1
|
Fotopoulou A, Angelopoulou MT, Pratsinis H, Mavrogonatou E, Kletsas D. A subset of human dermal fibroblasts overexpressing Cockayne syndrome group B protein resist UVB radiation-mediated premature senescence. Aging Cell 2024:e14422. [PMID: 39698891 DOI: 10.1111/acel.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/23/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Ultraviolet B (UVB) radiation is a major contributor to skin photoaging. Although mainly absorbed by the epidermis, UVB photons managing to penetrate the upper dermis affect human dermal fibroblasts (HDFs), leading, among others, to the accumulation of senescent cells. In vitro studies have shown that repeated exposures to subcytotoxic UVB radiation doses provoke HDFs' premature senescence shortly after the end of the treatment period. Here, we found that repetitive exposures to non-cytotoxic UVB radiation doses after several days lead to mixed cultures, containing both senescent cells and fibroblasts resisting senescence. "Resistant" fibroblasts were more resilient to a novel intense UVB radiation stimulus. RNA-seq analysis revealed that ERCC6, encoding Cockayne syndrome group B (CSB) protein, is up-regulated in resistant HDFs compared to young and senescent cells. CSB was found to be a key molecule conferring protection toward UVB-induced cytotoxicity and senescence, as siRNA-mediated CSB loss-of-expression rendered HDFs significantly more susceptible to a high UVB radiation dose, while cells from a CSB-deficient patient were found to be more sensitive to UVB-mediated toxicity, as well as senescence. UVB-resistant HDFs remained normal (able to undergo replicative senescence) and non-tumorigenic. Even though they formed a distinct population in-between young and senescent cells, resistant HDFs retained numerous tissue-impairing characteristics of the senescence-associated secretory phenotype, including increased matrix metalloprotease activity and promotion of epidermoid tumor xenografts in immunodeficient mice. Collectively, here we describe a novel subpopulation of HDFs showing increased resistance to UVB-mediated premature senescence while retaining undesirable traits that may negatively affect skin homeostasis.
Collapse
Affiliation(s)
- Asimina Fotopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
- Department of Chemistry, University of Patras, Patras, Greece
| | - Maria T Angelopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
2
|
Rosales Santillan M, Ozog D, Wu W. Using Neuromodulators to Improve Scar Formation, Keloids, Rosacea, and Antiaging. Dermatol Surg 2024; 50:S91-S96. [PMID: 39196841 DOI: 10.1097/dss.0000000000004353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
BACKGROUND Botulinum toxin A (BoNT-A) treatment has many uses in dermatology. Its mechanism of action and long-term effects for scar formation, rosacea, and antiaging are still being investigated. OBJECTIVE To conduct a literature review on BoNT-A to further investigate its use in scar formation, rosacea, and antiaging. METHODS A literature review was conducted using PubMed on botulinum toxin treatment for scar formation, rosacea, and antiaging. Studies discussing the toxin mechanism of action and treatment algorithm were included. The authors also provided their personal experience in BoNT-A use for these 3 conditions. RESULTS The mechanism of action of Botulinum toxin A in improving scar formation, rosacea, and antiaging is now better understood. While it is effective in the short term, little is still known about how frequently treatment needs to be repeated and if there are any long-term effects. CONCLUSION While in vitro studies have supporting evidence on the mechanism of action of BoNT-A on scar formation, rosacea, and antiaging, further studies are needed to identify long-term treatment effects.
Collapse
Affiliation(s)
| | - David Ozog
- Department of Dermatology, Henry Ford Health, Detroit, Michigan
- College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Woffles Wu
- Woffles Wu Aesthetic Surgery and Laser Centre, Singapore
| |
Collapse
|
3
|
Zheng ZH, Wang JJ, Lin JG, Ye WL, Zou JM, Liang LY, Yang PL, Qiu WL, Li YY, Yang SJ, Zhao M, Zhou Q, Li CZ, Li M, Li ZM, Zhang DM, Liu PQ, Liu ZP. Cytosolic DNA initiates a vicious circle of aging-related endothelial inflammation and mitochondrial dysfunction via STING: the inhibitory effect of Cilostazol. Acta Pharmacol Sin 2024; 45:1879-1897. [PMID: 38689095 PMCID: PMC11336235 DOI: 10.1038/s41401-024-01281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Endothelial senescence, aging-related inflammation, and mitochondrial dysfunction are prominent features of vascular aging and contribute to the development of aging-associated vascular disease. Accumulating evidence indicates that DNA damage occurs in aging vascular cells, especially in endothelial cells (ECs). However, the mechanism of EC senescence has not been completely elucidated, and so far, there is no specific drug in the clinic to treat EC senescence and vascular aging. Here we show that various aging stimuli induce nuclear DNA and mitochondrial damage in ECs, thus facilitating the release of cytoplasmic free DNA (cfDNA), which activates the DNA-sensing adapter protein STING. STING activation led to a senescence-associated secretory phenotype (SASP), thereby releasing pro-aging cytokines and cfDNA to further exacerbate mitochondrial damage and EC senescence, thus forming a vicious circle, all of which can be suppressed by STING knockdown or inhibition. Using next-generation RNA sequencing, we demonstrate that STING activation stimulates, whereas STING inhibition disrupts pathways associated with cell senescence and SASP. In vivo studies unravel that endothelial-specific Sting deficiency alleviates aging-related endothelial inflammation and mitochondrial dysfunction and prevents the development of atherosclerosis in mice. By screening FDA-approved vasoprotective drugs, we identified Cilostazol as a new STING inhibitor that attenuates aging-related endothelial inflammation both in vitro and in vivo. We demonstrated that Cilostazol significantly inhibited STING translocation from the ER to the Golgi apparatus during STING activation by targeting S162 and S243 residues of STING. These results disclose the deleterious effects of a cfDNA-STING-SASP-cfDNA vicious circle on EC senescence and atherogenesis and suggest that the STING pathway is a promising therapeutic target for vascular aging-related diseases. A proposed model illustrates the central role of STING in mediating a vicious circle of cfDNA-STING-SASP-cfDNA to aggravate age-related endothelial inflammation and mitochondrial damage.
