1
|
Xu N, Jiang X, Liu Y, Junaid M, Ahmad M, Bi C, Guo W, Jiang C, Liu S. Chronic environmental level exposure to perfluorooctane sulfonate overshadows graphene oxide to induce apoptosis through activation of the ROS-p53-caspase pathway in marine medaka Oryzias melastigma. CHEMOSPHERE 2024; 365:143374. [PMID: 39306112 DOI: 10.1016/j.chemosphere.2024.143374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 08/06/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
The widespread occurrence of perfluorooctane sulfonate (PFOS) and the mass production and application of graphene oxide (GO) lead to their inevitable release and interaction in the environment, which may enhance associated toxic impacts on aquatic organisms. This study elucidates the induction of apoptosis by 60-day chronic single and mixture exposures to environmentally relevant levels of PFOS (0.5 μg/L and 5 μg/L) and GO (1 mg/L) in adult marine medaka Oryzias melastigma. Results showed a significant increase (p < 0.05) in reactive oxygen species (ROS) levels, the apoptotic positive rate in livers, and activities of caspases 3, 8, and 9 in all treated groups compared to the control. PFOS individual and PFOS-GO combined exposures significantly impacted fish growth, upregulated expressions of six apoptosis-related genes including p53, apaf1, il1b, tnfa, bcl2l1, bax, as well as enriched cell cycle and p53 signaling pathways (transcriptomic analysis) related to apoptosis compared to control group. Besides higher ROS production, GO also had a higher binding affinity to proteins than PFOS, especially to caspase 8 as revealed by molecular docking. Overall, PFOS induced ROS-p53-caspase apoptosis pathway through multi-gene regulation during single or mixture exposure, while GO single exposure induced apoptosis through tissue damage and ROS-caspase pathway activation and direct docking with caspase 8 to activate the caspase cascade. Under co-exposure, the PFOS-induced apoptotic pathway overshadowed the GO-induced pathway, due to competition for limited active sites on caspases. These findings will contribute to a better understanding of the apoptosis mechanism and ecological risks of nanomaterials and per- and polyfluoroalkyl substances in marine ecosystems.
Collapse
Affiliation(s)
- Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Xilin Jiang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yan Liu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Manzoor Ahmad
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chunqing Bi
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wenjing Guo
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chen'ao Jiang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shulin Liu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
2
|
Khorshidi M, Asadpour S, Aramesh-Boroujeni Z, Kooravand M, Mobini Dehkordi M. Spectroscopic and molecular modeling studies of binding interaction between the new complex of yttrium and 1,10-phenanthroline derivatives with DNA and BSA. Front Chem 2023; 11:1231504. [PMID: 37693170 PMCID: PMC10483121 DOI: 10.3389/fchem.2023.1231504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
In this study, the 4,9 diazafluoren-9-one ligand and [Y(Daf)2Cl3.OH2] complex were synthesized. The interaction of this complex with DNA and bovine serum albumin (BSA) was investigated by UV-vis and fluorescence spectroscopy. The molecular docking method was used to confirm the experimental results, investigate the type of interaction, and determine the binding site. The binding constant and Stern-Volmer constant were calculated using spectroscopy techniques. The binding constant of the Y-complex with DNA and BSA obtained using the UV-vis technique was 1.61 × 105 M-1 and 0.49 × 105 M-1, while that obtained using the fluorescence method was 3.39 × 105 M-1 and 3.63 × 105 M-1, respectively. The results of experimental and theoretical data showed that the interaction between the yttrium complex and DNA and BSA is driven by the hydrogen bond and van der Waals interaction, respectively. The yttrium complex communicates with DNA via the groove interaction. This complex has high binding energy with bovine serum albumin. In addition, the molecular docking results showed that the complex binds to the IIA subdomain of BSA (site I). Finally, anticancer activity of the yttrium complex was studied on MCF-7 and A549 cell lines by using the MTT method. The IC50 values obtained showed that the yttrium complex possesses anticancer activity.
Collapse
Affiliation(s)
- Mahsa Khorshidi
- Department of Chemistry, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Saeid Asadpour
- Department of Chemistry, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | | | - Masoumeh Kooravand
- Department of Chemistry, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | | |
Collapse
|
3
|
Skoczynska A, Lewinski A, Pokora M, Paneth P, Budzisz E. An Overview of the Potential Medicinal and Pharmaceutical Properties of Ru(II)/(III) Complexes. Int J Mol Sci 2023; 24:ijms24119512. [PMID: 37298471 DOI: 10.3390/ijms24119512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
This review examines the existing knowledge about Ru(II)/(III) ion complexes with a potential application in medicine or pharmacy, which may offer greater potential in cancer chemotherapy than Pt(II) complexes, which are known to cause many side effects. Hence, much attention has been paid to research on cancer cell lines and clinical trials have been undertaken on ruthenium complexes. In addition to their antitumor activity, ruthenium complexes are under evaluation for other diseases, such as type 2 diabetes, Alzheimer's disease and HIV. Attempts are also being made to evaluate ruthenium complexes as potential photosensitizers with polypyridine ligands for use in cancer chemotherapy. The review also briefly examines theoretical approaches to studying the interactions of Ru(II)/Ru(III) complexes with biological receptors, which can facilitate the rational design of ruthenium-based drugs.
Collapse
Affiliation(s)
- Anna Skoczynska
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
| | - Andrzej Lewinski
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
| | - Mateusz Pokora
- International Center of Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Piotr Paneth
- International Center of Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Elzbieta Budzisz
- Department of the Chemistry of Cosmetic Raw Materials, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
4
|
Owen Bonello R, Pitak MB, Tizzard GJ, Coles SJ, Fallis IA, Pope SJ. Aryl, bi-functionalised imidazo[4,5-f]-1,10-phenanthroline ligands and their luminescent rhenium(I) complexes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Rajeshwari K, Vasantha P, Kumar BS, Lakshmi PVA. Nickel-Metformin Ternary Complexes: Geometrical, Thermal, DNA Binding, and Molecular Docking Studies. Biol Trace Elem Res 2022; 200:5351-5364. [PMID: 34993912 DOI: 10.1007/s12011-022-03100-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/02/2022] [Indexed: 11/30/2022]
Abstract
Novel three nickel(II) complexes of type [Ni(metf)(o-phen)2]Cl2 (1), [Ni(metf)(opda)2]Cl2 (2), [Ni(metf)(2-2'bipy)2]Cl2 (3), (Metf = metformin, o-phen = ortho-phenanthroline, opda = ortho-phenylenediamine, 2-2' bipy = 2-2' bipyridyl) were synthesized and characterized by various analytical and spectral techniques. Based on these studies, octahedral geometry is assigned to these complexes. The DNA binding properties of these complexes were investigated by absorption, emission, and viscosity studies. From the spectral data, it was concluded that the complexes bind to DNA through groove mode of binding. The intrinsic binding constants (Kb) from absorption spectroscopy were 1.60 × 104, 3.57 × 104, and 5.70 × 104 M-1 for 1, 2, and 3, respectively, and Stern-Volmer quenching constants (Ksv) from emission spectroscopy were 0.11, 0.87, and 0.24, respectively. Thermal degradation pattern of the compounds was studied and Coats-Redfern method is used to determine kinetic parameters for complexes 1, 2, and 3 from thermal studies. The software Discovery Studio 2.1 was used to assess the binding affinity and interaction pattern of complexes with the B-DNA receptor protein and complex 1 has the highest dock score.
