin samples from sun-exposed or sun-protected areas and on in vitro dermal equivalent models incubated with 5 mM MDA, 4-HNE, or acrolein. The yellow color and the level of MDA, 4-HNE, and acrolein adducts were evaluated. Yellowish color differences were detected in the dermis of sun-exposed skin compared to sun-protected skin and in in vitro models following addition of MDA, 4-HNE, or acrolein. The yellowing was correlated with the carbonyl adducts increasing in the dermis and in in vitro models incubated with aldehydes. The stronger yellowing seemed to be mediated more by MDA than 4-HNE and acrolein. These observations suggest that dermal carbonylation especially induced by MDA result in the yellow hue of dermis and is involved, in part, in the yellowing observed during skin photoaging.
Collapse
|
12
|
Léger D, Gauriau C, Etzi C, Ralambondrainy S, Heusèle C, Schnebert S, Dubois A, Gomez-Merino D, Dumas M. "You look sleepy…" The impact of sleep restriction on skin parameters and facial appearance of 24 women. Sleep Med 2021; 89:97-103. [PMID: 34971928 DOI: 10.1016/j.sleep.2021.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Total sleep deprivation has a visible impact on subjective facial appearance. However, there is a lack of knowledge on how moderate sleep restriction objectively impairs skin quality and facial aspect. METHODS Twenty-four healthy good-sleeping women, aged 30-55, volunteered for this study on the impact of sleep restriction (SR) on their facial skin. SR was limited to 3 h per night for 2 consecutive nights. We assessed the following parameters at the same time of day, before and after SR: sebumetry (Sebumeter SM 815), hydration (Corneometer CM 825), trans-epidermal water loss (Tewameter TM 210), biomechanical properties (Cutometer MPA 580), pH (PH-meter 900), desquamation quantification (D-Squameter and microscopy), and image analysis (ColorFace - Newtone Technologies). We also obtained skin samples (swab) for malondialdehyde quantification (MDA). RESULTS We observed that some skin parameters are significantly associated with SR in both the morning and afternoon, including: lower hydration (p < 0.001), increased trans-epidermal water loss (PIE) (p < 0.001), and decreased extensibility (Uf; p = 0.015) and viscosity (Uv; p < 0.001) of the skin. The average pH increased from 4.8 (±0.2) to 4.9 ± 0.4; p < 0.001. For face photography, brightness and saturation also significantly decreased with SR in mornings and afternoons (p < 0.001 for all tests). Finally, we observed a significant decrease in isolated corneocytes after desquamation associated with SR (p < 0.001 for all tests). SR was also associated with significantly increased MDA levels (p < 0.001 for all tests). CONCLUSIONS Two nights of SR significantly altered the skin and facial appearances in our test group of typically good-sleeping women.
Collapse
Affiliation(s)
- Damien Léger
- Université de Paris, EA 7330 VIFASOM (Vigilance Fatigue Sommeil et Santé Publique), Paris, France; APHP, Hôtel-Dieu, Centre du Sommeil et de la Vigilance, Consultation de pathologie professionnelle Sommeil Vigilance et Travail, Paris, France.
| | - Caroline Gauriau
- APHP, Hôtel-Dieu, Centre du Sommeil et de la Vigilance, Consultation de pathologie professionnelle Sommeil Vigilance et Travail, Paris, France
| | - Cécile Etzi
- APHP, Hôtel-Dieu, Centre du Sommeil et de la Vigilance, Consultation de pathologie professionnelle Sommeil Vigilance et Travail, Paris, France
| | | | | | | | - Alexandre Dubois
- APHP, Hôtel-Dieu, Centre du Sommeil et de la Vigilance, Consultation de pathologie professionnelle Sommeil Vigilance et Travail, Paris, France; European Sleep Center, Paris, France
| | - Danielle Gomez-Merino
- Université de Paris, EA 7330 VIFASOM (Vigilance Fatigue Sommeil et Santé Publique), Paris, France; IRBA (Institut de recherche biomédicale des armées), Unité Fatigue et Vigilance, Bretigny-sur-Orge, France
| | - Marc Dumas
- LVMH RECHERCHE, Sciences du Vivant, Saint Jean De Braye, France
| |
Collapse
|
13
|
Wondrak GT, Jandova J, Williams SJ, Schenten D. Solar simulated ultraviolet radiation inactivates HCoV-NL63 and SARS-CoV-2 coronaviruses at environmentally relevant doses. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 224:112319. [PMID: 34598020 PMCID: PMC8463283 DOI: 10.1016/j.jphotobiol.2021.112319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 12/23/2022]
Abstract
The germicidal properties of short wavelength ultraviolet C (UVC) light are well established and used to inactivate many viruses and other microbes. However, much less is known about germicidal effects of terrestrial solar UV light, confined exclusively to wavelengths in the UVA and UVB regions. Here, we have explored the sensitivity of the human coronaviruses HCoV-NL63 and SARS-CoV-2 to solar-simulated full spectrum ultraviolet light (sUV) delivered at environmentally relevant doses. First, HCoV-NL63 coronavirus inactivation by sUV-exposure was confirmed employing (i) viral plaque assays, (ii) RT-qPCR detection of viral genome replication, and (iii) infection-induced stress response gene expression array analysis. Next, a detailed dose-response relationship of SARS-CoV-2 coronavirus inactivation by sUV was elucidated, suggesting a half maximal suppression of viral infectivity at low sUV doses. Likewise, extended sUV exposure of SARS-CoV-2 blocked cellular infection as revealed by plaque assay and stress response gene expression array analysis. Moreover, comparative (HCoV-NL63 versus SARS-CoV-2) single gene expression analysis by RT-qPCR confirmed that sUV exposure blocks coronavirus-induced redox, inflammatory, and proteotoxic stress responses. Based on our findings, we estimate that solar ground level full spectrum UV light impairs coronavirus infectivity at environmentally relevant doses. Given the urgency and global scale of the unfolding SARS-CoV-2 pandemic, these prototype data suggest feasibility of solar UV-induced viral inactivation, an observation deserving further molecular exploration in more relevant exposure models.