Collapse
Affiliation(s)
- Zhi-Hua Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiao-Jiao Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jiu-Guo Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wei-le Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jia-Mi Zou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Li-Yin Liang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ping-Lian Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wan-Lu Qiu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, 510006, China
| | - Yuan-Yuan Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Si-Jia Yang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Man Zhao
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Qing Zhou
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, 510006, China
| | - Cheng-Zhi Li
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510006, China
| | - Min Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhuo-Ming Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dong-Mei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Pei-Qing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Zhi-Ping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Abstract
Botulinum neurotoxins (BoNTs) are multi-domain proteins whose potent and selective actions on nerve endings have led to innovations in both basic and clinical science. The various BoNT domains are responsible for binding to gangliosides and proteins associated with nerve cell membranes, internalization into the cell, and cleavage of one or more SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins necessary for vesicle docking and fusion. Novel modifications to BoNT molecules, such as the creation of chimeras, helped identify the protein domains responsible for various aspects of BoNT action, such as localized effects. Other molecular modifications have been introduced in attempts to increase the specificity of BoNTs for autonomic or sensory neurons, with the ultimate goal of optimizing therapeutic selectivity. This research, in turn, has led to the development of BoNT-based proteins that can target non-SNARE substrates such as phosphatase and tensin homolog (PTEN). Still others are developing different BoNT serotypes, subtypes, or variants that are longer- or shorter-acting or have faster onset for various clinical purposes. New formulations of BoNTs that provide convenience for both patients and physicians are under investigation. Novel clinical uses are being evaluated for onabotulinumtoxinA, including in the prevention of post-operative atrial fibrillation. All these innovations capitalize on the unique properties of BoNTs, which continue to intrigue scientists and clinicians across numerous fields of study.
Collapse
Affiliation(s)
| | - J Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Mitchell F Brin
- Allergan/AbbVie, Irvine, CA, USA
- University of California, Irvine, CA, USA
| |
Collapse
|
5
|
Xu J, Zhang X, Song Y, Zheng B, Wen Z, Gong M, Meng L. Heat-Killed Lacticaseibacillus paracasei Ameliorated UVB-Induced Oxidative Damage and Photoaging and Its Underlying Mechanisms. Antioxidants (Basel) 2022; 11:1875. [PMID: 36290598 PMCID: PMC9598452 DOI: 10.3390/antiox11101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Ultraviolet B (UVB) radiation is a major environmental causative factor of skin oxidative damage and photoaging. Lacticaseibacillus paracasei is a well-known probiotic strain that can regulate skin health. The present study investigated the effects of heat-killed Lacticaseibacillus paracasei (PL) on UVB linked oxidative damage and photoaging in skin cells (Normal human dermal fibroblast (NHDF) cells and B16F10 murine melanoma cells). Results demonstrated that: (1) PL prevented UVB-induced cytotoxicity relating to decreased DNA damage in NHDF and B16F10 cells; (2) PL alleviated UVB-induced oxidative damage through increasing GSH content, as well as antioxidant enzyme activities and mRNA levels (except MnSOD activity and mRNA levels as well as CAT mRNA level) relating to the activation of Sirt1/PGC-1α/Nrf2 signaling in NHDF cells; (3) PL attenuated UVB-induced photoaging was noticed with a decrease in the percentage of SA-β-gal positive cells in NHDF cells model. Moreover, PL attenuated UVB-induced photoaging through exerting an anti-wrinkling effect by enhancing the type I collagen level relating to the inhibition (JNK, p38)/(c-Fos, c-Jun) of signaling in NHDF cells, and exerting an anti-melanogenic effect by suppressing tyrosinase and TYRP-1 activity and/or expressions relating to the inhibition of PKA/CREB/MITF signaling in B16F10 cells. In conclusion, PL could ameliorate UVB-induced oxidative damage and photoaging. Therefore, PL may be a potential antioxidant and anti-photoaging active ingredient for the cosmetic industry.