Collapse
Affiliation(s)
- K Rajeshwari
- Department of Chemistry, Osmania University, Tarnaka, Hyderabad, Telangana State, 500007, India
- Department of Chemistry, University College for Women, Osmania University, Koti, Hyderabad, Telangana State, 500095, India
| | - P Vasantha
- Department of Chemistry, Osmania University, Tarnaka, Hyderabad, Telangana State, 500007, India
| | - B Sathish Kumar
- Department of Chemistry, Osmania University, Tarnaka, Hyderabad, Telangana State, 500007, India
| | - P V Anantha Lakshmi
- Department of Chemistry, Osmania University, Tarnaka, Hyderabad, Telangana State, 500007, India.
| |
Collapse
|
6
|
Gillard M, Piraux G, Daenen M, Abraham M, Troian‐Gautier L, Bar L, Bonnet H, Loiseau F, Jamet H, Dejeu J, Defrancq E, Elias B. Photo‐Oxidizing Ruthenium(II) Complexes with Enhanced Visible‐Light Absorption and G‐quadruplex DNA Binding Abilities. Chemistry 2022; 28:e202202251. [DOI: 10.1002/chem.202202251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Martin Gillard
- Université catholique de Louvain (UCLouvain) Institut de la Matière Condensée et des Nanosciences (IMCN) Molecular Chemistry, Materials and Catalysis (MOST) Place Louis Pasteur 1, bte L4.01.02 1348 Louvain-la-Neuve Belgium
| | - Guillaume Piraux
- Université catholique de Louvain (UCLouvain) Institut de la Matière Condensée et des Nanosciences (IMCN) Molecular Chemistry, Materials and Catalysis (MOST) Place Louis Pasteur 1, bte L4.01.02 1348 Louvain-la-Neuve Belgium
| | - Martin Daenen
- Université catholique de Louvain (UCLouvain) Institut de la Matière Condensée et des Nanosciences (IMCN) Molecular Chemistry, Materials and Catalysis (MOST) Place Louis Pasteur 1, bte L4.01.02 1348 Louvain-la-Neuve Belgium
| | - Michaël Abraham
- Université catholique de Louvain (UCLouvain) Institut de la Matière Condensée et des Nanosciences (IMCN) Molecular Chemistry, Materials and Catalysis (MOST) Place Louis Pasteur 1, bte L4.01.02 1348 Louvain-la-Neuve Belgium
| | - Ludovic Troian‐Gautier
- Université catholique de Louvain (UCLouvain) Institut de la Matière Condensée et des Nanosciences (IMCN) Molecular Chemistry, Materials and Catalysis (MOST) Place Louis Pasteur 1, bte L4.01.02 1348 Louvain-la-Neuve Belgium
| | - Laure Bar
- Université Grenoble Alpes (UGA) Département de Chimie Moléculaire, UMR CNRS 5250 CS 40700 - 38058 Grenoble France)
| | - Hugues Bonnet
- Université Grenoble Alpes (UGA) Département de Chimie Moléculaire, UMR CNRS 5250 CS 40700 - 38058 Grenoble France)
| | - Frédérique Loiseau
- Université Grenoble Alpes (UGA) Département de Chimie Moléculaire, UMR CNRS 5250 CS 40700 - 38058 Grenoble France)
| | - Hélène Jamet
- Université Grenoble Alpes (UGA) Département de Chimie Moléculaire, UMR CNRS 5250 CS 40700 - 38058 Grenoble France)
| | - Jérôme Dejeu
- Université Grenoble Alpes (UGA) Département de Chimie Moléculaire, UMR CNRS 5250 CS 40700 - 38058 Grenoble France)
| | - Eric Defrancq
- Université Grenoble Alpes (UGA) Département de Chimie Moléculaire, UMR CNRS 5250 CS 40700 - 38058 Grenoble France)
| | - Benjamin Elias
- Université catholique de Louvain (UCLouvain) Institut de la Matière Condensée et des Nanosciences (IMCN) Molecular Chemistry, Materials and Catalysis (MOST) Place Louis Pasteur 1, bte L4.01.02 1348 Louvain-la-Neuve Belgium
| |
Collapse
|
7
|
Murali M, Latha J, Prakash PA, Sangeetha S, Selvakumaran B, Jaabir MSM. Characterization of [Ru(bpy)2(diamine)]2+ complexes and their DNA binding and cleavage, BSA interaction, cytotoxic, and anticancer mechanistic properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Nambigari N, Kodipaka A, Vuradi RK, Airva PK, Sirasani S. A Biophysical Study of Ru(II) Polypyridyl Complex, Properties and its Interaction with DNA. J Fluoresc 2022; 32:1211-1228. [PMID: 35353277 DOI: 10.1007/s10895-021-02879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/17/2021] [Indexed: 10/18/2022]
Abstract
Mononuclear Ru(II)Polypyridyl complexes of type [Ru(A)2BPIIP] (ClO4)2.2H2O, where BPIIP = 2-(3-(4-bromophenyl)isoxazole-5-yl)-1 H-imidazo [4,5-f] [1, 10] phenanthroline and A = bpy = bipyridyl (1), phen = 1,10 Phenanthroline (2), dmb = 4, 4' -dimethyl 2, 2'- bipyridine (3) & dmp = 4,4'-dimethyl-1,10 -Ortho Phenanthroline (4), were synthesized and their antibacterial activity were examined. The synthesized complexes were characterized and their interaction with DNA was studied using Computational and Biophysical methods (Absorption, emission methods, and viscosity). Molecular modelling studies were carried out for molecular geometry and electronic properties (Frontier molecular orbital HOMO-LUMO). The electrostatic potential surface contours for the complexes were analysed to give their nucleophilic level of sensitivity. The study reveals that the Ru(II) Polypyridyl complexes bind to DNA preponderantly by intercalation. The results recommend that the phen and dmp complex have more effective binding ability than the bpy and dmb, indicating the role of the ancillary ligand in determining their specificity for DNA binding. Further molecular docking studies suggested an octahedral geometry and bind to DNA by preferential binding to Guanine. The docking study additionally sustains the binding constant data acquired with the absorption and emission techniques.The results reveal that the nature of the ancillary Ligand plays a considerable role for the intercalation of the Ru(II) polypyridyl complex to DNA, which subsequently influences the antibacterial activity. Biological studies conducted on Gram-Negative (E.coli and K.pneumonia) and Gram-Positive (S. aureus and E. faecalis) bacteria establish that complex 1 and 2 were considerably active against S. aureus and E. coli.
Collapse
Affiliation(s)
- Navaneetha Nambigari
- Department of Chemistry, University College of Science, Osmania University, Saifabad, Telangana State, 500004, India. .,Department of Chemistry, University College of Science, Osmania University, Tarnaka, Telangana State, 500007, India.
| | - Aruna Kodipaka
- Department of Chemistry, University College of Science, Osmania University, Saifabad, Telangana State, 500004, India
| | - Ravi Kumar Vuradi
- Department of Chemistry, University College of Science, Osmania University, Tarnaka, Telangana State, 500007, India
| | - Praveen Kumar Airva
- Department of Biotechnology, Sri Satya Sai University of Technology & Medical Sciences, Bhopal- Indore Road, Opp. Oilfed Plant, Sehore, Madhya Pradesh, 466001, India
| | - Satyanarayana Sirasani
- Department of Chemistry, University College of Science, Osmania University, Tarnaka, Telangana State, 500007, India.
| |
Collapse
|
9
|
Metformin-Derived Water-Soluble Cobalt Complexes: Thermal, Spectroscopic, DNA Interaction, and Molecular Docking Studies. Appl Biochem Biotechnol 2022; 194:2650-2671. [PMID: 35235135 DOI: 10.1007/s12010-022-03862-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
Abstract
Novel three water-soluble cobalt (II) complexes of type [Co(metf)(o-phen)2]Cl2 (1), [Co(metf)(opda)2]Cl2 (2), and [Co(metf)(2-2'bipy)2]Cl2 (3) (Metf, metformin; o-phen, ortho-phenanthroline; opda, ortho-phenylenediamine; 2,2'-bipy, 2,2'-bipyridine) were synthesized and characterized by various analytical and spectral techniques. Based on these studies, octahedral geometry is assigned to these complexes. The stability of the complexes has been calculated from quantum chemical parameters using HOMO-LUMO energies. Thermal degradation pattern of the compounds was studied and Coats-Redfern method is used to determine kinetic parameters for complexes 1, 2, and 3 from thermal studies. The DNA interaction of these complexes was investigated by absorption, emission, and viscosity studies. From the spectral data, it was concluded that the complexes bind to DNA through groove mode of binding. The intrinsic binding constants (Kb) from absorption spectroscopy were 2.49 × 104, 2.48 × 104, and 2.64 × 104 M-1 for 1, 2, and 3, respectively, and Stern-Volmer quenching constants (Ksv) from emission spectroscopy were 0.21, 0.20, and 0.13, respectively. These complexes were screened for nuclease activity of pUC19 DNA, in the presence of H2O2. Discovery studio 2.1 software was used to evaluate binding affinity and interaction pattern of complexes with B-DNA receptor protein and the maximum dock score is seen for complex 2.