Collapse
Affiliation(s)
- Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, United States of America.
| | - Jana Jandova
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, United States of America
| | - Spencer J Williams
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ, United States of America
| | - Dominik Schenten
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ, United States of America.
| |
Collapse
|
14
|
Bayoumi M, Arafa MG, Nasr M, Sammour OA. Nobiletin-loaded composite penetration enhancer vesicles restore the normal miRNA expression and the chief defence antioxidant levels in skin cancer. Sci Rep 2021; 11:20197. [PMID: 34642396 PMCID: PMC8511031 DOI: 10.1038/s41598-021-99756-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
Skin cancer is one of the most dangerous diseases, leading to massive losses and high death rates worldwide. Topical delivery of nutraceuticals is considered a suitable approach for efficient and safe treatment of skin cancer. Nobiletin; a flavone occurring in citrus fruits has been reported to inhibit proliferation of carcinogenesis since 1990s, is a promising candidate in this regard. Nobiletin was loaded in various vesicular systems to improve its cytotoxicity against skin cancer. Vesicles were prepared using the thin film hydration method, and characterized for particle size, zeta potential, entrapment efficiency, TEM, ex-vivo skin deposition and physical stability. Nobiletin-loaded composite penetration enhancer vesicles (PEVs) and composite transfersomes exhibited particle size 126.70 ± 11.80 nm, 110.10 ± 0.90 nm, zeta potential + 6.10 ± 0.40 mV, + 9.80 ± 2.60 mV, entrapment efficiency 93.50% ± 3.60, 95.60% ± 1.50 and total skin deposition 95.30% ± 3.40, 100.00% ± 2.80, respectively. These formulations were selected for cytotoxicity study on epidermoid carcinoma cell line (A431). Nobiletin-loaded composite PEVs displayed the lowest IC50 value, thus was selected for the in vivo study, where it restored skin condition in DMBA induced skin carcinogenesis mice, as delineated by histological and immuno-histochemical analysis, biochemical assessment of skin oxidative stress biomarkers, in addition to miRNA21 and miRNA29A. The outcomes confirmed that nobiletin- loaded composite PEVs is an efficient delivery system combating skin cancer.
Collapse
Affiliation(s)
- Mahitab Bayoumi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Mona G Arafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
- Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura, 35516, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Organization Unity Street, Cairo, 11561, Egypt.
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Organization Unity Street, Cairo, 11561, Egypt
| |
Collapse
|
15
|
Justiniano R, de Faria Lopes L, Perer J, Hua A, Park SL, Jandova J, Baptista MS, Wondrak GT. The Endogenous Tryptophan-derived Photoproduct 6-formylindolo[3,2-b]carbazole (FICZ) is a Nanomolar Photosensitizer that Can be Harnessed for the Photodynamic Elimination of Skin Cancer Cells in Vitro and in Vivo. Photochem Photobiol 2020; 97:180-191. [PMID: 32767762 DOI: 10.1111/php.13321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/03/2020] [Indexed: 01/10/2023]
Abstract
UV-chromophores contained in human skin may act as endogenous sensitizers of photooxidative stress and can be employed therapeutically for the photodynamic elimination of malignant cells. Here, we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan-derived photoproduct and endogenous aryl hydrocarbon receptor agonist, displays activity as a nanomolar sensitizer of photooxidative stress, causing the photodynamic elimination of human melanoma and nonmelanoma skin cancer cells in vitro and in vivo. FICZ is an efficient UVA/Visible photosensitizer having absorbance maximum at 390 nm (ε = 9180 L mol-1 cm-1 ), and fluorescence and singlet oxygen quantum yields of 0.15 and 0.5, respectively, in methanol. In a panel of cultured human squamous cell carcinoma and melanoma skin cancer cells (SCC-25, HaCaT-ras II-4, A375, G361, LOX), photodynamic induction of cell death was elicited by the combined action of solar simulated UVA (6.6 J cm-2 ) and FICZ (≥10 nm), preceded by the induction of oxidative stress as substantiated by MitoSOX Red fluorescence microscopy, comet detection of Fpg-sensitive oxidative genomic lesions and upregulated stress response gene expression (HMOX1, HSPA1A, HSPA6). In SKH1 "high-risk" mouse skin, an experimental FICZ/UVA photodynamic treatment regimen blocked the progression of UV-induced tumorigenesis suggesting feasibility of harnessing FICZ for the photooxidative elimination of malignant cells in vivo.