Collapse
Affiliation(s)
| | | | - Yan Song
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Zheng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhengshun Wen
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China
| | | | | |
Collapse
|
6
|
Xu P, Xin Y, Zhang Z, Zou X, Xue K, Zhang H, Zhang W, Liu K. Extracellular vesicles from adipose-derived stem cells ameliorate ultraviolet B-induced skin photoaging by attenuating reactive oxygen species production and inflammation. Stem Cell Res Ther 2020; 11:264. [PMID: 32611371 PMCID: PMC7329484 DOI: 10.1186/s13287-020-01777-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/20/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Large numbers of adipose-derived stem cells (ADSCs) are easily obtained and have been demonstrated to protect against ultraviolet B (UVB)-induced skin photoaging. Extracellular vesicles (EVs) exhibit some of the same effects as the cells from which they originate and have many advantages over stem cells. In particular, their application circumvents many safety concerns associated with cell therapy. Thus, as a cell-free agent, adipose-derived stem cell extracellular vesicles (ADSC-EVs) have anti-photoaging potential. However, the protective effects of ADSC-EVs in skin photoaging remain uncertain. METHODS To investigate the effect of ADSC-EVs on mice with UVB-induced photoaging, 150 μg and 300 μg ADSC-EVs were subcutaneously injected weekly into photoaging mice for 8 weeks. The protective effect was evaluated by gross assessment and hematoxylin and eosin, Masson's trichrome, and β-galactosidase staining. Proliferating cell nuclear antigen, CD68, and dihydroethidium staining were performed to evaluate cell proliferation, inflammation infiltration, and reactive oxygen species (ROS) production, respectively. In vitro, 100 μg/mL and 200 μg/mL ADSC-EVs were used to treat photoaging fibroblasts (FBs). β-galactosidase staining and collagen 1 and matrix metalloproteinase 3 (MMP-3) expression were analyzed to evaluate FB senescence. To explain the protective mechanism of ADSC-EVs, their role in regulating ROS production, antioxidant enzyme expression, cell cycle arrest, and inflammation was evaluated. RESULTS In vivo, we showed that ADSC-EVs decreased skin wrinkles in mice with UVB-induced photoaging, while promoting epidermal cell proliferation and attenuating macrophage infiltration and ROS production. In vitro, we showed that ADSC-EVs increased FB activity and protected FBs from UVB-induced senescence, attenuated raw 264.7 cell differentiation from M0 to M1 macrophages, reduced intracellular ROS production, promoted antioxidant enzyme expression, and rescued FBs from cell cycle arrest. CONCLUSION The anti-photoaging effect of ADSC-EVs was attributed to their ability to attenuate ROS production and the inflammatory response, which are key factors in MMP activation and collagen degradation.
Collapse
Affiliation(s)
- Peng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yu Xin
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiangyu Zou
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ke Xue
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Huizhong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
7
|
Wanitphakdeedecha R, Kaewkes A, Ungaksornpairote C, Limsaengurai S, Panich U, Manuskiatti W. The effect of botulinum toxin type A in different dilution on the contraction of fibroblast-In vitro study. J Cosmet Dermatol 2019; 18:1215-1223. [PMID: 31328889 PMCID: PMC6851680 DOI: 10.1111/jocd.13058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Botulinum toxin type A (BoNT-A) may directly remodel dermal tissues or induce a loss of normal morphology and cytoplasmic retraction and spread. Intradermal injection was claimed to produce a dermo-lifting effect, including midface lifting by using low concentration with variable dilution. OBJECTIVE To understand how intradermal BoNT-A achieves tissue lifting, we examined different type of BoNT-A and their effects on dermal fibroblast contraction. METHODS Normal human dermal fibroblasts were treated with onabotulinumtoxin (ONA), abobotulinumtoxin (ABO), prabotulinumtoxinA (PRABO), incobotulinumtoxinA (INCO), and letibotulinumtoxin A (LETI) in dilutions used in real-world practice. Fifty fibroblasts per dilution were photographed and measured the length to demonstrate their contraction every 2 hours from baseline (0 hours) to 12 hours post-treatment. RESULTS ONA did not significantly decrease fibroblast lengths, at any timepoint or dilution. At 1:7 dilution ratios, ABO decreased fibroblast lengths after 2 hours and significantly after 10-12 hours. At 1:7, 1:8, 1:9, and 1:10 dilution, PRABO decreased length, and most rapidly at 1:7 and 1:8. At 1:6, 1:8, 1:9, and 1:10 dilution, INCO decreased lengths almost immediately. At 1:6 dilution, INCO decreased lengths almost immediately. At 1:7 dilution, INCO decreased lengths after 2-4 hours, while at 1:8, 1:9, and 1:10 dilution, INCO decreased lenghts nearly imediately. LETI decreased lengths at all dilutions except 1:9, with near-immediate effects at 1:6, 1:7, 1:8, and 1:10. At 1:4 dilution, LETI decreased lengths from 1 hour. CONCLUSIONS Different commercial preparations of BoNT-A toxins cause different fibroblast contractions in vitro. Product selection and dilution used may affect the clinical outcome of intradermal injection of BoNT-A for face lifting.
