1
|
Jervøe-Storm PM, Bunke J, Worthington HV, Needleman I, Cosgarea R, MacDonald L, Walsh T, Lewis SR, Jepsen S. Adjunctive antimicrobial photodynamic therapy for treating periodontal and peri-implant diseases. Cochrane Database Syst Rev 2024; 7:CD011778. [PMID: 38994711 PMCID: PMC11240860 DOI: 10.1002/14651858.cd011778.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
BACKGROUND Periodontitis and peri-implant diseases are chronic inflammatory conditions occurring in the mouth. Left untreated, periodontitis progressively destroys the tooth-supporting apparatus. Peri-implant diseases occur in tissues around dental implants and are characterised by inflammation in the peri-implant mucosa and subsequent progressive loss of supporting bone. Treatment aims to clean the pockets around teeth or dental implants and prevent damage to surrounding soft tissue and bone, including improvement of oral hygiene, risk factor control (e.g. encouraging cessation of smoking) and surgical interventions. The key aspect of standard non-surgical treatment is the removal of the subgingival biofilm using subgingival instrumentation (SI) (also called scaling and root planing). Antimicrobial photodynamic therapy (aPDT) can be used an adjunctive treatment to SI. It uses light energy to kill micro-organisms that have been treated with a light-absorbing photosensitising agent immediately prior to aPDT. OBJECTIVES To assess the effects of SI with adjunctive aPDT versus SI alone or with placebo aPDT for periodontitis and peri-implant diseases in adults. SEARCH METHODS We searched the Cochrane Oral Health Trials Register, CENTRAL, MEDLINE, Embase, two other databases and two trials registers up to 14 February 2024. SELECTION CRITERIA We included randomised controlled trials (RCTs) (both parallel-group and split-mouth design) in participants with a clinical diagnosis of periodontitis, peri-implantitis or peri-implant disease. We compared the adjunctive use of antimicrobial photodynamic therapy (aPDT), in which aPDT was given after subgingival or submucosal instrumentation (SI), versus SI alone or a combination of SI and a placebo aPDT given during the active or supportive phase of therapy. DATA COLLECTION AND ANALYSIS We used standard Cochrane methodological procedures, and we used GRADE to assess the certainty of the evidence. We prioritised six outcomes and the measure of change from baseline to six months after treatment: probing pocket depth (PPD), bleeding on probing (BOP), clinical attachment level (CAL), gingival recession (REC), pocket closure and adverse effects related to aPDT. We were also interested in change in bone level (for participants with peri-implantitis), and participant satisfaction and quality of life. MAIN RESULTS We included 50 RCTs with 1407 participants. Most studies used a split-mouth study design; only 18 studies used a parallel-group design. Studies were small, ranging from 10 participants to 88. Adjunctive aPDT was given in a single session in 39 studies, in multiple sessions (between two and four sessions) in 11 studies, and one study included both single and multiple sessions. SI was given using hand or power-driven instrumentation (or both), and was carried out prior to adjunctive aPDT. Five studies used placebo aPDT in the control group and we combined these in meta-analyses with studies in which SI alone was used. All studies included high or unclear risks of bias, such as selection bias or performance bias of personnel (when SI was carried out by an operator aware of group allocation). We downgraded the certainty of all the evidence owing to these risks of bias, as well as for unexplained statistical inconsistency in the pooled effect estimates or for imprecision when evidence was derived from very few participants and confidence intervals (CI) indicated possible benefit to both intervention and control groups. Adjunctive aPDT versus SI alone during active treatment of periodontitis (44 studies) We are very uncertain whether adjunctive aPDT during active treatment of periodontitis leads to improvement in any clinical outcomes at six months when compared to SI alone: PPD (mean difference (MD) 0.52 mm, 95% CI 0.31 to 0.74; 15 studies, 452 participants), BOP (MD 5.72%, 95% CI 1.62 to 9.81; 5 studies, 171 studies), CAL (MD 0.44 mm, 95% CI 0.24 to 0.64; 13 studies, 414 participants) and REC (MD 0.00, 95% CI -0.16 to 0.16; 4 studies, 95 participants); very low-certainty evidence. Any apparent differences between adjunctive aPDT and SI alone were not judged to be clinically important. Twenty-four studies (639 participants) observed no adverse effects related to aPDT (moderate-certainty