Collapse
Affiliation(s)
- Rebecca Justiniano
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Lohanna de Faria Lopes
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jessica Perer
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Anh Hua
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Sophia L Park
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Jana Jandova
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Maurício S Baptista
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
16
|
Perer J, Jandova J, Fimbres J, Jennings EQ, Galligan JJ, Hua A, Wondrak GT. The sunless tanning agent dihydroxyacetone induces stress response gene expression and signaling in cultured human keratinocytes and reconstructed epidermis. Redox Biol 2020; 36:101594. [PMID: 32506039 PMCID: PMC7276426 DOI: 10.1016/j.redox.2020.101594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/22/2020] [Indexed: 01/25/2023] Open
Abstract
Sunless (chemical) tanning is widely regarded as a safe alternative to solar UV-induced skin tanning known to be associated with epidermal genotoxic stress, but the cutaneous biology impacted by chemical tanning remains largely unexplored. Chemical tanning is based on the formation of melanin-mimetic cutaneous pigments ('melanoidins') from spontaneous amino-carbonyl ('glycation') reactions between epidermal amino acid/protein components and reactive sugars including the glycolytic ketose dihydroxyacetone (DHA). Here, we have examined the cutaneous effects of acute DHA-exposure on cultured human HaCaT keratinocytes and epidermal reconstructs, profiled by gene expression array analysis and immunodetection. In keratinocytes, DHA-exposure performed at low millimolar concentrations did not impair viability while causing a pronounced cellular stress response as obvious from rapid activation of phospho-protein signal transduction [p-p38, p-Hsp27(S15/S78), p-eIF2α] and gene expression changes (HSPA6, HMOX1, CRYAB, CCL3), not observable upon exposure to the non-ketose, tanning-inactive DHA-control glycerol. Formation of advanced glycation end products (AGEs) from posttranslational protein-adduction was confirmed by quantitative mass spectrometric detection of N-ε-(carboxyethyl)-l-lysine (CEL) and N7-carboxyethyl-l-arginine, and skin cells with CRISPR-Cas9-based elimination of the carbonyl stress response gene GLO1 (encoding glyoxalase 1) displayed hypersensitivity to DHA-cytotoxicity. In human epidermal reconstructs a topical use-relevant DHA-dose regimen elicited a comparable stress response as revealed by gene expression array (HSPA1A, HSPA6, HSPD1, IL6, DDIT3, EGR1) and immunohistochemical analysis (CEL, HO-1, p-Hsp27-S78). In DHA-treated SKH-1 hairless mouse skin IHC-detection revealed epidermal occurrence of CEL- and p-Hsp27-epitopes. For comparison, stress response gene expression array analysis was performed in epidermis exposed to a supra-erythemal dose of solar simulated UV (2 MEDs), identifying genes equally or differentially sensitive to either one of these cutaneous stimuli [DHA ('sunless tanning') versus solar UV ('sun-induced tanning')]. Given the worldwide use of chemical tanners in consumer products, these prototype data documenting a DHA-induced specific cutaneous stress response deserve further molecular exploration in living human skin.
Collapse
Affiliation(s)
- Jessica Perer
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Jana Jandova
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Jocelyn Fimbres
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Erin Q Jennings
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - James J Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Anh Hua
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
17
|
Yahyaoui M, Abbassi N, Derfoufi A, Daoudi A, Agoumi O, Yacoubi H, Najib A, Serji B, Elharroudi T, Mouzouri N, Dikhaye S, Zizi N, Hadjkacem H. Giant squamous cell carcinomas of the shoulder. Pan Afr Med J 2020; 36:215. [PMID: 32963681 PMCID: PMC7490140 DOI: 10.11604/pamj.2020.36.215.11644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/21/2017] [Indexed: 11/11/2022] Open
Abstract
Giant squamous cell carcinomas (SCC) larger than 5 cm in diameter are uncommon; there is no guideline on the size of an SCC that is considered giant. Treatment may be difficult with the need for large tissue resections and complex surgical reconstruction. We report a rare case of giant squamous cell carcinoma of the shoulder attached to deep anatomic planes. The entire mass was removed, resulting in a large defect that was repaired with myocutaneous flap rotation of the latissimus dorsi. Three courses of radiotherapy were performed after surgery. Fifteen months after the operation, the patient is well and working without any local recurrence and metastasis.
Collapse
Affiliation(s)
- Mounir Yahyaoui
- Trauma-Orthopedics Service, University Hospital Mohammed VI, Oujda, Morocco
| | - Najib Abbassi
- Trauma-Orthopedics Service, University Hospital Mohammed VI, Oujda, Morocco
| | | | - Abdelkarim Daoudi
- Trauma-Orthopedics Service, University Hospital Mohammed VI, Oujda, Morocco
| | - Omar Agoumi
- Trauma-Orthopedics Service, University Hospital Mohammed VI, Oujda, Morocco
| | - Hicham Yacoubi
- Trauma-Orthopedics Service, University Hospital Mohammed VI, Oujda, Morocco
| | - Abdeljaouad Najib
- Trauma-Orthopedics Service, University Hospital Mohammed VI, Oujda, Morocco
| | - Badr Serji
- Oncology Surgery Service, University Hospital, Mohammed VI, Oujda, Morocco
| | - Tijjani Elharroudi
- Oncology Surgery Service, University Hospital, Mohammed VI, Oujda, Morocco
| | - Nabil Mouzouri
- Dermatology Service, University Hospital Mohammed VI, Oujda, Morocco
| | - Siham Dikhaye
- Dermatology Service, University Hospital Mohammed VI, Oujda, Morocco
| | - Nada Zizi
- Dermatology Service, University Hospital Mohammed VI, Oujda, Morocco
| | - Hanane Hadjkacem
- Radiology Service, University Hospital Mohammed VI, Oujda, Morocco
| |
Collapse
|
18
|
Song Y, Tajima H, Sato T, Ito K, Okuno T, Kurasaki M. Zweigelt and Niagara skin extracts suppress cyclobutane pyrimidine dimer formation due to UV irradiation in NHEK cells: first attempt. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:593-598. [PMID: 32241220 DOI: 10.1080/03601234.2020.1745544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The grape skins after pressing the juice are a major problem for winery. However, because it contains a large amount of polyphenols, development of effective usages are expected to construct sustainable waste use. In this study, we examined whether grape skin extract is effective for recovery of DNA damage caused by UV irradiation. Extract from Zweigelt and Niagara skin was prepared by methanol, and UV irradiation was performed at 10 mJ/cm2 (250 nm) and 15 mJ/cm2 (290 nm) using human normal skin cells. As results, the decreased cell viability due to UV irradiation was improved by adding Niagara or Zweigelt skin extract. On the other hand, cyclobutane pyrimidine dimer production due to UV irradiation decreased significantly by Niagara or Zweigelt extract. In addition, the effects of grape skin extracts on the expression of sirtuin gene were also examined.