Collapse
Affiliation(s)
| | - Arisa Kaewkes
- Department of Dermatology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Chanida Ungaksornpairote
- Department of Dermatology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Saowalak Limsaengurai
- Department of Pharmacology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Woraphong Manuskiatti
- Department of Dermatology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| |
Collapse
|
8
|
Choi JS, Cho WL, Choi YJ, Kim JD, Park HA, Kim SY, Park JH, Jo DG, Cho YW. Functional recovery in photo-damaged human dermal fibroblasts by human adipose-derived stem cell extracellular vesicles. J Extracell Vesicles 2019; 8:1565885. [PMID: 30719241 PMCID: PMC6346706 DOI: 10.1080/20013078.2019.1565885] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/26/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022] Open
Abstract
Ultraviolet-B (UVB) irradiation causes imbalance between dermal matrix synthesis and degradation through aberrant upregulation of matrix metalloproteinases (MMPs), which leads to overall skin photoaging. We investigated the effects of extracellular vesicles (EVs) derived from human adipose-derived stem cells (HASCs) on photo-damaged human dermal fibroblasts (HDFs). EVs were isolated from conditioned media of HASCs with tangential flow filtration and characterized using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), western blotting, micro RNA (miRNA) arrays, cytokine arrays and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The effects of EVs on the UVB-irradiated HDFs were evaluated using scratch assay, ELISA and real-time PCR. Microarrays exhibited that EVs are rich in various miRNAs and proteins, and that these EV contents are linked to a broad range of biological functions, including fibroblast proliferation, UV protection, collagen biosynthesis, DNA repair and cell ageing. A scratch assay showed that HASC-EVs enhanced the migration ability of UVB-irradiated HDFs. Real-time RT-PCR and ELISA analyses revealed that the HASC-derived EVs significantly suppressed the overexpression of MMP-1, -2, -3 and -9 induced by UVB irradiation and enhanced the expression of collagen types I, II, III and V and elastin. In particular, tissue inhibitor of metalloproteinase (TIMP)-1 and transforming growth factor (TGF)-β1, which are important factors involved in MMP suppression and ECM synthesis, were upregulated in EV-treated HDFs after UVB irradiation. Overall results suggest that diverse components that are enriched in HASC-derived EVs could act as a biochemical cue for recovery from skin photoaging.
Collapse
Affiliation(s)
- Ji Suk Choi
- Department of Chemical Engineering, Hanyang University, Ansan, Republic of Korea.,Research Institute, Exostemtech Inc, Ansan, Republic of Korea
| | - Woo Lee Cho
- Department of Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Yeo Jin Choi
- Department of Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Jae Dong Kim
- Research Institute, Exostemtech Inc, Ansan, Republic of Korea
| | - Hyun-A Park
- Research Institute, Exostemtech Inc, Ansan, Republic of Korea
| | - Su Yeon Kim
- Research Institute, Exostemtech Inc, Ansan, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yong Woo Cho
- Department of Chemical Engineering, Hanyang University, Ansan, Republic of Korea.,Research Institute, Exostemtech Inc, Ansan, Republic of Korea
| |
Collapse
|
9
|
Wen W, Chen J, Ding L, Luo X, Zheng X, Dai Q, Gu Q, Liu C, Liang M, Guo X, Liu P, Li M. Astragaloside exerts anti-photoaging effects in UVB-induced premature senescence of rat dermal fibroblasts through enhanced autophagy. Arch Biochem Biophys 2018; 657:31-40. [DOI: 10.1016/j.abb.2018.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/31/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022]
|
10
|
Calvani F, Santini S, Bartoletti E, Alhadeff A. Personal Technique of Microinfiltration With Botulin Toxin: The SINB Technique (Superficial Injection Needling Botulinum). Plast Surg (Oakv) 2018; 27:156-161. [PMID: 31106174 DOI: 10.1177/2292550318800330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The superficial injection needling botulinum (SINB) technique is the dermal injection of microdoses of botulin toxin, not by traditional syringe but with needling technique that consists in multiple microdroplets by electrical device. The intention is to decrease sweat and sebaceous gland activity to improve skin texture and sheen and to target the superficial layer of muscles that find attachment to the undersurface of the dermis causing visible rhytides. The technique is for treatment of face and neck by the injection of the botulin toxin into the dermis or in subdermal plane to improve skin texture, smoothen horizontal creases, and decrease vertical banding of the neck as well as to achieve better apposition of the platysma to the jawline and neck, improving contouring of the cervicomental angle. The botox solution is hyperconcentrated when compared to traditional dilution or compared to microbotox or mesobotox. Furthermore, the injection technique is different because spreading superficial microdroplets are not performed, but small, homogeneous, and controlled amounts of solution are injected. Each 0.8-mL syringe contains 50 units of onabotulinumtoxinA. The solution is delivered intradermally, using an electrical needling pen and setting the depth penetration of the needles at 3 to 3.5 mm. The 2 conjugated techniques play a 2-fold action on the skin. The technique was applied to a group of 63 patients dealing with face, forehead, cheekbones, and neck.