evidence). No studies reported pocket closure at six months, participant satisfaction or quality of life. Adjunctive aPDT versus SI alone during supportive treatment of periodontitis (six studies) We were very uncertain whether adjunctive aPDT during supportive treatment of periodontitis leads to improvement in any clinical outcomes at six months when compared to SI alone: PPD (MD -0.04 mm, 95% CI -0.19 to 0.10; 3 studies, 125 participants), BOP (MD 4.98%, 95% CI -2.51 to 12.46; 3 studies, 127 participants), CAL (MD 0.07 mm, 95% CI -0.26 to 0.40; 2 studies, 85 participants) and REC (MD -0.20 mm, 95% CI -0.48 to 0.08; 1 study, 24 participants); very low-certainty evidence. These findings were all imprecise and included no clinically important benefits for aPDT. Three studies (134 participants) reported adverse effects: a single participant developed an abscess, though it is not evident whether this was related to aPDT, and two studies observed no adverse effects related to aPDT (moderate-certainty evidence). No studies reported pocket closure at six months, participant satisfaction or quality of life. AUTHORS' CONCLUSIONS Because the certainty of the evidence is very low, we cannot be sure if adjunctive aPDT leads to improved clinical outcomes during the active or supportive treatment of periodontitis; moreover, results suggest that any improvements may be too small to be clinically important. The certainty of this evidence can only be increased by the inclusion of large, well-conducted RCTs that are appropriately analysed to account for change in outcome over time or within-participant split-mouth study designs (or both). We found no studies including people with peri-implantitis, and only one study including people with peri-implant mucositis, but this very small study reported no data at six months, warranting more evidence for adjunctive aPDT in this population group.
Collapse
Affiliation(s)
- Pia-Merete Jervøe-Storm
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Bonn, Germany
| | - Jennifer Bunke
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Bonn, Germany
| | - Helen V Worthington
- Cochrane Oral Health, Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ian Needleman
- Unit of Periodontology and International Centre for Evidence-Based Oral Health, UCL Eastman Dental Institute, London, UK
| | - Raluca Cosgarea
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Bonn, Germany
- Department of Periodontology and Peri-implant Diseases, Philips University Marburg, Marburg, Germany
- Clinic for Prosthetic Dentistry, University Iuliu-Hatieganu, Cluj-Napoca, Romania
| | - Laura MacDonald
- Cochrane Oral Health, Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Tanya Walsh
- Cochrane Oral Health, Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sharon R Lewis
- Cochrane Oral Health, Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
2
|
Glowacka-Sobotta A, Ziental D, Czarczynska-Goslinska B, Michalak M, Wysocki M, Güzel E, Sobotta L. Nanotechnology for Dentistry: Prospects and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2130. [PMID: 37513141 PMCID: PMC10383982 DOI: 10.3390/nano13142130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
In the XXI century, application of nanostructures in oral medicine has become common. In oral medicine, using nanostructures for the treatment of dental caries constitutes a great challenge. There are extensive studies on the implementation of nanomaterials to dental composites in order to improve their properties, e.g., their adhesive strength. Moreover, nanostructures are helpful in dental implant applications as well as in maxillofacial surgery for accelerated healing, promoting osseointegration, and others. Dental personal care products are an important part of oral medicine where nanomaterials are increasingly used, e.g., toothpaste for hypersensitivity. Nowadays, nanoparticles such as macrocycles are used in different formulations for early cancer diagnosis in the oral area. Cancer of the oral cavity-human squamous carcinoma-is the sixth leading cause of death. Detection in the early stage offers the best chance at total cure. Along with diagnosis, macrocycles are used for photodynamic mechanism-based treatments, which possess many advantages, such as protecting healthy tissues and producing good cosmetic results. Application of nanostructures in medicine carries potential risks, like long-term influence of toxicity on body, which need to be studied further. The introduction and development of nanotechnologies and nanomaterials are no longer part of a hypothetical future, but an increasingly important element of today's medicine.