Collapse
|
10
|
|
11
|
Liu D, Zeng M, Pi JW, Liu MJ, Ding WZ, Mei XY, Liu JL, Cao XY. Exploring the Potential Mechanism of Costunolide-Induced MCF-7 Cells Apoptosis by Multi-Spectroscopy, Molecular Docking and Cell Experiments. Chem Biodivers 2021; 18:e2001069. [PMID: 33855794 DOI: 10.1002/cbdv.202001069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/12/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer is one of the most common cancer with high morbidity and mortality in women. This study aimed to explore the potential mechanism of costunolide inducing MCF-7 cells apoptosis by multi-spectroscopy, molecular docking, and cell experiments. The results manifested that costunolide interacted with calf thymus DNA (ct-DNA) in a spontaneous manner, and the minor groove as the preferential binding mode. Furthermore, costunolide inhibited cell proliferation and colony formation. Hoechst 33258 staining showed that cell apoptosis induced by costunolide might be related to DNA damage. The apoptosis mechanism relied on regulating the protein expression of Bax, Bcl-2, p53, Caspase-3 and the activation of p38MAPK and nuclear factor κB (NF-κB) pathways. This study will provide some experimental basis and potential therapeutic strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Dan Liu
- School of life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, P. R. China
| | - Meng Zeng
- Tianjin Ecological Academy of Environmental Sciences, 17 Fukang Road Nankai District Tianjin, Tianjin, 300191, P. R. China
| | - Jing-Wen Pi
- School of life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, P. R. China
| | - Mei-Jia Liu
- School of life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, P. R. China
| | - Wei-Zhe Ding
- School of life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, P. R. China
| | - Xue-Ying Mei
- School of life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, P. R. China
| | - Jian-Li Liu
- School of life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, P. R. China
| | - Xiang-Yu Cao
- School of life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, P. R. China
| |
Collapse
|
12
|
Rajeshwari K, Anantha Lakshmi P, Archana J, Sumakanth M. Ternary Cobalt(II), Nickel(II), and Copper(II) complexes containing metformin and ethylenediamine: Synthesis, characterization, thermal, in vitro DNA binding, in silico molecular docking, and in vivo antihyperglycemic studies. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- K. Rajeshwari
- Department of Chemistry Osmania University Hyderabad India
- Department of Chemistry University College for Women, Osmania University Hyderabad India
| | | | - J. Archana
- Department of Pharmacy RBVRR Women's College of Pharmacy Hyderabad India
| | - M. Sumakanth
- Department of Pharmacy RBVRR Women's College of Pharmacy Hyderabad India
| |
Collapse
|
13
|
Jing Q, Liu L, Zhang Y, Xie L, Song L, Wang W, Liu Y, Zhao X, Wang H. Structure, photodynamic reaction and DNA photocleavage properties of a nitrosyl iron-sulfur cluster (Me 4N) 2[Fe 2S 2(NO) 4]: A DFT calculation and experimental study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118401. [PMID: 32408226 DOI: 10.1016/j.saa.2020.118401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Density functional theory calculations were performed on the structure of the nitrosyl iron-sulfur cluster (Me4N)2[Fe2S2(NO)4]. The IR spectra were assigned and the electronic ground-state properties in different solvents were analyzed. Dynamic conversion of [Fe2S2(NO)4]2- was analyzed quantitatively using the time-resolved IR spectra in different solvents. Photo irradiation and polarity of solvent obviously affect the reaction rates, which are faster in CH3CN and CH3OH than those in DMSO and water. The calculated orbital energies of HOMOs are higher and those of LUMO-HOMO gap are smaller in CH3CN and CH3OH than those in DMSO and water, which is consistent with the reaction rate and explains the experimental observation. Moreover, the photo-induced nitric oxide (NO) release and cluster conversion was identified using EPR spectra. The photocleavage of pBR322 DNA was observed, both NO and oxygen related free radicals play key roles in the process. The study provides an effective method to monitor the photodynamic reactions for better understanding of the physiological activity of nitrosyl iron-sulfur clusters.
Collapse
Affiliation(s)
- Qi Jing
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Lifang Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yu Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Leilei Xie
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Luna Song
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yanhong Liu
- Technical Institute of Physics & Chemistry, CAS, Beijing 100190, China
| | - Xuan Zhao
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry and Key Laboratory of Energy Conversion and Storage Materials of Shanxi Provence, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
14
|
Gao E, Li Z, Zhu X, Ma Z, Zhu M. Synthesis, characterization, DNA binding, cytotoxicity and molecular docking properties of three novel butterfly‐like complexes with nitrogen‐containing heterocyclic ligands. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Enjun Gao
- School of Chemical EngineeringUniversity of Science and Technology Liaoning Anshan 114051 China
| | - Zhipeng Li
- Key Laboratory of Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| | - Xiaopeng Zhu
- Key Laboratory of Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| | - Zhiyan Ma
- Yingkou Institute of Technology 115014 China
| | - Mingchang Zhu
- Key Laboratory of Inorganic Molecule‐Based Chemistry of Liaoning Province and Laboratory of Coordination ChemistryShenyang University of Chemical Technology Shenyang 110142 China
| |
Collapse
|
15
|
Jiang GB, Zhang WY, He M, Gu YY, Bai L, Wang YJ, Yi QY, Du F. Development of four ruthenium polypyridyl complexes as antitumor agents: Design, biological evaluation and mechanism investigation. J Inorg Biochem 2020; 208:111104. [PMID: 32485635 DOI: 10.1016/j.jinorgbio.2020.111104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022]
Abstract
Ruthenium complexes are expected to be new opportunities for the development of antitumor agents. Herein, four ruthenium polypyridyl complexes ([Ru(bpy)2(CAPIP)](ClO4)2 (Ru(II)-1, bpy = 2,2'-bipyridine; CAPIP = (E)-2-(2-(furan-2-yl)vinyl)-1H-imidazo[4,5-f][1,10]phenanthroline), [Ru(phen)2(CA-PIP)](ClO4)2 (Ru(II)-2, phen = 1,10-phenanthroline), [Ru(dmb)2(CAPIP)](ClO4)2 (Ru(II)-3, dmb = 4,4'-dimethyl-2,2'-bipyridine), [Ru(dmb)2(ETPIP)](ClO4)2 (Ru(II)-4, ETPIP = 2-(4-(thiophen-2-ylethynyl)phenyl)-1H-imidazo[4,5-f][1,10]phen-anthroline)) have been investigated as mitochondria-targeted antitumor metallodrugs. DNA binding studies indicated that target Ru(II) complexes interacts with CT DNA (calf thymus DNA) by an intercalative mode. Cytotoxicity assay results demonstrate that Ru(II) complexes show high cytotoxicity against A549 cells with low IC50 value of 23.6 ± 2.3, 20.1 ± 1.9, 22.7 ± 1.8 and 18.4 ± 2.3 μM, respectively. Flow cytometry and morphological analysis revealed that these Ru(II) complexes can induce apoptosis in A549 cells. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential were also investigated by ImageXpress Micro XLS system. The experimental results indicate that the reactive oxygen species in A549 cells increased significantly and mitochondrial membrane potential decreased obviously. In addition, colocalization studies shown these complexes could get to the cytoplasm through the cell membrane and accumulate in the mitochondria. Furthermore, Ru(II) complexes can effectively induces cell cycle arrest at the S phase in A549 cells. Finally, cell invasion assay and quantitative studies were also performed to investigate the mechanism of this process. All in together, this study suggested that these Ru(II) complexes could induce apoptosis in A549 cells through cell cycle arrest and ROS-mediated mitochondrial dysfunction pathway.