Collapse
|
11
|
A Comparative In Vivo Study on Three Treatment Approaches to Applying Topical Botulinum Toxin A for Crow's Feet. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6235742. [PMID: 30057908 PMCID: PMC6051279 DOI: 10.1155/2018/6235742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/18/2018] [Accepted: 06/05/2018] [Indexed: 11/17/2022]
Abstract
Objective To evaluate the efficacy and safety of three treatment approaches to applying Botulinum Toxin Type A (BoNTA) for crow's Feet. Methods Thirty female subjects with moderate-to-severe crow's feet were included in this comparative in vivo study. They were randomly divided into three groups, including the local intramuscular, intradermal microdroplet injection, and nanomicroneedle delivered with BoNTA therapy group. After one session, evaluations were done at the time points of weeks one, four, and twelve after the treatment. The assessments included subjective satisfaction, blinded clinical assessment, and the biophysical parameters (skin collagen content, elasticity, hydration, and sebum contents). Results For dynamic wrinkles, intramuscular injection and intradermal microdroplets injection were more effective than nanomicroneedles. For static wrinkles, nanomicroneedles and intradermal microdroplets injection were more effective. However, the intramuscular injection had no significant effect on static wrinkles. At one week and four weeks after the treatment, the skin elasticity, collagen content, and hydration of nanomicroneedle group and intradermal microdroplet group increased more significantly than those of the intramuscular injection group; at twelve weeks after the treatment, the skin elasticity, collagen content, and hydration of intradermal microdroplet group were higher than those of other two groups. However we observed no statistically significant difference in sebum content between the three groups before and after the treatment. Conclusion BoNTA delivered through nanomicroneedles and intradermal microdroplets injection can effectively treat crow's feet. This trial is registered with [2016]KY018-01, registered 16 Feb 2016.
Collapse
|
12
|
Hao R, Li Z, Chen X, Ye W. Efficacy and possible mechanisms of Botulinum Toxin type A on hypertrophic scarring. J Cosmet Dermatol 2018; 17:340-346. [PMID: 29569821 DOI: 10.1111/jocd.12534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Clinical observations indicate that Botulinum toxin type A (BTXA) can inhibit the growth and improve the eventual appearance of hypertrophic scarring. However, the molecular mechanism remains unclear. OBJECTIVE We used human keloid fibroblasts to investigate the molecular mechanism of BTXA on hypertrophic scarring. METHODS Different concentrations of BTXA (0.01, 0.1, 1, and 10 U/L) were used to treat keloid fibroblasts. Changes in cellular morphology, viability, proliferation, cell cycle, and apoptosis were observed by immunofluorescence, MTT assay, and flow cytometry. In addition, real-time qPCR and Western blotting were used to explore the potential molecular mechanisms. RESULTS Keloid fibroblast viability decreased with increasing BTXA dose. After BTXA treatment, the volume of keloid fibroblasts cells increased, but the nucleus of cells shrunk. Long thin dendrites were formed as the concentration of BTXA increased. Furthermore, the proliferation and S phase of keloid fibroblasts were inhibited by BTXA. Matrix metalloproteinase (, MMP)-1 and -2 RNA and protein showed high expression, but TGF-β1 and MMP-9 showed low expression than the control. CONCLUSION Botulinum toxin type A may promote the healing of scars by inhibiting the proliferation of keloid fibroblasts and regulating the expression of TGF-β1, which could affect the expression of MMP-1 and MMP-2. This study provides theoretical support for the clinical application of BTXA to control hypertrophic scarring.
Collapse
Affiliation(s)
- RongTao Hao
- Department of Skin Cosmetology, Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| | - ZongChao Li
- Department of Skin Cosmetology, Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| | - Xing Chen
- Department of Skin Cosmetology, Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| | - Wei Ye
- Department of Skin Cosmetology, Traditional Chinese Medicine Hospital of Chongqing, Chongqing, China
| |
Collapse
|
13
|
Preventive, Cumulative Effects of Botulinum Toxin Type A in Facial Aesthetics. Dermatol Surg 2017; 43 Suppl 3:S244-S251. [PMID: 33065950 DOI: 10.1097/dss.0000000000001404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Botulinum toxin Type A (BoNTA) is the gold standard for the treatment of dynamic rhytides in the face. Recently, clinical observation suggests that individuals who receive regular injections of BoNTA experience ongoing wrinkle reduction and improvements in overall skin quality not observed in those treated sporadically. OBJECTIVE To review scientific evidence of qualitative changes in the skin and the possibility of indirect or direct effects on fibroblasts affecting fibroblast activity, including collagen production, after repeated treatment with BoNTA. MATERIALS AND METHODS We examined the literature for supporting evidence of the effect of repeated treatment cycles on wrinkle reduction and skin quality; histological changes in collagen structure; alterations in biomechanical features of the skin; and potential fibroblastic response. RESULTS Apparent cumulative improvement on wrinkle reduction and additional skin quality attributes with regular BoNTA treatments suggests an ongoing process of dermal repair. Clinical observation suggests that BoNTA injections stimulate collagen production and lead to a reorganization of the collagen network within the extracellular matrix, which in turn may produce improvements in features associated with more youthful skin. Moreover, evidence suggests that BoNTA may have a direct or indirect effect on fibroblast activity. CONCLUSION Clinical observation of progressive wrinkle reduction and qualitative improvements in a number of skin attributes that accumulate with more frequent injections of BoNTA suggest an ongoing process of repair leading to prolonged and cumulative effects.