Collapse
Affiliation(s)
- Arleta Glowacka-Sobotta
- Chair and Department of Orthodontics and Temporomandibular Disorders, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Maciej Michalak
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Wysocki
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Emre Güzel
- Department of Engineering Fundamental Sciences, Sakarya University of Applied Sciences, 54050 Sakarya, Türkiye
- Biomedical Technologies Application and Research Center (BIYOTAM), Sakarya University of Applied Sciences, 54050 Sakarya, Türkiye
| | - Lukasz Sobotta
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| |
Collapse
|
3
|
Madi M, Smith S, Alshehri S, Zakaria O, Almas K. Influence of Smoking on Periodontal and Implant Therapy: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5368. [PMID: 37047982 PMCID: PMC10094532 DOI: 10.3390/ijerph20075368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND smoking is considered the most modifiable risk factor for periodontal disease. OBJECTIVE the aim of this narrative review is to emphasize the effect of smoking on periodontal and implant therapy. METHODS The authors reviewed the literature reporting the clinical outcomes of smoking on periodontal surgical and nonsurgical treatment. The impact of smoking on implant therapy and sinus lifting procedures were also reviewed. RESULTS Periodontal and implant therapy outcomes are adversely affected by smoking. Smokers respond less favorably to periodontal therapy and periodontal flap procedures as compared to nonsmokers. Clinical outcomes for smokers are 50-75% worse than for nonsmokers. Studies reveal that smokers experience a significantly lower reduction in pocket depth compared to nonsmokers as well as less bone growth after treating infra-bony defects with guided tissue regeneration. The relative risk of implant failure is significantly higher in patients who smoke 20 cigarettes or more per day compared to nonsmokers. Additionally, smoking has also been shown to increase postoperative wound dehiscence and infection rates following sinus floor elevation. Longitudinal studies on smoke cessation have shown a reduction in bone loss and probing depths for periodontitis patients after cessation compared to those who smoke. CONCLUSION Smoking cessation can reduce probing depths and improve clinical attachment after nonsurgical periodontal therapy. There is insufficient evidence regarding the effect of smoking on peri-implantitis, as well as the loss of implants in the long-term.
Collapse
Affiliation(s)
- Marwa Madi
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Steph Smith
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sami Alshehri
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Osama Zakaria
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Khalid Almas
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
4
|
Villafuerte KRV, Martinez CJH, Palucci Vieira LH, Nobre AV. Benefits of Antimicrobial Photodynamic Therapy as an Adjunct to Non-Surgical Periodontal Treatment in Smokers with Periodontitis: A Systematic Review and Meta-Analysis. Medicina (B Aires) 2023; 59:medicina59040684. [PMID: 37109642 PMCID: PMC10142636 DOI: 10.3390/medicina59040684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
The objective of this study was to analyze evidence of the clinical and microbiological benefits of antimicrobial photodynamic therapy (aPDT) adjunctive to scaling and root planing (SRP) in smokers with periodontitis. Randomized clinical trials (RCTs) were included, through an electronic search in PubMed/MEDLINE, LILACS, Web of Science, and the Cochrane Library for articles published in English until December 2022. The quality of the studies was assessed using the JADAD scale and the risk of bias was estimated using the Cochrane Collaboration assessment tool. Of the 175 relevant articles, eight RCTs were included. Of these, seven reported clinical results and five microbiological results, with a follow-up time of 3–6 months. A meta-analysis was performed for the probing depth (PD) reduction and clinical attachment level (CAL) gain at 3 and 6 months. The weighted mean differences (WMDs) and 95% confidence intervals (CIs) were counted for the PD and CAL. The overall effect for the PD reduction at 3 and 6 months (WMD = −0.80, 95% CI = −1.44 to −0.17, p = 0.01; WMD = −1.35, 95% CI = −2.23 to −0.46, p = 0.003) was in favor of aPDT. The CAL gain (WMD = 0.79, 95% CI = −1.24 to −0.35, p = 0.0005) was statistically significant at 6 months, in favor of aPDT. In these RCTs, aPDT was unable to demonstrate efficacy in reducing the microbial species associated with periodontitis. aPDT as an adjuvant to SRP improves the PD reduction and CAL gain more effectively than only SRP. RCTs are needed to establish standardized protocols with longer follow-up times in order to provide more results on aPDT adjunctive to SRP in smokers with periodontitis.