Collapse
Affiliation(s)
- Yutong Song
- Environmental Adaptation Science, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | | | | | - Keizo Ito
- Sapporo Bio Factory Co., Ltd, Sapporo, Japan
| | - Tsutomu Okuno
- Department of Electrical Engineering and Computer Science, Graduate School of System Design, Tokyo Metropolitan University, Hino, Japan
| | - Masaaki Kurasaki
- Environmental Adaptation Science, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
- Environmental Adaptation Science, Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
19
|
Gruber F, Marchetti-Deschmann M, Kremslehner C, Schosserer M. The Skin Epilipidome in Stress, Aging, and Inflammation. Front Endocrinol (Lausanne) 2020; 11:607076. [PMID: 33551998 PMCID: PMC7859619 DOI: 10.3389/fendo.2020.607076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Lipids are highly diverse biomolecules crucial for the formation and function of cellular membranes, for metabolism, and for cellular signaling. In the mammalian skin, lipids additionally serve for the formation of the epidermal barrier and as surface lipids, together regulating permeability, physical properties, acidification and the antimicrobial defense. Recent advances in accuracy and specificity of mass spectrometry have allowed studying enzymatic and non-enzymatic modifications of lipids-the epilipidome-multiplying the known diversity of molecules in this class. As the skin is an organ that is frequently exposed to oxidative-, chemical- and thermal stress, and to injury and inflammation, it is an ideal organ to study epilipidome dynamics, their causes, and their biological consequences. Recent studies uncover loss or gain in biological function resulting from either specific modifications or the sum of the modifications of lipids. These studies suggest an important role for the epilipidome in stress responses and immune regulation in the skin. In this minireview we provide a short survey of the recent developments on causes and consequences of epilipidomic changes in the skin or in cell types that reside in the skin.
Collapse
Affiliation(s)
- Florian Gruber
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE -, Vienna, Austria
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Florian Gruber,
| | - Martina Marchetti-Deschmann
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE -, Vienna, Austria
- Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Christopher Kremslehner
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE -, Vienna, Austria
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Markus Schosserer
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE -, Vienna, Austria
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
20
|
Richard F, Creusot T, Catoire S, Egles C, Ficheux H. Mechanisms of pollutant-induced toxicity in skin and detoxification: Anti-pollution strategies and perspectives for cosmetic products. ANNALES PHARMACEUTIQUES FRANÇAISES 2019; 77:446-459. [DOI: 10.1016/j.pharma.2019.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 10/25/2022]
|
21
|
Freitas KM, Silva ACAE, Veloso ES, Ferreira Ê, Barcelos LS, Caliari MV, Salas CE, Lopes MTP. P1G10, the Proteolytic Fraction from Vasconcellea cundinamarcensis, Stimulates Tissue Repair after Acute Exposure to Ultraviolet B Radiation. Int J Mol Sci 2019; 20:E4373. [PMID: 31489890 PMCID: PMC6770601 DOI: 10.3390/ijms20184373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND P1G10 is a cysteine proteolytic fraction from Vasconcellea cundinamarcensis latex, obtained by chromatographic separation on Sephadex-G10 and ultrafiltration. This fraction enhances healing in different models of skin lesions, and displays a protective/healing effect against gastric ulcers, where it was suggested an antioxidant role. METHODS We evaluated here the effect of topical treatment with P1G10, in mice lesions induced by UVB. RESULTS After single exposure to 2.4 J cm-2 UVB, P1G10 reduced erythema, increased cellularity of hypodermis, enhanced MPO activity and IL1β, and inhibited COX2 levels. These results point to an anti-inflammatory effect by P1G10. This fraction displayed antioxidant activity by reversing the depletion of glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and reducing the catalase activity increased by UVB. These changes may be related to a reduction in MDA observed in groups treated with P1G10. P1G10 also inhibited MMP-9, caspase-3 and pkat while increasing p53 levels.
Collapse
Affiliation(s)
- Kátia M Freitas
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil.
| | - Ana C Araújo E Silva
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil.
- Faculdade de Medicina do Mucuri, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rua do Cruzeiro, nº 01, Bairro Jardim São Paulo, Teófilo Otoni 39803-371, MG, Brazil.
| | - Emerson S Veloso
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil.
| | - Ênio Ferreira
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil.
| | - Lucíola S Barcelos
- Departamento Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil.
| | - Marcelo V Caliari
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil.
| | - Carlos E Salas
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil.
| | - Miriam T P Lopes
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil.
| |
Collapse
|
22
|
Carrara IM, Melo GP, Bernardes SS, Neto FS, Ramalho LNZ, Marinello PC, Luiz RC, Cecchini R, Cecchini AL. Looking beyond the skin: Cutaneous and systemic oxidative stress in UVB-induced squamous cell carcinoma in hairless mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 195:17-26. [PMID: 31035030 DOI: 10.1016/j.jphotobiol.2019.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/25/2022]
Abstract
Cumulative ultraviolet (UV) exposure is associated with squamous skin cell carcinoma. UV radiation induces oxidative modifications in biomolecules of the skin leading to photocarcinogenesis. Indeed, the cyclobutene pyrimidine dimers and other dimers formed by photoaddition between carbon-carbon bonds also have an important role in the initiation process. However, information on the systemic redox status during these processes is scarce. Thus, we investigated the systemic redox profile in UVB-induced squamous cell carcinoma in mice. Female hairless mice were exposed to UVB radiation (cumulative dose = 17.1 J/cm2). The dorsal skin of these mice developed actinic keratosis (AK) and squamous cell carcinoma (SCC) and presented increased levels of oxidative and nitrosative stress biomarkers (4-hydroxy-2-nonenal and 3-nitrotyrosine), and decreased antioxidant defenses. Systemically, we observed the consumption of plasmatic antioxidant defenses and increased levels of advanced oxidized protein products (AOPP), an oxidative stress product derived from systemic inflammatory response. Taken together, our results indicate that UVB chronic irradiation leads not only to adjacent and tumoral oxidative stress in the skin, but it systemically is reflected through the blood. These new findings clarify some aspects of the pathogenesis of SCC and should assist in formulating better chemoprevention strategies, while avoiding additional primary SCC development and metastasis.