Collapse
|
14
|
Ebadi P, Fazeli M. Anti-photoaging potential of propolis extract in UVB-irradiated human dermal fibroblasts through increasing the expression of FOXO3A and NGF genes. Biomed Pharmacother 2017; 95:47-54. [PMID: 28826096 DOI: 10.1016/j.biopha.2017.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022] Open
Abstract
Propolis is a resinous compound that has been widely used in folk medicine. Different biological activities and therapeutic applications of propolis have been studied before. However, the effects of propolis on longevity-associated genes expression in the prevention of skin photoaging still remained unclear. Therefore in this study the protective effects of propolis on the expressions of two longevity-associated genes, FOXO3A and NGF genes, against UVB-induced photoaging in human dermal fibroblasts (HDF) were investigated. Propolis extract demonstrated a concentration-dependent free radical scavenging activity that was determined by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay. Also, Folin-Ciocalteu method was used to measure the total phenolic content of the extract. The viability of HDF cells was decreased gradually with increasing UVB radiation doses and 248mJ/cm2 was selected as the sub-cytotoxic dose. Pre-treatment with propolis extract increased the viability of UVB-irradiated human dermal fibroblasts and decreased the number of β-galactosidase positive cells as senescent cells among them. It also increased the expression of FOXO3A and NGF genes in irradiated and non-irradiated cells. Consequently, these findings suggest that propolis extract has anti-photoaging potential and this property, in addition to its strong antioxidant activity, may be due to its effects on upregulation of longevity-associated genes.
Collapse
Affiliation(s)
- Parimah Ebadi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Mehdi Fazeli
- Division of Pharmacology and Toxicology, Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| |
Collapse
|
15
|
Abstract
BotulinumtoxinA (BoNT-A) is now widely established for the main approved indication of reducing glabellar lines, and is also widely used off-label to improve the appearance of wrinkles and lines in other parts of the face. The number of aesthetic procedures continues to increase as the patient population becomes more diverse, in particular with increasing numbers of people of color and men. Further developments in treatment may continue to expand the audience for BoNT-A by making procedures more comfortable and by delivering a more natural, less static appearance. These may be achieved through use of combinations of BoNT-A with other aesthetic procedures, tailoring the dose of toxin to the patient's muscle mass or by using novel injection and application techniques. Beyond amelioration of facial lines, encouraging results have been seen with the use of BoNT-A to improve the appearance of hypertrophic and keloid scars and even to prevent them. Studies have been conducted with scars in various parts of the body and further research is ongoing. Dermatological and other medical uses for BoNT-A are also active areas of research. Injections of BoNT-A have been shown to reduce signs and symptoms of acne, rosacea, and psoriasis, to reduce neuromuscular pain, and to bring about significant improvements in a number of rare diseases that are caused or exacerbated by hyperhidrosis. This paper reviews these new uses for BoNT-A, looking at the rationale for their use and discussing the results of published case studies and clinical trials. These areas have shown great promise to date, but more and larger clinical studies will be required before these treatments become a clinical reality. To this end details are also provided of clinical trials currently listed in the main clinical trials database to highlight research areas of particular interest.