Collapse
|
5
|
Rahman B, Acharya AB, Siddiqui R, Verron E, Badran Z. Photodynamic Therapy for Peri-Implant Diseases. Antibiotics (Basel) 2022; 11:antibiotics11070918. [PMID: 35884171 PMCID: PMC9311944 DOI: 10.3390/antibiotics11070918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Peri-implant diseases are frequently presented in patients with dental implants. This category of inflammatory infections includes peri-implant mucositis and peri-implantitis that are primarily caused by the oral bacteria that colonize the implant and the supporting soft and hard tissues. Other factors also contribute to the pathogenesis of peri-implant diseases. Based on established microbial etiology, mechanical debridement has been the standard management approach for peri-implant diseases. To enhance the improvement of therapeutic outcomes, adjunctive treatment in the form of antibiotics, probiotics, lasers, etc. have been reported in the literature. Recently, the use of photodynamic therapy (PDT)/antimicrobial photodynamic therapy (aPDT) centered on the premise that a photoactive substance offers benefits in the resolution of peri-implant diseases has gained attention. Herein, the reported role of PDT in peri-implant diseases, as well as existing observations and opinions regarding PDT, are discussed.
Collapse
Affiliation(s)
- Betul Rahman
- Periodontology Unit, Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.R.); (A.B.A.)
| | - Anirudh Balakrishna Acharya
- Periodontology Unit, Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.R.); (A.B.A.)
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, University City, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| | - Elise Verron
- CNRS, UMR 6230, CEISAM, UFR Sciences et Techniques, Université de Nantes, 2, rue de la Houssinière, BP 92208, CEDEX 3, 44322 Nantes, France;
| | - Zahi Badran
- Periodontology Unit, Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (B.R.); (A.B.A.)
- Correspondence:
| |
Collapse
|
6
|
Alshibani N, Alssum L, Basudan A, Shaheen M, Alqutub MN, Dahash FA, Alkattan R. Non-surgical periodontal therapy with adjunct photodynamic therapy for the management of periodontal inflammation in adults using nicotine-free electronic-cigarette: A randomized control trial. Photodiagnosis Photodyn Ther 2022; 38:102820. [DOI: 10.1016/j.pdpdt.2022.102820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
7
|
Abdulkareem A, Abdulbaqi H, Gul S, Milward M, Chasib N, Alhashimi R. Classic vs. Novel Antibacterial Approaches for Eradicating Dental Biofilm as Adjunct to Periodontal Debridement: An Evidence-Based Overview. Antibiotics (Basel) 2021; 11:antibiotics11010009. [PMID: 35052887 PMCID: PMC8773342 DOI: 10.3390/antibiotics11010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Periodontitis is a multifactorial chronic inflammatory disease that affects tooth-supporting soft/hard tissues of the dentition. The dental plaque biofilm is considered as a primary etiological factor in susceptible patients; however, other factors contribute to progression, such as diabetes and smoking. Current management utilizes mechanical biofilm removal as the gold standard of treatment. Antibacterial agents might be indicated in certain conditions as an adjunct to this mechanical approach. However, in view of the growing concern about bacterial resistance, alternative approaches have been investigated. Currently, a range of antimicrobial agents and protocols have been used in clinical management, but these remain largely non-validated. This review aimed to evaluate the efficacy of adjunctive antibiotic use in periodontal management and to compare them to recently suggested alternatives. Evidence from in vitro, observational and clinical trial studies suggests efficacy in the use of adjunctive antimicrobials in patients with grade C periodontitis of young age or where the associated risk factors are inconsistent with the amount of bone loss present. Meanwhile, alternative approaches such as photodynamic therapy, bacteriophage therapy and probiotics showed limited supportive evidence, and more studies are warranted to validate their efficiency.
Collapse
Affiliation(s)
- Ali Abdulkareem
- College of Dentistry, University of Baghdad, Medical City of Baghdad, Baghdad 10011, Iraq; (H.A.); (N.C.); (R.A.)
- Correspondence:
| | - Hayder Abdulbaqi
- College of Dentistry, University of Baghdad, Medical City of Baghdad, Baghdad 10011, Iraq; (H.A.); (N.C.); (R.A.)
| | - Sarhang Gul
- College of Dentistry, University of Sulaimani, Sulaymaniyah 40062, Iraq;
| | - Mike Milward
- College of Dentistry, University of Birmingham, Birmingham B5 7EG, UK;
| | - Nibras Chasib
- College of Dentistry, University of Baghdad, Medical City of Baghdad, Baghdad 10011, Iraq; (H.A.); (N.C.); (R.A.)
| | - Raghad Alhashimi
- College of Dentistry, University of Baghdad, Medical City of Baghdad, Baghdad 10011, Iraq; (H.A.); (N.C.); (R.A.)