Collapse
Affiliation(s)
- Iriana Moratto Carrara
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil; Laboratory of Pathophysiology and Free Radicals, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Gabriella Pasqual Melo
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil; Laboratory of Pathophysiology and Free Radicals, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Sara Santos Bernardes
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil; Laboratory of Healthy Sciences Research, Federal University of Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil, UFGD, R. João Rosa Góes, 1761 - Vila Progresso, Dourados, MS, 79825-070, Brazil.
| | - Fernando Souza Neto
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil; Laboratory of Pathophysiology and Free Radicals, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Leandra Naira Zambelli Ramalho
- Department of Pathology, Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), FMRP, Av. Bandeirantes, 3900 - Monte Alegre, Ribeirão Preto, SP, 14049-900, Brazil.
| | - Poliana Camila Marinello
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Rodrigo Cabral Luiz
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Rubens Cecchini
- Laboratory of Pathophysiology and Free Radicals, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil
| | - Alessandra Lourenço Cecchini
- Laboratory of Molecular Pathology, Londrina State University (UEL), Londrina, Paraná, Brazil, UEL, Rod. Celso Garcia Cid, PR-445, km 380, 86051-990 Londrina, Paraná, Brazil.
| |
Collapse
|
23
|
Koçtürk S, Yüksel Egrilmez M, Aktan Ş, Oktay G, Resmi H, Şimşek Keskin H, Sert Serdar B, Erkmen T, Güner Akdogan G, Özkan Ş. Melatonin attenuates the detrimental effects of UVA irradiation in human dermal fibroblasts by suppressing oxidative damage and MAPK/AP-1 signal pathway in vitro. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2019; 35:221-231. [PMID: 30739336 DOI: 10.1111/phpp.12456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND People living in Mediterranean countries are mostly exposed to solar ultraviolet (UV) radiation that damages skin and results in photoaging which involves activation of epidermal growth factor receptor (EGFR) and downstream signal transduction through mitogen-activated protein kinases (MAPKs) in fibroblasts. Generation of reactive oxygen/nitrogen species by UV radiation is also critical for EGFR and MAPKs activation. MAPKs are responsible for activation of AP-1 subunits in the nucleus which induce matrix metalloproteinases. Melatonin, along with its metabolites, are known to be the most effective free radical scavenger and protective agent due to its ability to react with various radicals, lipophilic/hydrophilic structures. OBJECTIVES In this study, we investigated the effects of melatonin on UVA-irradiated primary human dermal fibroblasts (HDFs) by following the alteration of molecules from cell membrane to the nucleus and oxidative/nitrosative damage status of the cells in a time-dependent manner which have not been clearly elucidated yet. METHODS To mimic UVA dosage in Mediterranean countries, HDFs were exposed to UVA with sub-cytotoxic dosage (20 J/cm2 ) after pretreatment with melatonin (1 μmol/L) for 1 hour. Changes in the activation of the molecules and oxidative/nitrosative stress damage were analyzed at different time points. RESULTS Our results clearly show that melatonin decreases UVA-induced oxidative/nitrosative stress damage in HDFs. It also suppresses phosphorylation of EGFR, activation of MAPK/AP-1 signal transduction pathway and production of matrix metalloproteinases in a time-dependent manner. CONCLUSION Melatonin can be used as a protective agent for skin damage against intracellular detrimental effects of relatively high dosage of UVA irradiation.
Collapse
Affiliation(s)
- Semra Koçtürk
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Mehtap Yüksel Egrilmez
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylül University, Izmir, Turkey
| | - Şebnem Aktan
- Department of Dermatological and Venereal Disease, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Gülgün Oktay
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Halil Resmi
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Hatice Şimşek Keskin
- Department of Public Health, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Belgin Sert Serdar
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Tugba Erkmen
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Gül Güner Akdogan
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey.,Faculty of Medicine, Izmir University of Economics, Izmir, Turkey
| | - Şebnem Özkan
- Department of Dermatological and Venereal Disease, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
24
|
Dickinson SE, Wondrak GT. TLR4-directed Molecular Strategies Targeting Skin Photodamage and Carcinogenesis. Curr Med Chem 2019; 25:5487-5502. [DOI: 10.2174/0929867324666170828125328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 01/16/2023]
Abstract
Background:
Exposure to solar ultraviolet (UV) radiation is a causative factor in
skin photodamage and carcinogenesis, and inflammatory dysregulation is a key mechanism
underlying detrimental effects of acute and chronic UV exposure. The health and economic
burden of skin cancer treatment is substantial, creating an increasingly urgent need for the development
of improved molecular strategies for photoprotection and photochemoprevention.
Methods:
A structured search of bibliographic databases for peer-reviewed research literature
revealed 139 articles including our own that are presented and critically evaluated in this
TLR4-directed review.
Objective:
To understand the molecular role of Toll-like receptor 4 (TLR4) as a key regulator
of skin anti-microbial defense, wound healing, and cutaneous tumorigenic inflammation. The
specific focus of this review is on recent published evidence suggesting that TLR4 represents
a novel molecular target for skin photoprotection and cancer photochemoprevention.
Results:
Cumulative experimental evidence indicates that pharmacological and genetic antagonism
of TLR4 suppresses UV-induced inflammatory signaling involving the attenuation
of cutaneous NF-κB and AP-1 stress signaling observable in vitro and in vivo. TLR4-directed
small molecule pharmacological antagonists [including eritoran, (+)-naloxone, ST2825, and
resatorvid] have now been identified as a novel class of molecular therapeutics. TLR4 antagonists
are in various stages of preclinical and clinical development for the modulation of
dysregulated TLR4-dependent inflammatory signaling that may also contribute to skin photodamage
and photocarcinogenesis in human populations.
Conclusion:
Future research should explore the skin photoprotective and photochemopreventive
efficacy of topical TLR4 antagonism if employed in conjunction with other molecular
strategies including sunscreens.