Collapse
Affiliation(s)
- Guang-Bin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Wen-Yao Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Miao He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi-Ying Gu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lan Bai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yang-Jie Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiao-Yan Yi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fan Du
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
16
|
Notaro A, Frei A, Rubbiani R, Jakubaszek M, Basu U, Koch S, Mari C, Dotou M, Blacque O, Gouyon J, Bedioui F, Rotthowe N, Winter RF, Goud B, Ferrari S, Tharaud M, Řezáčová M, Humajová J, Tomšík P, Gasser G. Ruthenium(II) Complex Containing a Redox-Active Semiquinonate Ligand as a Potential Chemotherapeutic Agent: From Synthesis to In Vivo Studies. J Med Chem 2020; 63:5568-5584. [PMID: 32319768 DOI: 10.1021/acs.jmedchem.0c00431] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemotherapy remains one of the dominant treatments to cure cancer. However, due to the many inherent drawbacks, there is a search for new chemotherapeutic drugs. Many classes of compounds have been investigated over the years to discover new targets and synergistic mechanisms of action including multicellular targets. In this work, we designed a new chemotherapeutic drug candidate against cancer, namely, [Ru(DIP)2(sq)](PF6) (Ru-sq) (DIP = 4,7-diphenyl-1,10-phenanthroline; sq = semiquinonate ligand). The aim was to combine the great potential expressed by Ru(II) polypyridyl complexes and the singular redox and biological properties associated with the catecholate moiety. Experimental evidence (e.g., X-ray crystallography, electron paramagnetic resonance, electrochemistry) demonstrates that the semiquinonate is the preferred oxidation state of the dioxo ligand in this complex. The biological activity of Ru-sq was then scrutinized in vitro and in vivo, and the results highlight the promising potential of this complex as a chemotherapeutic agent against cancer.
Collapse
Affiliation(s)
- Anna Notaro
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Angelo Frei
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Riccardo Rubbiani
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Marta Jakubaszek
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France.,Institut Curie, PSL University, CNRS UMR 144, F-75005 Paris, France
| | - Uttara Basu
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Severin Koch
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Cristina Mari
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mazzarine Dotou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jérémie Gouyon
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Team Synthèse, Electrochimie, Imagerie et Systèmes Analytiques pour le Diagnostic, F-75005 Paris, France
| | - Fethi Bedioui
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Team Synthèse, Electrochimie, Imagerie et Systèmes Analytiques pour le Diagnostic, F-75005 Paris, France
| | - Nils Rotthowe
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | - Rainer F Winter
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | - Bruno Goud
- Institut Curie, PSL University, CNRS UMR 144, F-75005 Paris, France
| | - Stefano Ferrari
- Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland.,Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 143 00 Prague, Czech Republic
| | - Mickaël Tharaud
- Université de Paris, Institut de physique du Globe de Paris, CNRS, F-75005 Paris, France
| | - Martina Řezáčová
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Šimkova 870, 500 03 Hradec Kralove, Czech Republic
| | - Jana Humajová
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, 150 06 Prague, Czech Republic
| | - Pavel Tomšík
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Šimkova 870, 500 03 Hradec Kralove, Czech Republic
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| |
Collapse
|
17
|
Alsaeedi MS, Babgi BA, Hussien MA, Abdellattif MH, Humphrey MG. DNA-Binding and Anticancer Activity of Binuclear Gold(I) Alkynyl Complexes with a Phenanthrenyl Bridging Ligand. Molecules 2020; 25:E1033. [PMID: 32106590 PMCID: PMC7179095 DOI: 10.3390/molecules25051033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
3,6-Diethynyl-9,10-diethoxyphenanthrene (4) was synthesized from phenanthrene and employed in the synthesis of the binuclear gold(I) alkynyl complexes (R3P)Au(C≡C-3-[C14H6-9,10-diethoxy]-6-C≡C)Au(PR3) (R = Ph (5a), Cy (5b)). The diyne 4 and complexes 5a and 5b were characterized by NMR spectroscopy, mass spectrometry, and elemental analysis. UV-Vis spectroscopy studies of the metal complexes and precursor diyne show strong p à p* transitions in the near UV region that red shift by ca. 50 nm upon coordination at the gold centers. The emission spectrum of 4 shows an intense fluorescence band centered at 420 nm which red shifts, slightly upon coordination of 4 to gold. Binding studies of 4, 5a, and 5b against calf thymus DNA were carried out, revealing that 4, 5a, and 5b have >40% stronger binding affinities than the commonly used intercalating agent ethidium bromide. The molecular docking scores of 4, 5a, and 5b with B-DNA suggest a similar trend in behavior to that observed in the DNA-binding study. Unlike the ligand 4, promising anticancer properties for 5a and 5b were observed against several cell lines; the DNA binding capability of the precursor alkyne was maintained, and its anticancer efficacy enhanced by the gold centers. Such phenanthrenyl complexes could be promising candidates in certain biological applications because the two components (phenanthrenyl bridge and metal centers) can be altered independently to improve the targeting of the complex, as well as the biological and physicochemical properties.
Collapse
Affiliation(s)
- Mona S. Alsaeedi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203 Jeddah 21589, Saudi Arabia; (M.S.A.); (M.A.H.)
- Department of Chemistry, Faculty of Science, Taif University, Al-Haweiah, P.O. Box 888, Taif 21974, Saudi Arabia;
| | - Bandar A. Babgi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203 Jeddah 21589, Saudi Arabia; (M.S.A.); (M.A.H.)
- Department of Chemistry, College of Science and Arts, King Abdulaziz University, P.O. Box 344 Rabigh 21911, Saudi Arabia
| | - Mostafa A. Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203 Jeddah 21589, Saudi Arabia; (M.S.A.); (M.A.H.)
| | - Magda H. Abdellattif
- Department of Chemistry, Faculty of Science, Taif University, Al-Haweiah, P.O. Box 888, Taif 21974, Saudi Arabia;
| | - Mark G. Humphrey
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
18
|
Jiang GB, Zhang WY, He M, Gu YY, Bai L, Wang YJ, Yi QY, Du F. New ruthenium polypyridyl complexes functionalized with fluorine atom or furan: Synthesis, DNA-binding, cytotoxicity and antitumor mechanism studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117534. [PMID: 31685424 DOI: 10.1016/j.saa.2019.117534] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/27/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Two novel ruthenium(II) polypyridyl complexes, namely, [Ru(dmp)2(CAPIP)](ClO4)2 (Ru(II)-1) and [Ru(dmp)2(CFPIP)](ClO4)2 (Ru(II)-2), which respectively contain (E)-2-(2-(furan-2-yl)vinyl)-1H-imidazo[4,5-f][1,10]phen-anthroline (CAPIP) and (E)-2-(4-fluorostyryl)-1H-imidazo[4,5-f][1,10]phenanthroline. (CFPIP), were first designed and characterized (dmp = 2,9-dimethyl-1,10-phenanthroline). DNA binding experiments indicated that Ru(II) complexes interact with CT DNA through intercalative mode. In addition, the complexes Ru(II)-1 and Ru(II)-2, showed remarkable cell cytotoxicity, giving the respective IC50 values of 4.1 ± 1.4 μM and 6.1 ± 1.4 μM on the A549 cancer cells. These values indicated higher activity than CAPIP, CFPIP, cisplatin (8.2 ± 1.4 μM) and other corresponding Ru(II) polypyridyl complexes. Furthermore, the Ru(II) complexes could arrive the cytoplasm through the cell membrane and accumulate in the mitochondria. Significantly, complexes Ru(II)-1 and Ru(II)-2 induced A549 cells apoptosis was mediated by increase of ROS levels and dysfunction of mitochondria, and resulted in cell cycle arrest and increased anti-migration activity on A549 cells. Overall, these results indicated that complexes Ru(II)-1 and Ru(II)-2 could be suitable candidates for further investigation as a chemotherapeutic agent in the treatment of tumors.