| |
Collapse
|
8
|
Advances in photodynamic antimicrobial chemotherapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Haas AN, Furlaneto F, Gaio EJ, Gomes SC, Palioto DB, Castilho RM, Sanz M, Messora MR. New tendencies in non-surgical periodontal therapy. Braz Oral Res 2021; 35:e095. [PMID: 34586209 DOI: 10.1590/1807-3107bor-2021.vol35.0095] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this review was to update the evidence of new approaches to non-surgical therapy (NSPT) in the treatment of periodontitis. Preclinical and clinical studies addressing the benefits of adjunctive antimicrobial photodynamic therapy, probiotics, prebiotics/synbiotics, statins, pro-resolving mediators, omega-6 and -3, ozone, and epigenetic therapy were scrutinized and discussed. Currently, the outcomes of these nine new approaches, when compared with subgingival debridement alone, did not demonstrate a significant added clinical benefit. However, some of these new alternative interventions may have the potential to improve the outcomes of NSPT alone. Future evidence based on randomized controlled clinical trials would help clinicians and patients in the selection of different adjunctive therapies.
Collapse
Affiliation(s)
- Alex Nogueira Haas
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Flavia Furlaneto
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| | - Eduardo José Gaio
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Sabrina Carvalho Gomes
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Daniela Bazan Palioto
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| | - Rogerio Moraes Castilho
- Michigan University, School of Dentistry, Department of Periodontics and Oral Medicine, Ann Arbor, MI, USA
| | - Mariano Sanz
- Complutense University of Madrid, Etiology and Therapy of Periodontal and Peri-implant Diseases Research Group, Madrid, Spain
| | - Michel Reis Messora
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| |
Collapse
|
10
|
Bozkaya S, Uraz A, Guler B, Kahraman SA, Turhan Bal B. The stability of implants and microbiological effects following photobiomodulation therapy with one-stage placement: A randomized, controlled, single-blinded, and split-mouth clinical study. Clin Implant Dent Relat Res 2021; 23:329-340. [PMID: 33851765 DOI: 10.1111/cid.12999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Studies have reported a positive effect on bone healing and the elimination of microorganisms placed on the titanium implants, while others have not confirmed the positive photobiomodulation therapy (PBMT) effects on bone regeneration and bone structure around the implants. PURPOSE The aim of the present study was to address the following questions: Does PBMT improve implant stability and affect microbiota around dental implants in the early stage of osseointegration? MATERIALS AND METHODS This study was designed as randomized-controlled prospective, split mouth, single-blinded clinical trial. Implants were randomly divided into two groups and implants placed in the test group were treated with Gallium-aluminum-arsenide (GaAlAs) diode laser with PBMT immediately after surgery and for 15 days (n = 47). In the control group, implants were not irradiated(n = 46). The primary stability of the implants was measured by the Resonance frequency analysis (RFA) after insertion and the secondary stability values were recorded at 30th, 60th, and 90th days after surgery as implant stability quotient (ISQ). The hand-held RFA was held perpendicular to the jaw line as indicated by the manufacturer for buccal-lingual (BL), mesial-distal (MD), and lingual-buccal (LB) measurement and different measurements were analyzed as separately. RESULTS Significantly higher magnetic RFA values were achieved on the 90th day in all measurement sides for both groups. ISQ levels in groups at baseline and the day-30, 60, and 90. ISQ readings were not statistically significant between test and control groups for each time point. A statistically significant increase in ISQ reading for BL, MD, and LB dimensions in both groups was noted from baseline to the day-90 (P < .05). CONCLUSION It was concluded that PBMT did not have a clinically significant effect on implant stabilization, especially in terms of ISQ values at early alveolar bone healing term. Clinical trial number is NCT04495335.