Collapse
Affiliation(s)
- Joel Schlessinger
- Dermatologist and cosmetic surgeon in private practice in Omaha, NE, USA
| | - Erin Gilbert
- Dermatologist in private practice in Brooklyn, NY, USA
| | - Joel L Cohen
- Dermatologist in private practice in Greenwood Village, CO, USA
| | | |
Collapse
|
16
|
Bravo K, Duque L, Ferreres F, Moreno DA, Osorio E. Passiflora tarminiana fruits reduce UVB-induced photoaging in human skin fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 168:78-88. [DOI: 10.1016/j.jphotobiol.2017.01.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/18/2022]
|
17
|
Costa A, Facchini G, Pinheiro ALTA, da Silva MS, Bonner MY, Arbiser J, Eberlin S. Honokiol protects skin cells against inflammation, collagenolysis, apoptosis, and senescence caused by cigarette smoke damage. Int J Dermatol 2017; 56:754-761. [PMID: 28229451 DOI: 10.1111/ijd.13569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/22/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Pollution, especially cigarette smoke, is a major cause of skin damage. OBJECTIVES To assess the effects of the small molecule polyphenol, honokiol, on reversing cigarette smoke-induced damage in vitro to relevant skin cells. METHODS Keratinocytes (HaCat) cultures were exposed to cigarette smoke and, after 48 hours, IL-1α and IL-8 were measured in cell supernatants. Moreover, TIMP-2 production, apoptosis rate, and senescence β-galactosidase expression were evaluated in primary human foreskin fibroblasts (HFF-1) cultures. RESULTS Honokiol at 10 μm reduced IL-1α production by 3.4 folds (P < 0.05) and at 10 and 20 μm reduced IL-8 by 23.9% and 53.1% (P < 0.001), respectively, in HaCat keratinocytes. In HFF-1, honokiol restored TIMP-2 production by 96.9% and 91.9% (P < 0.001), respectively, at 10 and 20 μm, as well as reduced apoptosis by 47.1% (P < 0.001) and 41.3% (P < 0.01), respectively. Finally, honokiol reduced senescence-associated β-galactosidase expression in HFF-1. CONCLUSION Honokiol protects both HFF-1 and HaCat against cigarette smoke-induced inflammation, collagenolysis, apoptosis, and senescence.
Collapse
Affiliation(s)
- Adilson Costa
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, Atlanta, GA, USA
| | - Gustavo Facchini
- KOLderma Clinical Trials Institute - Kosmoscience Group, Campinas, SP, Brazil
| | | | - Michelle S da Silva
- KOLderma Clinical Trials Institute - Kosmoscience Group, Campinas, SP, Brazil
| | - Michael Y Bonner
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, Atlanta, GA, USA
| | - Jack Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, Atlanta, GA, USA
| | - Samara Eberlin
- KOLderma Clinical Trials Institute - Kosmoscience Group, Campinas, SP, Brazil
| |
Collapse
|
18
|
Zhu J, ji X, Xu Y, Liu J, Miao YY, Zhang JA, Luo D, Zhou BR. The efficacy of intradermal injection of type A botulinum toxin for facial rejuvenation. Dermatol Ther 2016; 30. [PMID: 27862727 DOI: 10.1111/dth.12433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/15/2016] [Accepted: 08/31/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Jie Zhu
- Department of Dermatology; Affiliated Hospital of Nanjing University of TCM; Nanjing Jiangsu 210029 China
| | - Xi ji
- Department of Dermatology; Nanjing Maternal and Child Health Hospital Affiliated to Nanjing Medical University; Nanjing Jiangsu 210029 China
| | - Yang Xu
- Department of Dermatology; the First Affiliated Hospital of Nanjing Medical University; Nanjing 210029 China
| | - Juan Liu
- Department of Dermatology; the First Affiliated Hospital of Nanjing Medical University; Nanjing 210029 China
| | - Ying-Ying Miao
- Department of Dermatology; the First Affiliated Hospital of Nanjing Medical University; Nanjing 210029 China
| | - Jia-An Zhang
- Department of Dermatology; the First Affiliated Hospital of Nanjing Medical University; Nanjing 210029 China
| | - Dan Luo
- Department of Dermatology; the First Affiliated Hospital of Nanjing Medical University; Nanjing 210029 China
| | - Bing-Rong Zhou
- Department of Dermatology; the First Affiliated Hospital of Nanjing Medical University; Nanjing 210029 China
| |
Collapse
|
19
|
The Efficacy and Safety of Fractional CO₂ Laser Combined with Topical Type A Botulinum Toxin for Facial Rejuvenation: A Randomized Controlled Split-Face Study. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3853754. [PMID: 26998485 PMCID: PMC4779842 DOI: 10.1155/2016/3853754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 01/27/2016] [Indexed: 01/31/2023]
Abstract
Objective. We evaluated synergistic efficacy and safety of combined topical application of Botulinum Toxin Type A (BTX-A) with fractional CO2 laser for facial rejuvenation. Methods. Twenty female subjects were included for this split-face comparative study. One side of each subject's cheek was treated with fractional CO2 plus saline solution, and the other side was treated with fractional CO2 laser plus topical application of BTX-A. Patients received one session of treatment and evaluations were done at baseline, one, four, and twelve weeks after treatment. The outcome assessments included subjective satisfaction scale; blinded clinical assessment; and the biophysical parameters of roughness, elasticity, skin hydration, transepidermal water loss (TEWL), and the erythema and melanin index. Results. BTX-A combined with fractional CO2 laser sides showed higher physician's global assessment score, subject satisfaction score, roughness, skin hydration, and skin elasticity compared to that of fractional CO2 plus saline solution side at 12 weeks after treatment. TEWL and erythema and melanin index showed no significant differences between two sides at baseline, one, four, and twelve weeks after treatment. Conclusion. Topical application of BTX-A could enhance the rejuvenation effect of fractional CO2 laser.