Collapse
Affiliation(s)
- Guang-Bin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Wen-Yao Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Miao He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yi-Ying Gu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Lan Bai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yang-Jie Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Qiao-Yan Yi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Fan Du
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| |
Collapse
|
19
|
Zhao W, Xiong M, Liu M, Wang S, Xian X, Lin B, Li H. Evaluation of the effect of Tb(IV)-NR complex on herring sperm DNA genetic information by mean of spectroscopic. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:964-978. [PMID: 32043411 DOI: 10.1080/15257770.2020.1725042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The interaction between Tb(IV)-NR complex and herring sperm DNA in buffer solution of Tris-HCl was investigated with the use of acridine orange(AO) as a spectral probe. The binding modes and other information were provided by the UV-spectrophotometry and fluorescence spectroscopy. The thermodynamic functions expressed that the binding constants of Tb(IV)-NR complex with DNA was Kθ298.15K = 4.03 × 105 L·mol-1, Kθ310.15K =1.30 × 107 L·mol-1, and the ΔrGθ m 298.15 K=-3.20 × 104 J·mol-1. The scatchard equation suggested that the interaction mode between Tb(IV)-NR complex and herring sperm DNA is electrostatic and weak intercalation bindings. FTIR spectroscopy results also indicate that there is a specific interaction between the Tb(IV)-NR complex and the A and G bases of DNA.
Collapse
Affiliation(s)
- Weihua Zhao
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, PR China
| | - Mei Xiong
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, PR China
| | - Mingbin Liu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, PR China
| | - Suqin Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, PR China
| | - Xiao Xian
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, PR China
| | - Baoping Lin
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, PR China
| | - Hongbo Li
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, PR China
| |
Collapse
|
20
|
Zülfikaroğlu A, Yüksektepe Ataol Ç, Çelikoğlu E, Çelikoğlu U, İdil Ö. New Cu(II), Co(III) and Ni(II) metal complexes based on ONO donor tridentate hydrazone: Synthesis, structural characterization, and investigation of some biological properties. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Rajeshwari K, Vasantha P, Kumar B, Shekhar B, Lakshmi P. Water Soluble Nickel – metformin ternary complexes: Thermal, DNA binding and molecular docking studies. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- K. Rajeshwari
- Department of ChemistryUniversity College for Women, Osmania University, Koti Hyderabad Telangana State 500095 India
| | - P. Vasantha
- Department of ChemistryUniversity College for Women, Osmania University, Koti Hyderabad Telangana State 500095 India
| | - B.S. Kumar
- Department of ChemistryOsmania University Tarnaka Hyderabad Telangana State 500007 India
| | - B. Shekhar
- Department of ChemistryOsmania University Tarnaka Hyderabad Telangana State 500007 India
| | - P.V.A. Lakshmi
- Department of ChemistryOsmania University Tarnaka Hyderabad Telangana State 500007 India
| |
Collapse
|
22
|
Jiang GB, Zhang WY, He M, Gu YY, Bai L, Wang YJ, Yi QY, Du F. Design and synthesis of new ruthenium polypyridyl complexes with potent antitumor activity in vitro. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 220:117132. [PMID: 31146211 DOI: 10.1016/j.saa.2019.05.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/06/2019] [Accepted: 05/12/2019] [Indexed: 06/09/2023]
Abstract
We herein report the synthesis, characterization and anticancer activity of BTPIP (2-(4-(benzo[b]thiophen-2-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) and its four ruthenium(II) polypyridyl complexes [Ru(NN)2(BTPIP)](ClO4)2 (N-N = bpy = 2,2'-bipyridine, Ru(II)-1; phen = 1,10-phenanthroline, Ru(II)-2; dmb = 4,4'-dimethyl-2,2'-bipyridine, Ru(II)-3; dmp = 2,9-dimethyl-1,10-phenanthroline, Ru(II)-4). The DNA binding behaviors reveal that the complexes bind to calf thymus DNA by intercalation. Cytotoxicity of the complexes against A549, HepG-2, SGC-7901 and Hela cells were evaluated in vitro. Complexes Ru(II)-1, Ru(II)-2, Ru(II)-3, Ru(II)-4 show moderate activity on the cell proliferation in A549 cells with IC50 values of 9.3 ± 1.2, 12.1 ± 1.6, 10.3 ± 1.6, 8.9 ± 1.2 μM, respectively. Apoptosis assessment, intracellular mitochondrial membrane potential (MMP), location in mitochondria, reactive oxygen species (ROS), cell invasion assay and cell cycle arrest were also performed to explore the mechanism of this action. When the concentration of the ruthenium(II) complexes is increased, the amount of reactive oxygen species increases obviously and the mitochondrial membrane potential decreases dramatically in A549 cells. Most importantly, the ruthenium(II) polypyridyl complexes could arrive the cytoplasm through the cell membrane and accumulate in the mitochondria. These results showed that the ruthenium(II) complexes could induce apoptosis in A549 cells through an ROS-mediated mitochondrial dysfunction pathway.
Collapse
Affiliation(s)
- Guang-Bin Jiang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Wen-Yao Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Miao He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi-Ying Gu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lan Bai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yang-Jie Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Qiao-Yan Yi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Fan Du
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| |
Collapse
|
23
|
Jiang GB, Zhang WY, He M, Gu YY, Bai L, Wang YJ, Yi QY, Du F. Anticancer activity of two ruthenium(II) polypyridyl complexes toward Hepatocellular carcinoma HepG-2 cells. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Shekhar B, Vasantha P, Sathish Kumar B, Anantha Lakshmi P, Ravi Kumar V, Satyanarayana S. Chromium‐metformin ternary complexes: Thermal, DNA interaction and Docking studies. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- B. Shekhar
- Department of ChemistryOsmania University Tarnaka, Hyderabad Telangana State 500007 India
| | - P. Vasantha
- Department of ChemistryUniversity College for Women, Osmania University Koti, Hyderabad Telangana State 500095 India
| | - B. Sathish Kumar
- Department of ChemistryOsmania University Tarnaka, Hyderabad Telangana State 500007 India
| | - P.V. Anantha Lakshmi
- Department of ChemistryOsmania University Tarnaka, Hyderabad Telangana State 500007 India
| | - V. Ravi Kumar
- Department of ChemistryOsmania University Tarnaka, Hyderabad Telangana State 500007 India
| | - S. Satyanarayana
- Department of ChemistryOsmania University Tarnaka, Hyderabad Telangana State 500007 India
| |
Collapse
|
25
|
Tian X, Hussain S, de Pace C, Ruiz-Pérez L, Battaglia G. Zn II Complexes for Bioimaging and Correlated Applications. Chem Asian J 2019; 14:509-526. [PMID: 30716209 DOI: 10.1002/asia.201801437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/31/2018] [Indexed: 11/09/2022]
Abstract
Zinc is a biocompatible element that exists as the second most abundant transition metal ion and an indispensable trace element in the human body. Compared to traditional metal-organic complexes systems, d10 metal ZnII complexes not only exhibit a large Stokes shift and good photon stability but also possess strong emission and low cytotoxicity with a relatively small molecular weight. The use of ZnII complexes has emerged in the last decade as a versatile and convenient tool for numerous biological applications, including bioimaging, molecular and protein recognition, as well as photodynamic therapy. Herein, we review recent developments involving ZnII metal complexes applied as specific subcellular compartment imaging probes and their correlated utilizations.
Collapse
Affiliation(s)
- Xiaohe Tian
- School of life science, Anhui University, Hefei, 230039, P.R. China
| | - Sajid Hussain
- School of life science, Anhui University, Hefei, 230039, P.R. China.,School of Applied Sciences and Humanities (NUSASH), National University of Technology, Sector I-12, Islamabad, Pakistan
| | - Cesare de Pace
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Lorena Ruiz-Pérez
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Giuseppe Battaglia
- School of life science, Anhui University, Hefei, 230039, P.R. China.,Department of Chemistry, University College London, London, WC1H 0AJ, UK
| |
Collapse
|
26
|
Mehanna S, Mansour N, Audi H, Bodman-Smith K, Mroueh MA, Taleb RI, Daher CF, Khnayzer RS. Enhanced cellular uptake and photochemotherapeutic potential of a lipophilic strained Ru(ii) polypyridyl complex. RSC Adv 2019; 9:17254-17265. [PMID: 35519840 PMCID: PMC9064604 DOI: 10.1039/c9ra02615k] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/27/2019] [Indexed: 12/21/2022] Open
Abstract
A strained Ru(ii) prodrug exhibited enhanced cellular uptake and phototoxicity due to its lipophilic properties.