Collapse
Affiliation(s)
- Sally E. Dickinson
- Department of Pharmacology, College of Medicine and The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| |
Collapse
|
25
|
Narzt MS, Nagelreiter IM, Oskolkova O, Bochkov VN, Latreille J, Fedorova M, Ni Z, Sialana FJ, Lubec G, Filzwieser M, Laggner M, Bilban M, Mildner M, Tschachler E, Grillari J, Gruber F. A novel role for NUPR1 in the keratinocyte stress response to UV oxidized phospholipids. Redox Biol 2018; 20:467-482. [PMID: 30466060 PMCID: PMC6243031 DOI: 10.1016/j.redox.2018.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/30/2018] [Accepted: 11/08/2018] [Indexed: 02/08/2023] Open
Abstract
Ultraviolet light is the dominant environmental oxidative skin stressor and a major skin aging factor. We studied which oxidized phospholipid (OxPL) mediators would be generated in primary human keratinocytes (KC) upon exposure to ultraviolet A light (UVA) and investigated the contribution of OxPL to UVA responses. Mass spectrometric analysis immediately or 24 h post UV stress revealed significant changes in abundance of 173 and 84 lipid species, respectively. We identified known and novel lipid species including known bioactive and also potentially reactive carbonyl containing species. We found indication for selective metabolism and degradation of selected reactive lipids. Exposure to both UVA and to in vitro UVA - oxidized phospholipids activated, on transcriptome and proteome level, NRF2/antioxidant response signaling, lipid metabolizing enzyme expression and unfolded protein response (UPR) signaling. We identified NUPR1 as an upstream regulator of UVA/OxPL transcriptional stress responses and found this protein to be expressed in the epidermis. Silencing of NUPR1 resulted in augmented expression of antioxidant and lipid detoxification genes and disturbed the cell cycle, making it a potential key factor in skin reactive oxygen species (ROS) responses intimately involved in aging and pathology.
Collapse
Affiliation(s)
- Marie-Sophie Narzt
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria
| | - Ionela-Mariana Nagelreiter
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria
| | - Olga Oskolkova
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Valery N Bochkov
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Julie Latreille
- Department of Biology & Women's Beauty, Chanel, Pantin, France
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry, Universität Leipzig, Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Zhixu Ni
- Institute of Bioanalytical Chemistry, Faculty of Chemistry, Universität Leipzig, Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Fernando J Sialana
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Gert Lubec
- Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Manuel Filzwieser
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria
| | - Maria Laggner
- Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine & Core Facility Genomics, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria; Department of Biotechnology, BOKU, University of Natural Resources and Life Sciences Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Austria.
| |
Collapse
|
26
|
Yoshifuku A, Fujii K, Kanekura T. Comparison of oxidative stress on DNA, protein and lipids in patients with actinic keratosis, Bowen's disease and squamous cell carcinoma. J Dermatol 2018; 45:1319-1323. [PMID: 30222205 DOI: 10.1111/1346-8138.14631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/31/2018] [Indexed: 01/09/2023]
Abstract
Detailed mechanisms on the effect of oxidative stress (OS), an etiological factor involved in photocarcinogenesis, remain to be fully elucidated. We used immunohistochemical methods to study OS in the DNA, protein and lipids of patients with actinic keratosis (AK), Bowen's disease (BD) and squamous cell carcinoma (SCC). Between January 2009 and December 2014, we treated 230 patients; 79 had AK, 61 had (BD) and 90 had cutaneous SCC; 28 healthy subjects served as the normal controls. OS on DNA, protein and lipids was assessed by the expression of 8-hydroxydeoxyguanosine (8-OHdG), dityrosine (DT) and malondialdehyde (MDA), respectively. 8-OHdG was significantly overexpressed in AK and BD lesions compared with surrounding non-lesional tissue, SCC lesions and the healthy controls. DT was more highly expressed in AK, BD and SCC than in the controls. There was no significant difference among AK, BD and SCC. The expression of MDA was higher in AK, BD and SCC lesions than the controls; SCC showed the highest expression. Our observations suggest that DNA oxidation plays an important role in the early stage of carcinogenesis, that protein oxidation is involved in all stages of carcinogenesis and that lipid oxidation is strongly implicated in the late stages of carcinogenesis.
Collapse
Affiliation(s)
- Asuka Yoshifuku
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuyasu Fujii
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
27
|
Rojo de la Vega M, Zhang DD, Wondrak GT. Topical Bixin Confers NRF2-Dependent Protection Against Photodamage and Hair Graying in Mouse Skin. Front Pharmacol 2018; 9:287. [PMID: 29636694 PMCID: PMC5880955 DOI: 10.3389/fphar.2018.00287] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/13/2018] [Indexed: 01/10/2023] Open
Abstract
Environmental exposure to solar ultraviolet (UV) radiation causes acute photodamage, premature aging, and skin cancer, attributable to UV-induced genotoxic, oxidative, and inflammatory stress. The transcription factor NRF2 [nuclear factor erythroid 2 (E2)-related factor 2] is the master regulator of the cellular antioxidant response protecting skin against various environmental stressors including UV radiation and electrophilic pollutants. NRF2 in epidermal keratinocytes can be activated using natural chemopreventive compounds such as the apocarotenoid bixin, an FDA-approved food additive and cosmetic ingredient from the seeds of the achiote tree (Bixa orellana). Here, we tested the feasibility of topical use of bixin for NRF2-dependent skin photoprotection in two genetically modified mouse models [SKH1 and C57BL/6J (Nrf2+/+ versus Nrf2-/- )]. First, we observed that a bixin formulation optimized for topical NRF2 activation suppresses acute UV-induced photodamage in Nrf2+/+ but not Nrf2-/- SKH1 mice, a photoprotective effect indicated by reduced epidermal hyperproliferation and oxidative DNA damage. Secondly, it was demonstrated that topical bixin suppresses PUVA (psoralen + UVA)-induced hair graying in Nrf2+/+ but not Nrf2-/- C57BL/6J mice. Collectively, this research provides the first in vivo evidence that topical application of bixin can protect against UV-induced photodamage and PUVA-induced loss of hair pigmentation through NRF2 activation. Topical NRF2 activation using bixin may represent a novel strategy for human skin photoprotection, potentially complementing conventional sunscreen-based approaches.