Collapse
|
20
|
Bacalini MG, Boattini A, Gentilini D, Giampieri E, Pirazzini C, Giuliani C, Fontanesi E, Remondini D, Capri M, Del Rio A, Luiselli D, Vitale G, Mari D, Castellani G, Di Blasio AM, Salvioli S, Franceschi C, Garagnani P. A meta-analysis on age-associated changes in blood DNA methylation: results from an original analysis pipeline for Infinium 450k data. Aging (Albany NY) 2015; 7:97-109. [PMID: 25701668 PMCID: PMC4359692 DOI: 10.18632/aging.100718] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Aging is characterized by a profound remodeling of the epigenetic architecture in terms of DNA methylation patterns. To date the most effective tool to study genome wide DNA methylation changes is Infinium HumanMethylation450 BeadChip (Infinium 450k). Despite the wealth of tools for Infinium 450k analysis, the identification of the most biologically relevant DNA methylation changes is still challenging. Here we propose an analytical pipeline to select differentially methylated regions (DMRs), tailored on microarray architecture, which is highly effective in highlighting biologically relevant results. The pipeline groups microarray probes on the basis of their localization respect to CpG islands and genic sequences and, depending on probes density, identifies DMRs through a single-probe or a region-centric approach that considers the concomitant variation of multiple adjacent CpG probes. We successfully applied this analytical pipeline on 3 independent Infinium 450k datasets that investigated age-associated changes in blood DNA methylation. We provide a consensus list of genes that systematically vary in DNA methylation levels from 0 to 100 years and that have a potentially relevant role in the aging process.
Collapse
Affiliation(s)
- Maria Giulia Bacalini
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Bologna 40138, Italy.,Interdepartmental Center "L. Galvani", University of Bologna, Bologna 40126, Italy.,Personal Genomics S.r.l., Verona 37134, Italy
| | - Alessio Boattini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna 40126, Italy
| | - Davide Gentilini
- Centro di Ricerche e Tecnologie Biomediche, Istituto Auxologico Italiano IRCCS, Milan 20095, Italy
| | - Enrico Giampieri
- Department of Physics and Astronomy, University of Bologna, Bologna 40126, Italy
| | - Chiara Pirazzini
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Bologna 40138, Italy.,Interdepartmental Center "L. Galvani", University of Bologna, Bologna 40126, Italy
| | - Cristina Giuliani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna 40126, Italy
| | - Elisa Fontanesi
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Bologna 40138, Italy.,Interdepartmental Center "L. Galvani", University of Bologna, Bologna 40126, Italy
| | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, Bologna 40126, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Bologna 40138, Italy.,Interdepartmental Center "L. Galvani", University of Bologna, Bologna 40126, Italy
| | - Alberto Del Rio
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Bologna 40138, Italy.,Institute of Organic Synthesis and Photoreactivity (ISOF) National Research Council (CNR), Bologna 40126, Italy
| | - Donata Luiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna 40126, Italy
| | - Giovanni Vitale
- Centro di Ricerche e Tecnologie Biomediche, Istituto Auxologico Italiano IRCCS, Milan 20095, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Daniela Mari
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Geriatric Unit, IRCCS Ca' Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Gastone Castellani
- Department of Physics and Astronomy, University of Bologna, Bologna 40126, Italy
| | - Anna Maria Di Blasio
- Centro di Ricerche e Tecnologie Biomediche, Istituto Auxologico Italiano IRCCS, Milan 20095, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Bologna 40138, Italy.,Interdepartmental Center "L. Galvani", University of Bologna, Bologna 40126, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Bologna 40138, Italy.,Interdepartmental Center "L. Galvani", University of Bologna, Bologna 40126, Italy.,IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Bologna 40138, Italy.,Interdepartmental Center "L. Galvani", University of Bologna, Bologna 40126, Italy.,Applied Biomedical Research Center, S. Orsola-Malpighi Polyclinic, Bologna 40138, Italy
| |
Collapse
|
21
|
Winslow CP. Furthering the Understanding of Actions of Botulinum Toxin A. JAMA FACIAL PLAST SU 2015; 17:263-4. [PMID: 25996497 DOI: 10.1001/jamafacial.2015.0567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
22
|
Comments on "Anti-photoaging potential of botulinum toxin type A in UVB-induced premature senescence of human dermal fibroblasts in vitro through decreasing senescence-related proteins". JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 138:355. [PMID: 24912406 DOI: 10.1016/j.jphotobiol.2014.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Permatasari F, Zhou B, Luo D. Response to Comments on "Anti-photoaging potential of botulinum toxin type A in UVB-induced premature senescence of human dermal fibroblasts in vitro through decreasing senescence-related proteins". JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 138:356-7. [PMID: 24894945 DOI: 10.1016/j.jphotobiol.2014.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Felicia Permatasari
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Bingrong Zhou
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Dan Luo
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|