Collapse
Affiliation(s)
- Stephanie Mehanna
- Department of Natural Sciences
- Lebanese American University
- Beirut 1102-2801
- Lebanon
- Faculty of Health and Medical Sciences
| | - Najwa Mansour
- Department of Natural Sciences
- Lebanese American University
- Beirut 1102-2801
- Lebanon
- Faculty of Health and Medical Sciences
| | - Hassib Audi
- Department of Natural Sciences
- Lebanese American University
- Beirut 1102-2801
- Lebanon
| | - Kikki Bodman-Smith
- Faculty of Health and Medical Sciences
- Department of Microbial and Cellular Sciences
- University of Surrey
- UK
| | - Mohamad A. Mroueh
- School of Pharmacy
- Department of Pharmaceutical Sciences
- Lebanese American University
- Lebanon
| | - Robin I. Taleb
- Department of Natural Sciences
- Lebanese American University
- Beirut 1102-2801
- Lebanon
| | - Costantine F. Daher
- Department of Natural Sciences
- Lebanese American University
- Beirut 1102-2801
- Lebanon
| | - Rony S. Khnayzer
- Department of Natural Sciences
- Lebanese American University
- Beirut 1102-2801
- Lebanon
| |
Collapse
|
27
|
Synthesis, characterization and antitumor activity of two new dipyridinium ylide based lanthanide(III) complexes. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
P V, B SK, B S, P V AL. Copper-metformin ternary complexes: Thermal, photochemosensitivity and molecular docking studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:621-633. [PMID: 29853132 DOI: 10.1016/j.msec.2018.04.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 04/07/2018] [Accepted: 04/17/2018] [Indexed: 11/24/2022]
Abstract
The copper(II) complexes [Cu(Cl)2(met)(o-phen)] (1), [Cu(Cl)2(met)(en)] (2) and [Cu(Cl)2(met)(opda)] (3) (met = metformin, o-phen = ortho-phenanthroline, en = ethylenediamine, opda = ortho-phenylenediamine) were synthesized and characterized by LC-MS, elemental analysis, molar conductance, thermal analysis, infrared spectra, magnetic moment, electronic spectra and XRD studies. The metal center was found in an octahedral geometry. The activation thermodynamic properties were calculated using Coats-Redfern method. Thermal decomposition processes of complexes 1, 2, 3 are non-spontaneous, i.e., the complexes are thermally stable. The positive value of Gibbs free energy of decomposition (ΔG⁎) for the Cu(II) complexes is non-spontaneous processes. UV-Visible absorption, fluorescence, and viscosity measurements have been conducted to assess the interaction of the complexes with CT DNA. The complexes showed absorption hyperchromism in its UV-Vis spectrum with DNA. The binding constants Kb from UV-Vis absorption studies were 4.6 × 105, 1.48 × 105, 2.09 × 105 M-1 for 1, 2, 3 respectively and Stern-Volmer quenching constants (Ksq) from fluorescence studies were 0.636, 0.293, 0.487 for 1, 2, 3 respectively. Finally, viscosity measurements revealed that the binding of the complexes with CT-DNA could be surface binding, mainly due to groove binding. The activity of complexes towards DNA cleavage decreases in the order of 1 > 3 > 2. The complexes were docked in to B-DNA sequence, 5'(D*AP*CP*CP*GP*AP*CP*GP*TP*CP*GP*GP*T)-3' retrieved from protein data bank (PDB ID: 423D), using Discovery Studio 2.1 software.
Collapse
Affiliation(s)
- Vasantha P
- Department of Chemistry, University College for Women, Osmania University, Koti, Hyderabad, Telangana State 500095, India
| | - Sathish Kumar B
- Department of Chemistry, University College for Women, Osmania University, Koti, Hyderabad, Telangana State 500095, India; Department of Chemistry, Osmania University, Tarnaka, Hyderabad, Telangana State 500007, India
| | - Shekhar B
- Department of Chemistry, University College for Women, Osmania University, Koti, Hyderabad, Telangana State 500095, India; Department of Chemistry, Osmania University, Tarnaka, Hyderabad, Telangana State 500007, India
| | - Anantha Lakshmi P V
- Department of Chemistry, Osmania University, Tarnaka, Hyderabad, Telangana State 500007, India; Department of Chemistry, University College of Technology, Osmania University, Tarnaka, Hyderabad, Telangana State 500007, India.
| |
Collapse
|
29
|
Poynton FE, Bright SA, Blasco S, Williams DC, Kelly JM, Gunnlaugsson T. The development of ruthenium(ii) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications. Chem Soc Rev 2018; 46:7706-7756. [PMID: 29177281 DOI: 10.1039/c7cs00680b] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ruthenium(ii) [Ru(ii)] polypyridyl complexes have been the focus of intense investigations since work began exploring their supramolecular interactions with DNA. In recent years, there have been considerable efforts to translate this solution-based research into a biological environment with the intention of developing new classes of probes, luminescent imaging agents, therapeutics and theranostics. In only 10 years the field has expanded with diverse applications for these complexes as imaging agents and promising candidates for therapeutics. In light of these efforts this review exclusively focuses on the developments of these complexes in biological systems, both in cells and in vivo, and hopes to communicate to readers the diversity of applications within which these complexes have found use, as well as new insights gained along the way and challenges that researchers in this field still face.
Collapse
Affiliation(s)
- Fergus E Poynton
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
30
|
Sun B, Liang Z, Xie BP, Li RT, Li LZ, Jiang ZH, Bai LP, Chen JX. Fluorescence sensing platform based on ruthenium(II) complexes as high 3S (sensitivity, specificity, speed) and "on-off-on" sensors for the miR-185 detection. Talanta 2017; 179:658-667. [PMID: 29310291 DOI: 10.1016/j.talanta.2017.11.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/26/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Inspired by the enormous importance attributed to the biological function of miRNA, we pour our attention into the design and synthesis of four ruthenium(II) complexes and evaluate their applications as miR-185 detection agents by spectroscopic measurements. It was found that all complexes can form sensing platform for the detection of the complementary target miR-185 through the introduction of carboxyfluorescein (FAM) labeled single stranded DNA (P-DNA), giving the detection limits of 0.42nM for Ru 1, 0.28nM for Ru 2, 0.32nM for Ru 3, 0.85nM for Ru 4, all with instantaneous detection time in 1min. The results of the binding constant, fluorescence anisotropy (FA) and polyacrylamide gel electrophoresis experiments (PAGE) revealed that the ruthenium(II) complexes prefer to bind P-DNA other than hybrid duplexes DNA@RNA upon recognition, resulting in the detection of miR-185. These results provide useful suggestions in the new type of metal-based miRNA detection agents.