Collapse
Affiliation(s)
- Montserrat Rojo de la Vega
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States.,The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States.,The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
28
|
Zarkovic K, Jakovcevic A, Zarkovic N. Contribution of the HNE-immunohistochemistry to modern pathological concepts of major human diseases. Free Radic Biol Med 2017; 111:110-126. [PMID: 27993730 DOI: 10.1016/j.freeradbiomed.2016.12.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
Excessive production of reactive oxygen species can induce peroxidation of the polyunsaturated fatty acids thus generating reactive aldehydes like 4-hydroxy-2-nonenal (HNE), denoted as "the second messenger of free radicals". Because HNE has high binding affinity for cysteine, histidine and lysine it forms relatively stable and hardly metabolized protein adducts. By changing structure and function of diverse structural and regulatory proteins, HNE achieves not only cytotoxic, but also regulatory functions in various pathophysiological processes. Numerous animal model studies and clinical trials confirmed HNE as one of the crucial factors in development and progression of many disorders, in particular of cancer, (neuro)degenerative, metabolic and inflammatory diseases. Since HNE has multiple biological effects and is in the living system usually bound to proteins and peptides, many research groups work on development of specific immunochemical methods targeting the HNE-histidine adducts as major bioactive marker of lipid peroxidation, following the research pathway initiated by Hermann Esterbauer, who discovered HNE in 60's. Such immunohistochemical studies did not only prove the high biomedical importance of HNE, but have also given new insights into major diseases of the modern man. Immunohistochemical studies have shown reversibility of formation of the HNE-protein adducts, as well as differential onset of the HNE-mediated lipid peroxidation between age- associated atherosclerosis and photoaging, revealing eventually selective anti-cancer effects of HNE produced by non-malignant cells in vicinity of cancer. This review summarizes some of the HNE-histidine immunohistochemistry findings we believe are of broad biomedical interest and could inspire new studies in the field.
Collapse
Affiliation(s)
- Kamelija Zarkovic
- University of Zagreb, School of Medicine, Clinical Hospital Centre Zagreb, Croatia.
| | - Antonia Jakovcevic
- University of Zagreb, School of Medicine, Clinical Hospital Centre Zagreb, Croatia
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Zagreb, Croatia
| |
Collapse
|
29
|
Justiniano R, Williams JD, Perer J, Hua A, Lesson J, Park SL, Wondrak GT. The B 6 -vitamer Pyridoxal is a Sensitizer of UVA-induced Genotoxic Stress in Human Primary Keratinocytes and Reconstructed Epidermis. Photochem Photobiol 2017; 93:990-998. [PMID: 28083878 DOI: 10.1111/php.12720] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/08/2016] [Indexed: 01/10/2023]
Abstract
UVA-driven photooxidative stress in human skin may originate from excitation of specific endogenous chromophores acting as photosensitizers. Previously, we have demonstrated that 3-hydroxypyridine-derived chromophores including B6 -vitamers (pyridoxine, pyridoxamine and pyridoxal) are endogenous photosensitizers that enhance UVA-induced photooxidative stress in human skin cells. Here, we report that the B6 -vitamer pyridoxal is a sensitizer of genotoxic stress in human adult primary keratinocytes (HEKa) and reconstructed epidermis. Comparative array analysis indicated that exposure to the combined action of pyridoxal and UVA caused upregulation of heat shock (HSPA6, HSPA1A, HSPA1L, HSPA2), redox (GSTM3, EGR1, MT2A, HMOX1, SOD1) and genotoxic (GADD45A, DDIT3, CDKN1A) stress response gene expression. Together with potentiation of UVA-induced photooxidative stress and glutathione depletion, induction of HEKa cell death occurred only in response to the combined action of pyridoxal and UVA. In addition to activational phosphorylation indicative of genotoxic stress [p53 (Ser15) and γ-H2AX (Ser139)], comet analysis indicated the formation of Fpg-sensitive oxidative DNA lesions, observable only after combined exposure to pyridoxal and UVA. In human reconstructed epidermis, pyridoxal preincubation followed by UVA exposure caused genomic oxidative base damage, procaspase 3 cleavage and TUNEL positivity, consistent with UVA-driven photooxidative damage that may be relevant to human skin exposed to high concentrations of B6 -vitamers.
Collapse
Affiliation(s)
- Rebecca Justiniano
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ
| | - Joshua D Williams
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ
| | - Jessica Perer
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ
| | - Anh Hua
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ
| | - Jessica Lesson
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ
| | - Sophia L Park
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ
| |
Collapse
|
30
|
Zeng Q, Zhou F, Lei L, Chen J, Lu J, Zhou J, Cao K, Gao L, Xia F, Ding S, Huang L, Xiang H, Wang J, Xiao Y, Xiao R, Huang J. Ganoderma lucidum polysaccharides protect fibroblasts against UVB-induced photoaging. Mol Med Rep 2017; 15:111-116. [PMID: 27959406 PMCID: PMC5355704 DOI: 10.3892/mmr.2016.6026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 10/28/2016] [Indexed: 12/03/2022] Open
Abstract
Ganoderma lucidum has featured in traditional Chinese medicine for >1,000 years. Ganoderma polysaccharides (GL-PS), a major active ingredient in Ganoderma, confer immune regulation, antitumor effects and significant antioxidant effects. The aim of the present study was to investigate the efficacy and mechanism of GL‑PS‑associated inhibition of ultraviolet B (UVB)‑induced photoaging in human fibroblasts in vitro. Primary human skin fibroblasts were cultured, and a fibroblast photoaging model was built through exposure to UVB. Cell viability was measured by MTT assay. Aged cells were stained using a senescence‑associated β-galactosidase staining (SA‑β‑gal) kit. ELISA kits were used to analyze matrix metalloproteinase (MMP) ‑1 and C‑telopeptides of Type I collagen (CICP) protein levels in cellular supernatant. ROS levels were quantified by flow cytometry. Cells exposed to UVB had decreased cell viability, increased aged cells, decreased CICP protein expression, increased MMP‑1 protein expression, and increased cellular ROS levels compared with non‑exposed cells. However, cells exposed to UVB and treated with 10, 20 and 40 µg/ml GL‑PS demonstrated increased cell viability, decreased aged cells, increased CICP protein expression, decreased MMP‑1 protein expression, and decreased cellular ROS levels compared with UVB exposed/GL‑PS untreated cells. These results demonstrate that GL‑PS protects fibroblasts against photoaging by eliminating UVB‑induced ROS. This finding indicates GL‑PS treatment may serve as a novel strategy for antiphotoaging.