Collapse
Affiliation(s)
- Suleyman Bozkaya
- Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Gazi University, Ankara, Turkey
| | - Ahu Uraz
- Faculty of Dentistry, Department of Periodontology, Gazi University, Ankara, Turkey
| | - Berceste Guler
- Faculty of Dentistry, Department of Periodontology, Kütahya Health Science University, Kütahya, Turkey
| | - Sevil Altundağ Kahraman
- Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Gazi University, Ankara, Turkey
| | - Bilge Turhan Bal
- Faculty of Dentistry, Department of Prosthetic Restorative Dentistry, Gazi University, Ankara, Turkey
| |
Collapse
|
11
|
Abstract
Periodontal diseases are chronic inflammatory, multifactorial diseases where the major triggering factors for disease onset are bacteria and their toxins, but the major part of tissue destruction occurs as a result of host response towards the periodontal microbiome. Periodontal microbiome consists of a wide range of microorganisms including obligate and facultative anaerobes. In health, there is a dynamic balance between the host, environment, and the microbiome. Environmental factors, mainly tobacco smoking and psychological stress, disrupt the symbiotic relationship. Tobacco smoke and its components alter the bacterial surface and functions such as growth. Psychological stressors and stress hormones may affect the outcome of an infection by changing the virulence factors and/or host response. This review aims to provide currently available data on the effects of the major environmental factors on the periodontal microbiome.
Collapse
Affiliation(s)
- Nurcan Buduneli
- Department of Periodontology, Faculty of Dentistry, Ege University, İzmir, Turkey
| |
Collapse
|
12
|
Feres M, Retamal-Valdes B, Gonçalves C, Cristina Figueiredo L, Teles F. Did Omics change periodontal therapy? Periodontol 2000 2020; 85:182-209. [PMID: 33226695 DOI: 10.1111/prd.12358] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The starting point for defining effective treatment protocols is a clear understanding of the etiology and pathogenesis of a condition. In periodontal diseases, this understanding has been hindered by a number of factors, such as the difficulty in differentiating primary pathogens from nonpathogens in complex biofilm structures. The introduction of DNA sequencing technologies, including taxonomic and functional analyses, has allowed the oral microbiome to be investigated in much greater breadth and depth. This article aims to compile the results of studies, using next-generation sequencing techniques to evaluate the periodontal microbiome, in an attempt to determine how far the knowledge provided by these studies has brought us in terms of influencing the way we treat periodontitis. The taxonomic data provided, to date, by published association and elimination studies using next-generation sequencing confirm previous knowledge on the role of classic periodontal pathogens in the pathobiology of disease and include new species/genera. Conversely, species and genera already considered as host-compatible and others less explored were associated with periodontal health as their levels were elevated in healthy individuals and increased after therapy. Functional and transcriptomic analyses also demonstrated that periodontal biofilms are taxonomically diverse, functionally congruent, and highly cooperative. Very few interventional studies to date have examined the effects of treatment on the periodontal microbiome, and such studies are heterogeneous in terms of design, sample size, sampling method, treatment provided, and duration of follow-up. Hence, it is still difficult to draw meaningful conclusions from them. Thus, although OMICS knowledge has not yet changed the way we treat patients in daily practice, the information provided by these studies opens new avenues for future research in this field. As new pathogens and beneficial species become identified, future randomized clinical trials could monitor these species/genera more comprehensively. In addition, the metatranscriptomic data, although still embryonic, suggest that the interplay between the host and the oral microbiome may be our best opportunity to implement personalized periodontal treatments. Therapeutic schemes targeting particular bacterial protein products in subjects with specific genetic profiles, for example, may be the futuristic view of enhanced periodontal therapy.
Collapse
Affiliation(s)
- Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | - Belén Retamal-Valdes
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | - Cristiane Gonçalves
- Department of Periodontology, Estácio de Sá University, Rio de Janeiro, Brazil
| | | | - Flavia Teles
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Jiang Y, Zhou X, Cheng L, Li M. The Impact of Smoking on Subgingival Microflora: From Periodontal Health to Disease. Front Microbiol 2020; 11:66. [PMID: 32063898 PMCID: PMC7000377 DOI: 10.3389/fmicb.2020.00066] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/13/2020] [Indexed: 02/05/2023] Open
Abstract
Periodontal disease is one of the most common diseases of the oral cavity affecting up to 90% of the worldwide population. Smoking has been identified as a major risk factor in the development and progression of periodontal disease. It is essential to assess the influence of smoking on subgingival microflora that is the principal etiological factor of the disease to clarify the contribution of smoking to periodontal disease. Therefore, this article reviews the current research findings regarding the impact of smoking on subgingival microflora and discusses several potential mechanisms. Cultivation-based and targeted molecular approaches yield controversial results in determining the presence or absence of smoking-induced differences in the prevalence or levels of certain periodontal pathogens, such as the “red complex.” However, substantial changes in the subgingival microflora of smokers, regardless of their periodontal condition (clinical health, gingivitis, or periodontitis), have been demonstrated in recent microbiome studies. Available literature suggests that smoking facilitates early acquisition and colonization of periodontal pathogens, resulting in an “at-risk-for-harm” subgingival microbial community in the healthy periodontium. In periodontal diseases, the subgingival microflora in smokers is characterized by a pathogen-enriched community with lower resilience compared to that in non-smokers, which increases the difficulty of treatment. Biological changes in key pathogens, such as Porphyromonas gingivalis, together with the ineffective host immune response for clearance, might contribute to alterations in the subgingival microflora in smokers. Nonetheless, further studies are necessary to provide solid evidence for the underlying mechanisms.