Collapse
Affiliation(s)
- Bin Sun
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Zhen Liang
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Bao-Ping Xie
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Rong-Tian Li
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Lin-Ze Li
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
31
|
Nagula N, Kunche S, Jaheer M, Mudavath R, Sivan S, Ch SD. Spectro Analytical, Computational and In Vitro Biological Studies of Novel Substituted Quinolone Hydrazone and it’s Metal Complexes. J Fluoresc 2017; 28:225-241. [DOI: 10.1007/s10895-017-2185-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/27/2017] [Indexed: 11/28/2022]
|
32
|
Hadian Rasanani S, Eslami Moghadam M, Soleimani E, Divsalar A, Ajloo D, Tarlani A, Amiri M. Anticancer activity of new imidazole derivative of 1R,2R-diaminocyclohexane palladium and platinum complexes as DNA fluorescent probes. J Biomol Struct Dyn 2017; 36:3058-3076. [DOI: 10.1080/07391102.2017.1385538] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sara Hadian Rasanani
- Inorganic Chemistry Research Laboratory, Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | | | - Esmaiel Soleimani
- Inorganic Chemistry Research Laboratory, Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Adeleh Divsalar
- Faculty of Biological Sciences, Department of Cell & Molecular Biology, Kharazmi University, Tehran, Iran
| | - Davood Ajloo
- School of Chemistry, Damghan University, Damghan, Iran
| | - Aliakbar Tarlani
- Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Majid Amiri
- School of Chemistry, Damghan University, Damghan, Iran
| |
Collapse
|
33
|
Xu L, Ma Z, Wang W, Xie L, Liu L, Liu J, Zhao X, Wang H. Photo-induced cytotoxicity, photo-controlled nitric oxide release and DNA/human serum albumin binding of three water-soluble nitrosylruthenium complexes. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.08.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Vasantha P, Sathish Kumar B, Shekhar B, Anantha Lakshmi P. Cobalt(II)–metformin complexes containing α‐diimine/α‐diamine as auxiliary ligand: DNA binding properties. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- P. Vasantha
- Department of ChemistryUniversity College for Women, Osmania University Koti, Hyderabad Telangana State 500095 India
| | - B. Sathish Kumar
- Department of ChemistryUniversity College for Women, Osmania University Koti, Hyderabad Telangana State 500095 India
- Department of ChemistryOsmania University Tarnaka, Hyderabad Telangana State 500007 India
| | - B. Shekhar
- Department of ChemistryUniversity College for Women, Osmania University Koti, Hyderabad Telangana State 500095 India
| | - P.V. Anantha Lakshmi
- Department of ChemistryUniversity College for Women, Osmania University Koti, Hyderabad Telangana State 500095 India
- Department of ChemistryOsmania University Tarnaka, Hyderabad Telangana State 500007 India
| |
Collapse
|
35
|
Devi CS, Thulasiram B, Satyanarayana S, Nagababu P. Analytical Techniques Used to Detect DNA Binding Modes of Ruthenium(II) Complexes with Extended Phenanthroline Ring. J Fluoresc 2017; 27:2119-2130. [PMID: 28831648 DOI: 10.1007/s10895-017-2151-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
Abstract
This review describes the analytical techniques used to detect DNA-probes such as Ru(II) complexes with hetero cyclic imidazo phenanthroline (IP) ligands. Studies on drug-DNA interactions are useful biochemical techniques for visualization of DNA both in vitro and in vivo. The interactions of small molecules that binds to DNA are mainly classified into two major classes, one involving covalent binding and another non-covalent binding. Covalent binding in DNA can be irreversible and may leads to inhibition of all DNA processes which subsequently leads to cell death. Usually, covalent interactions leads to permanent changes in the structure of nucleic acids. The non-covalent interaction of molecules with DNA can be due to electrostatic interaction, intercalation and groove binding. These interactions of DNA probes can be explored by various spectroscopic techniques viz. UV-visible, emission, emission quenching spectroscopy, viscosity and thermal denaturation measurements.
Collapse
Affiliation(s)
- C Shobha Devi
- Department of Chemistry, RGUKT, Basar, Telangana State, India
| | - B Thulasiram
- Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana State, India
| | - S Satyanarayana
- Department of Chemistry, Osmania University, Tarnaka, Hyderabad, Telangana State, India
| | - Penumaka Nagababu
- Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana State, India. .,CSIR-NEERI Zonal Laboratory, I-8, Sector C, East Kolkata, Area Development Project, P.O. East Kolkata, Township, Kolkata, 700 107, India.
| |
Collapse
|
36
|
Bonello RO, Pitak MB, Coles SJ, Hallett AJ, Fallis IA, Pope SJ. Synthesis and characterisation of phosphorescent rhenium(I) complexes of hydroxy- and methoxy-substituted imidazo[4,5- f ]-1,10-phenanthroline ligands. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Shokohi-Pour Z, Chiniforoshan H, Sabzalian MR, Esmaeili SA, Momtazi-Borojeni AA. Cobalt (II) complex with novel unsymmetrical tetradentate Schiff base (ON) ligand: in vitro cytotoxicity studies of complex, interaction with DNA/protein, molecular docking studies, and antibacterial activity. J Biomol Struct Dyn 2017; 36:532-549. [PMID: 28271957 DOI: 10.1080/07391102.2017.1287006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
[C20H17N3O2] and cobalt (II) complex [Co(L2)(MeOH)2].ClO4, (L2 = 4-((E)-1-((2-(((E)-pyridin-2-ylmethylene) amino) phenyl) imino) ethyl) benzene-1, 3-diol) novel Schiff base has been synthesiszed and chracterized by Fourier transform infrared, UV-vis, 1H-NMR spectroscopy, and elemental analysis techniques. The interaction of Co(II) complex with DNA and BSA was investigated by electronic absorption spectroscopy, fluorescence spectroscopy, circular dichroism, and thermal denaturation studies. Our experiments indicate that this complex could strongly bind to CT-DNA via minor groove mechanism. In addition, fluorescence spectrometry of BSA with the complex showed that the fluorescence quenching mechanism of BSA was of static type. The complex exhibited significant in vitro cytotoxicity against three human cancer cell lines (JURKAT, SKOV3, and U87). The molecular docking experiment effectively proved the binding of complex to DNA and BSA. Finally, antibacterial assay over gram-positive and gram-negative pathogenic bacterial strains was studied.
Collapse
Affiliation(s)
- Zahra Shokohi-Pour
- a Department of Chemistry , Isfahan University of Technology , Isfahan 84156-83111 , Iran
| | - Hossein Chiniforoshan
- a Department of Chemistry , Isfahan University of Technology , Isfahan 84156-83111 , Iran
| | - Mohammad R Sabzalian
- b Department of Agronomy and Plant Breeding , College of Agriculture, Isfahan University of Technology , Isfahan 84156-83111 , Iran
| | - Seyed-Alireza Esmaeili
- c Student Research Committee, Department of Immunology and Allergy , Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Amir Abbas Momtazi-Borojeni
- d Student Research Committee, Department of Medical Biotechnology , Nanotechnology Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
38
|
Synthesis, Characterization and Luminescence Sensitivity with Variance in pH, DNA and BSA Binding Studies of Ru(II) Polypyridyl Complexes. J Fluoresc 2017; 27:939-952. [DOI: 10.1007/s10895-017-2029-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
|
39
|
Deraedt Q, Marcélis L, Loiseau F, Elias B. Towards mismatched DNA photoprobes and photoreagents: “elbow-shaped” Ru(ii) complexes. Inorg Chem Front 2017. [DOI: 10.1039/c6qi00223d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Due to their potentially harmful consequences, the detection of mismatched DNA is a subject of high interest. In order to probe these DNA mismatches, we report new Ru(ii) complexes, bearing “elbow-shaped” extended planar ligands based on an acridine or a phenazine core.
Collapse
Affiliation(s)
- Q. Deraedt
- Institute of Condensed Matter and Nanosciences
- Molecules
- Solids and Reactivity (IMCN/MOST)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
| | - L. Marcélis
- Institute of Condensed Matter and Nanosciences
- Molecules
- Solids and Reactivity (IMCN/MOST)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
| | - F. Loiseau
- Département de Chimie Moléculaire
- Université Grenoble-Alpes
- BP53 38041 Grenoble
- France
| | - B. Elias
- Institute of Condensed Matter and Nanosciences
- Molecules
- Solids and Reactivity (IMCN/MOST)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
| |
Collapse
|
40
|
Sivaranjan K, Vanitha P, Sathiyaseelan A, Kalaichelvan PT, Sathuvan M, Rengasamy R, Santhanalakshmi J. Insights into the catalytic reduction of organic dyes and antibacterial activity of graphene oxide supported mono and bimetallic nanocomposites. NEW J CHEM 2017. [DOI: 10.1039/c6nj03467e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
GO-supported mono and bimetallic NCs were synthesized. The newly designed GO-supported NCs were utilized for the catalytic reduction of organic dyes and their antibacterial activity was also investigated.