Collapse
Affiliation(s)
- Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Fang Zhou
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jianyun Lu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jianda Zhou
- Department of Burn and Plastic Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lihua Gao
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Fang Xia
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Shu Ding
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lihua Huang
- The Central Laboratory, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hong Xiang
- The Central Laboratory, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingjing Wang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yangfan Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
31
|
Tao S, Park SL, Rojo de la Vega M, Zhang DD, Wondrak GT. Systemic administration of the apocarotenoid bixin protects skin against solar UV-induced damage through activation of NRF2. Free Radic Biol Med 2015; 89:690-700. [PMID: 26456052 PMCID: PMC4684723 DOI: 10.1016/j.freeradbiomed.2015.08.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/24/2015] [Accepted: 08/19/2015] [Indexed: 12/17/2022]
Abstract
Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photodamage and carcinogenesis, and an urgent need exists for improved molecular photoprotective strategies different from (or synergistic with) photon absorption. Recent studies suggest a photoprotective role of cutaneous gene expression orchestrated by the transcription factor NRF2 (nuclear factor-E2-related factor 2). Here we have explored the molecular mechanism underlying carotenoid-based systemic skin photoprotection in SKH-1 mice and provide genetic evidence that photoprotection achieved by the FDA-approved apocarotenoid and food additive bixin depends on NRF2 activation. Bixin activates NRF2 through the critical Cys-151 sensor residue in KEAP1, orchestrating a broad cytoprotective response in cultured human keratinocytes as revealed by antioxidant gene expression array analysis. Following dose optimization studies for cutaneous NRF2 activation by systemic administration of bixin, feasibility of bixin-based suppression of acute cutaneous photodamage from solar UV exposure was investigated in Nrf2(+/+) versus Nrf2(-/-) SKH-1 mice. Systemic administration of bixin suppressed skin photodamage, attenuating epidermal oxidative DNA damage and inflammatory responses in Nrf2(+/+) but not in Nrf2(-/-) mice, confirming the NRF2-dependence of bixin-based cytoprotection. Taken together, these data demonstrate feasibility of achieving NRF2-dependent cutaneous photoprotection by systemic administration of the apocarotenoid bixin, a natural food additive consumed worldwide.
Collapse
Affiliation(s)
- Shasha Tao
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Sophia L Park
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Montserrat Rojo de la Vega
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy & Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
32
|
Oyewole AO, Birch-Machin MA. Mitochondria-targeted antioxidants. FASEB J 2015; 29:4766-71. [PMID: 26253366 DOI: 10.1096/fj.15-275404] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/03/2015] [Indexed: 01/07/2023]
Abstract
Redox homeostasis is maintained by the antioxidant defense system, which is responsible for eliminating a wide range of oxidants, including reactive oxygen species (ROS), lipid peroxides, and metals. Mitochondria-localized antioxidants are widely studied because the mitochondria, the major producers of intracellular ROS, have been linked to the cause of aging and other chronic diseases. Mitochondria-targeted antioxidants have shown great potential because they cross the mitochondrial phospholipid bilayer and eliminate ROS at the heart of the source. Growing evidence has identified mitochondria-targeted antioxidants, such as MitoQ and tiron, as potentially effective antioxidant therapies against the damage caused by enhanced ROS generation. This literature review summarizes the current knowledge on mitochondria-targeted antioxidants and their contribution to the body's antioxidant defense system. In addition to addressing the concerns surrounding current antioxidant strategies, including difficulties in targeting antioxidant treatment to sites of pathologic oxidative damage, we discuss promising therapeutic agents and new strategic approaches.
Collapse
Affiliation(s)
- Anne O Oyewole
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mark A Birch-Machin
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
33
|
The Tryptophan-Derived Endogenous Aryl Hydrocarbon Receptor Ligand 6-Formylindolo[3,2-b]Carbazole Is a Nanomolar UVA Photosensitizer in Epidermal Keratinocytes. J Invest Dermatol 2014; 135:1649-1658. [PMID: 25431849 PMCID: PMC4430374 DOI: 10.1038/jid.2014.503] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/24/2014] [Accepted: 11/07/2014] [Indexed: 01/23/2023]
Abstract
Endogenous UVA-chromophores may act as sensitizers of oxidative stress underlying cutaneous photoaging and photocarcinogenesis, but the molecular identity of non-DNA key chromophores displaying UVA-driven photodyamic activity in human skin remains largely undefined. Here we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan photoproduct and endogenous high affinity aryl hydrocarbon receptor (AhR) agonist, acts as a nanomolar photosensitizer potentiating UVA-induced oxidative stress irrespective of AhR ligand activity. In human HaCaT and primary epidermal keratinocytes, photodynamic induction of apoptosis was elicited by the combined action of solar simulated UVA and FICZ, whereas exposure to the isolated action of UVA or FICZ did not impair viability. In a human epidermal tissue reconstruct, FICZ/UVA-cotreatment caused pronounced phototoxicity inducing keratinocyte cell death, and FICZ photodynamic activity was also substantiated in a murine skin exposure model. Array analysis revealed pronounced potentiation of cellular heat shock, ER stress, and oxidative stress response gene expression observed only upon FICZ/UVA-cotreatment. FICZ photosensitization caused intracellular oxidative stress, and comet analysis revealed introduction of formamidopyrimidine-DNA glycosylase (FPG)-sensitive oxidative DNA lesions suppressible by antioxidant cotreatment. Taken together, our data demonstrate that the endogenous AhR ligand FICZ displays nanomolar photodynamic activity representing a molecular mechanism of UVA-induced photooxidative stress potentially operative in human skin.
Collapse
|