Collapse
Affiliation(s)
- Yaling Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Clinical efficacy of photodynamic therapy as an adjunct to scaling and root planing in the treatment of chronic periodontitis among cigarette smokers: A systematic review and meta-analysis. Photodiagnosis Photodyn Ther 2019; 26:334-341. [DOI: 10.1016/j.pdpdt.2019.04.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/26/2019] [Indexed: 11/18/2022]
|
15
|
Hanioka T, Morita M, Yamamoto T, Inagaki K, Wang PL, Ito H, Morozumi T, Takeshita T, Suzuki N, Shigeishi H, Sugiyama M, Ohta K, Nagao T, Hanada N, Ojima M, Ogawa H. Smoking and periodontal microorganisms. JAPANESE DENTAL SCIENCE REVIEW 2019; 55:88-94. [PMID: 31049117 PMCID: PMC6484221 DOI: 10.1016/j.jdsr.2019.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 03/16/2019] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
Resolution of dysbiosis following treatment for periodontal disease and tobacco dependence has been reported in longitudinal intervention studies. In the present report, we evaluated the biological findings regarding the effect of smoking on the periodontal microbiome. A standardized electronic search was conducted using MEDLINE; overall, 1099 papers were extracted. Studies that addressed the relationship between tobacco and periodontal pathogens were included. Finally, 42 papers were deemed appropriate for the present review. Functional changes in periodontal pathogens exposed to nicotine and cigarette smoke extract support the clinical findings regarding dysbiosis of the subgingival microbiome. Dysbiosis of the periodontal microbiome was presented in smokers regardless of their periodontal condition (healthy, gingivitis, or periodontitis) and remained significant only in smokers even after the resolution of experimentally-induced gingivitis and following reduction of clinical signs of periodontitis with non-surgical periodontal treatment and over 3 months post-therapy. Based on these findings, smoking cessation in periodontitis patients is beneficial for promoting a health-compatible subgingival microbial community. To maximize the benefits of these interventions in dental settings, further studies on periodontal microbiome are needed to elucidate the impact of tobacco intervention on preventing recurrence of periodontal destruction in the susceptible subjects.
Collapse
Affiliation(s)
- Takashi Hanioka
- Department of Preventive and Public Health Dentistry, Fukuoka Dental College, Japan
| | - Manabu Morita
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Tatsuo Yamamoto
- Department of Disaster Medicine and Dental Sociology, Graduate School of Dentistry, Kanagawa Dental University, Japan
| | - Koji Inagaki
- Department of Dental Hygiene, Aichi Gakuin Junior College, Japan
| | - Pao-Li Wang
- Department of Dental Education Innovation, Osaka Dental University, Japan
| | - Hiroshi Ito
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan
| | - Toshiya Morozumi
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Kanagawa Dental University Graduate School of Dentistry, Japan
| | - Toru Takeshita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Japan
| | - Nao Suzuki
- Department of Preventive and Public Health Dentistry, Fukuoka Dental College, Japan
| | - Hideo Shigeishi
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Masaru Sugiyama
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kouji Ohta
- Department of Oral & Maxillofacial Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Toru Nagao
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Japan
| | - Nobuhiro Hanada
- Department of Translational Research, Tsurumi University School of Dental Medicine, Japan
| | - Miki Ojima
- Department of Oral Health Sciences, Faculty of Nursing and Health Care, BAIKA Women's University, Japan
| | - Hiroshi Ogawa
- Division of Preventive Dentistry, Department of Oral Health Science, Graduate School of Medical and Dental Sciences, and WHO Collaborating Center for Translation of Oral Health Science, Niigata University, Japan
| |
Collapse
|
16
|
Cadore UB, Reis MBL, Martins SHL, Invernici MDM, Novaes AB, Taba M, Palioto DB, Messora MR, Souza SLS. Multiple sessions of antimicrobial photodynamic therapy associated with surgical periodontal treatment in patients with chronic periodontitis. J Periodontol 2018; 90:339-349. [DOI: 10.1002/jper.18-0373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Uislen B. Cadore