Collapse
Affiliation(s)
- K. Sivaranjan
- Department of Physical Chemistry
- University of Madras
- Chennai – 600025
- India
| | - P. Vanitha
- Department of Physical Chemistry
- University of Madras
- Chennai – 600025
- India
| | - A. Sathiyaseelan
- Centre for Advanced Studies in Botany
- University of Madras
- Chennai – 600025
- India
| | - P. T. Kalaichelvan
- Centre for Advanced Studies in Botany
- University of Madras
- Chennai – 600025
- India
| | - M. Sathuvan
- Centre for Advanced Studies in Botany
- University of Madras
- Chennai – 600025
- India
| | - R. Rengasamy
- Centre for Advanced Studies in Botany
- University of Madras
- Chennai – 600025
- India
| | - J. Santhanalakshmi
- Department of Physical Chemistry
- University of Madras
- Chennai – 600025
- India
| |
Collapse
|
41
|
Notaro A, Gasser G. Monomeric and dimeric coordinatively saturated and substitutionally inert Ru(ii) polypyridyl complexes as anticancer drug candidates. Chem Soc Rev 2017; 46:7317-7337. [DOI: 10.1039/c7cs00356k] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Monomeric and dimeric coordinatively saturated and substitutionally inert Ru(ii) polypyridyl complexes with anticancer properties are reviewed.
Collapse
Affiliation(s)
- Anna Notaro
- Chimie ParisTech
- PSL Research University
- Laboratory for Inorganic Chemical Biology
- F-75005 Paris
- France
| | - Gilles Gasser
- Chimie ParisTech
- PSL Research University
- Laboratory for Inorganic Chemical Biology
- F-75005 Paris
- France
| |
Collapse
|
42
|
Novel Bioactive Co(II), Cu(II), Ni(II) and Zn(II) Complexes with Schiff Base Ligand Derived from Histidine and 1,3-Indandione: Synthesis, Structural Elucidation, Biological Investigation and Docking Analysis. J Fluoresc 2016; 27:135-150. [DOI: 10.1007/s10895-016-1941-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/21/2016] [Indexed: 12/25/2022]
|
43
|
Synthesis, structures, molecular docking, cytotoxicity and bioimaging studies of two novel Zn(II) complexes. Eur J Med Chem 2016; 121:1-11. [DOI: 10.1016/j.ejmech.2016.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/11/2016] [Accepted: 05/05/2016] [Indexed: 01/24/2023]
|
44
|
Anti-tumor activity and mechanism of apoptosis of A549 induced by ruthenium complex. J Biol Inorg Chem 2016; 21:945-956. [DOI: 10.1007/s00775-016-1391-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
|
45
|
Studies on Photocleavage, DNA Binding, Cytotoxicity, and Docking Studies of Ruthenium(II) Mixed Ligand Complexes. J Fluoresc 2016; 26:2119-2132. [DOI: 10.1007/s10895-016-1908-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/15/2016] [Indexed: 01/13/2023]
|
46
|
N. Deepika, C. Shobha Devi, Y. Praveen Kumar, K. Laxma Reddy, P. Venkat Reddy, D. Anil Kumar, Surya S. Singh, S. Satyanarayana. DNA-binding, cytotoxicity, cellular uptake, apoptosis and photocleavage studies of Ru(II) complexes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 160:142-53. [DOI: 10.1016/j.jphotobiol.2016.03.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 11/28/2022]
|
47
|
Behzad M, Seifikar Ghomi L, Damercheli M, Mehravi B, Shafiee Ardestani M, Samari Jahromi H, Abbasi Z. Crystal structures and in vitro anticancer studies on new unsymmetrical copper(II) Schiff base complexes derived from meso-1,2-diphenyl-1,2-ethylenediamine: a comparison with related symmetrical ones. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1198786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mahdi Behzad
- Department of Chemistry, Semnan University, Semnan, Iran
| | | | | | - Bita Mehravi
- Faculty of Advanced Technology in Medicine, Department of Medical Nanotechnology, Iran University of Medical Science, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Faculty of Pharmacy, Department of Radiopharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamideh Samari Jahromi
- Environment and Biotechnology Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - Zeinab Abbasi
- Department of Chemistry, Semnan University, Semnan, Iran
| |
Collapse
|
48
|
Bortolotto T, Silva-Caldeira PP, Pich CT, Pereira-Maia EC, Terenzi H. Tunable DNA cleavage activity promoted by copper(ii) ternary complexes with N-donor heterocyclic ligands. Chem Commun (Camb) 2016; 52:7130-3. [PMID: 27168172 DOI: 10.1039/c6cc03142k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Several small molecules have the capacity to cleave DNA promptly at high yields, even under mild conditions. Usually, this activity has no constraints, occurring without external or user control. Here, we demonstrate that UV-light exposure can greatly enhance the DNA cleavage activity promoted by four ternary copper(ii) complexes. A remarkable photocontrolled activity was achieved, which may be interesting for chemical and biochemical applications.
Collapse
Affiliation(s)
- T Bortolotto
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-970, Florianópolis-SC, Brazil.
| | | | | | | | | |
Collapse
|
49
|
Mallepally RR, Putta VR, Chintakuntla N, Vuradi RK, Kotha LR, Sirasani S. DNA Binding Behavior, Sensor Studies, Antimicrobial, Photocleavage and In vitro Cytotoxicity of Synthesized Ru(II) Complexes with Assorted Intercalating Polypyridyl Ligands. J Fluoresc 2016; 26:1101-13. [PMID: 27067208 DOI: 10.1007/s10895-016-1800-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 03/27/2016] [Indexed: 12/25/2022]
Abstract
The four novel Ru(II) polypyridyl complexes of [Ru(Hdpa)2dmbip](2+) (1), [Ru(Hdpa)2NO2-dmbip](2+) (2), [Ru(Hdpa)2debip](2+) (3) and [Ru(Hdpa)2OH-debip](2+) (4) where Hdpa = 2,2'-bipyridylamine, dmbip = 2-(4-N,N-dimethylbenzenamine)1H-imidazo[4,5-f][1,10]phenanthroline, debip = 2-(4-N,N-diethylbenzenamine)1H-imidazo[4,5-f][1,10]phenanthroline, NO2-dmbip = NO2-2-(4-N,N-dimethylbenzenamine)1H-imidazo[4,5-f][1,10]phenanthroline, OH-debip = OH-2-(4-N,N-diethylbenzenamine)1H-imidazo[4,5-f][1,10]phenanthroline were synthesized and fully characterized using elemental analysis, Mass, NMR and FT-IR. The DNA binding behavior of all synthesized complexes were investigated by using electronic absorption spectra, emission spectra, cyclic light switch on and off, sensor studies, electrochemical method and viscosity titrations. Docking studies were performed with human DNA TOP1 by using LibDock. Furthermore explore antimicrobial activity, photocleavage and in vitro cytotoxicity assay of four Ru(II) complexes.
Collapse
Affiliation(s)
- Rajender Reddy Mallepally
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Venkat Reddy Putta
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Nagamani Chintakuntla
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Ravi Kumar Vuradi
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Laxma Reddy Kotha
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Satyanarayana Sirasani
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana State, 500007, India.
| |
Collapse
|
50
|
Hu P, Wang Y, Zhang Y, Song H, Gao F, Lin H, Wang Z, Wei L, Yang F. Novel mononuclear ruthenium(ii) complexes as potent and low-toxicity antitumour agents: synthesis, characterization, biological evaluation and mechanism of action. RSC Adv 2016. [DOI: 10.1039/c6ra02571d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ruthenium(ii) complex, [Ru(dmb)2(salH)]PF6(Ru-2), is considered a potential antitumour agent that could avoid the side-effects of platinum-based anti-cancer drugs, such as cisplatin, carboplatin or oxaliplatin.
Collapse
Affiliation(s)
- Pengchao Hu
- School of Basic Medical Sciences
- Wuhan University
- Wuhan
- China
| | - Ying Wang
- School of Basic Medical Sciences
- Wuhan University
- Wuhan
- China
| | - Yan Zhang
- School of Chemical and Biological Engineering
- Tai Yuan Science and Technology University
- Taiyuan
- China
| | - Hui Song
- Institute of Pathogen Biology
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing
- China
| | - Fangfang Gao
- School of Basic Medical Sciences
- Wuhan University
- Wuhan
- China
| | - Hongyi Lin
- School of Basic Medical Sciences
- Wuhan University
- Wuhan
- China
| | - Zhihao Wang
- School of Basic Medical Sciences
- Wuhan University
- Wuhan
- China
| | - Lei Wei
- School of Basic Medical Sciences
- Wuhan University
- Wuhan
- China
| | - Fang Yang
- School of Basic Medical Sciences
- Wuhan University
- Wuhan
- China
| |
Collapse
|