- Department of Oral and Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental SchoolUniversity of São Paulo‒USP Ribeirão Preto São Paulo Brazil
| | - Marília B. L. Reis
- Department of Oral and Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental SchoolUniversity of São Paulo‒USP Ribeirão Preto São Paulo Brazil
| | - Sergio H. L. Martins
- Department of Oral and Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental SchoolUniversity of São Paulo‒USP Ribeirão Preto São Paulo Brazil
| | - Marcos de M. Invernici
- Department of Oral and Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental SchoolUniversity of São Paulo‒USP Ribeirão Preto São Paulo Brazil
| | - Arthur B. Novaes
- Department of Oral and Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental SchoolUniversity of São Paulo‒USP Ribeirão Preto São Paulo Brazil
| | - Mario Taba
- Department of Oral and Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental SchoolUniversity of São Paulo‒USP Ribeirão Preto São Paulo Brazil
| | - Daniela B. Palioto
- Department of Oral and Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental SchoolUniversity of São Paulo‒USP Ribeirão Preto São Paulo Brazil
| | - Michel R. Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental SchoolUniversity of São Paulo‒USP Ribeirão Preto São Paulo Brazil
| | - Sergio L. S. Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental SchoolUniversity of São Paulo‒USP Ribeirão Preto São Paulo Brazil
| |
Collapse
|
17
|
Antimicrobial photodynamic therapy as adjunct to non-surgical periodontal treatment in smokers: a randomized clinical trial. Clin Oral Investig 2018; 23:3173-3182. [DOI: 10.1007/s00784-018-2740-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/25/2018] [Indexed: 02/01/2023]
|
18
|
Al-Hamoudi N. Is antimicrobial photodynamic therapy an effective treatment for chronic periodontitis in diabetes mellitus and cigarette smokers: a systematic review and meta-analysis. Photodiagnosis Photodyn Ther 2017; 19:375-382. [DOI: 10.1016/j.pdpdt.2017.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 05/21/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022]
|
19
|
Efficacy of periimplant mechanical debridement with and without adjunct antimicrobial photodynamic therapy in patients with type 2 diabetes mellitus. Photodiagnosis Photodyn Ther 2016; 14:166-9. [DOI: 10.1016/j.pdpdt.2016.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 04/20/2016] [Accepted: 04/25/2016] [Indexed: 11/19/2022]
|
20
|
Sculean A, Aoki A, Romanos G, Schwarz F, Miron RJ, Cosgarea R. Is Photodynamic Therapy an Effective Treatment for Periodontal and Peri-Implant Infections? Dent Clin North Am 2015; 59:831-858. [PMID: 26427570 DOI: 10.1016/j.cden.2015.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Antimicrobial photodynamic therapy (PDT) has attracted much attention for the treatment of pathogenic biofilm associated with peridontitis and peri-implantitis. However, data from randomized controlled clinical studies (RCTs) are limited and, to some extent, controversial, making it difficult to provide appropriate recommendations. Therefore, the aims of the present study were (a) to provide an overview on the current evidence from RCTs evaluating the potential clinical benefit for the additional use of PDT to subgingival mechanical debridement (ie, scaling and root planing) alone in nonsurgical periodontal therapy; and (b) to provide clinical recommendations for the use of PDT in periodontal practice.
Collapse
Affiliation(s)
- Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstr. 7, 3010 Bern, Switzerland.
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - George Romanos
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Frank Schwarz
- Department of Oral Surgery, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Richard J Miron
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstr. 7, 3010 Bern, Switzerland
| | - Raluca Cosgarea
- Department of Periodontology, Philipps University Marburg, Georg-Voigt-Str. 3, 35039 Marburg, Germany; Department of Prosthodontics, Iuliu Hatieganu University, Clinicilor str. 32, 400506 Cluj-Napoca, Romania
| |
Collapse
|