1
|
Holt C, Carver JA. Invited review: Modeling milk stability. J Dairy Sci 2024; 107:5259-5279. [PMID: 38522835 DOI: 10.3168/jds.2024-24779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/26/2024]
Abstract
Novel insights into the stability of milk and milk products during storage and processing result from describing caseins near neutral pH as hydrophilic, intrinsically disordered, proteins. Casein solubility is strongly influenced by pH and multivalent ion binding. Solubility is high at a neutral pH or above, but decreases as the casein net charge approaches zero, allowing a condensed casein phase or gel to form, then increases at lower pH. Of particular importance for casein micelle stability near neutral pH is the proportion of free caseins in the micelle (i.e., caseins not bound directly to nanoclusters of calcium phosphate). Free caseins are more soluble and better able to act as molecular chaperones (to prevent casein and whey protein aggregation) than bound caseins. Some free caseins are highly phosphorylated and can also act as mineral chaperones to inhibit the growth of calcium phosphate phases and prevent mineralized deposits from forming on membranes or heat exchangers. Thus, casein micelle stability is reduced when free caseins bind to amyloid fibrils, destabilized whey proteins or calcium phosphate. The multivalent-binding model of the casein micelle quantitatively describes these and other factors affecting the stability of milk and milk protein products during manufacture and storage.
Collapse
Affiliation(s)
- C Holt
- School of Biomolecular Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - J A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
2
|
Wang J, Xie H, Dong Q, Liu J, Su J, An Y, Zeng B, Sun B, Liu J. The effect of arginine on inhibiting amyloid fibril derived from β-casein and the binding studies with multi-spectroscopic techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121681. [PMID: 35917615 DOI: 10.1016/j.saa.2022.121681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
In general, β-casein is a stable molecular chaperone. However, the fact that amyloid fibrils derived from β-casein has been reported in some cases, which were usually associated with some malignant breast diseases. As an important amino acid, arginine not only exhibits the significance in casein synthesis in mammary gland, but also has great potentiality in inhibiting the amyloid fibril formation. Therefore, the influence of arginine on the amyloid fibrils formed by β-casein and further molecular mechanism were studied firstly with multi-spectroscopic techniques in the present work. The results of Thioflavin T determination, particle size analysis, transmission electron microscope observation showed that arginine not only inhibited the aggregation of β-casein at the growth stage, but also depolymerized the mature amyloid fibrils at the saturation stage. The further fluorescence experiment results demonstrated that the complex was formed between β-casein and arginine. Besides, there was one binding site and 0.48 nm binding distance. The thermodynamic parameters like ΔG0, ΔS0, ΔH0 were all negative, showing their binding reaction was spontaneous, and hydrogen bond and van der Waals force were the possibly chief intermolecular forces. Furthermore, the synchronous fluorescence spectra showing that the conformation of β-casein was affected and its tyrosine residues were gradually buried inside the protein. Our research would provide new insights into the treatments for the breast amyloidosis.
Collapse
Affiliation(s)
- Jia Wang
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, Changchun, PR China
| | - Hongliu Xie
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, Changchun, PR China
| | - Qinghai Dong
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, Changchun, PR China
| | - Jiayin Liu
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, Changchun, PR China
| | - Jun Su
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, Changchun, PR China
| | - Yang An
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, Changchun, PR China
| | - Baohua Zeng
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| | - Bingxue Sun
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, Changchun, PR China
| | - Jihua Liu
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, Changchun, PR China.
| |
Collapse
|
3
|
Liu J, Wang J, Xu W, Zeng L, Wang C, An Y, Tian H, Zeng B, Dong Q, Ji Y, Gao X, Du G, Liu J, Su J, Xie H, Xie L. Amyloid fibril formation by casein and fatty acid composition in breast milk of mastitis patients. J Food Biochem 2022; 46:e14183. [PMID: 35383958 DOI: 10.1111/jfbc.14183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
Mastitis can cause changes in the nutrient composition of breast milk, which may be harmful to both newborns and lactating mothers. In this study we preliminarily evaluated amyloid fibrils formation by casein and fatty acids (FA), as well as their potential relation with each other in the breast milk of mastitis patients. Six healthy volunteers and six mastitis patients were recruited from the Maternal and Child Health Care Hospital in Changchun were enrolled. Amyloid fibril content was assessed by thioflavin T fluorescence analysis, transmission electron microscope, circular dichroism, and proton nuclear magnetic resonance. FA contents were measured by gas chromatography. Healthy breast milk contained no amyloid fibrils but inflammatory breast milk did. Several FAs (hendecanoic acid, myristolenic acid, pentadecenoic acid, eicosatrienoic acid) differed significantly between the two groups (p < .05). The concentrations of the eicosatrienoic acid and eleven carbonic acids in the inflammatory groups were lower than those in the healthy groups, but the myristolenic acid and pentadecenoic acid were the opposite trend. Early detection of amyloid fibrils should be performed in lactating mothers with mastitis. Changes in FAs may reflect the importance of abnormal metabolism in amyloid fibril formation. PRACTICAL APPLICATIONS: The work preliminarily clarified the relationship between inflammation, fibril content, and fatty acid (FA) composition in breast milk. Healthy milk contained no amyloid fibril formed by casein but the inflammatory milk did. FAs were also significantly different between the two groups. Thus, an early determination of amyloid fibrils in milk should be considered for lactating women with mastitis to avoid the further malignant development. Additionally, the changes in FAs may reflect the importance of abnormal metabolism and oxidative pathways in amyloid fibril formation in the breast. Therefore, this study provided foundations for further investigation on the association between inflammation, fibril content and FA composition in breast milk.
Collapse
Affiliation(s)
- Jihua Liu
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, Changchun, China
| | - Jia Wang
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, Changchun, China
| | - Wenhui Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun, China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular, Structure and Materials, Jilin University, Changchun, China
| | - Yang An
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, Changchun, China
| | - Huimin Tian
- School of Nursing, Jilin University, Changchun, China
| | - Baohua Zeng
- Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Qinghai Dong
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, Changchun, China
| | - Ye Ji
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Xiaojun Gao
- Department of Nephrology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Guangguang Du
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, Changchun, China
| | - Jiayin Liu
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, Changchun, China
| | - Jun Su
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, Changchun, China
| | - Hongliu Xie
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, Changchun, China
| | - Lin Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
4
|
Sohrabi T, Asadzadeh-Lotfabad M, Shafie Z, Amiri Tehranizadeh Z, Saberi MR, Chamani J. Description of the calf thymus DNA-malathion complex behavior by multi-spectroscopic and molecular modeling techniques: EMF at low and high frequency approaches. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1346-1357. [PMID: 35096292 PMCID: PMC8769509 DOI: 10.22038/ijbms.2021.58083.12907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/07/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Small molecules can bind to DNA via covalent or non-covalent interactions, which results in altering or inhibiting the function of DNA. Thus, understanding the interaction patterns of medicines or other small molecules can be very crucial. In this study, the interaction between malathion and calf thymus DNA (ctDNA), in the absence and presence of electromagnetic field (EMF) at low and high frequencies, was investigated through various spectroscopies and viscosity measurements. MATERIALS AND METHODS The interaction studies were performed by means of absorbance, circular dichroism, fluorescence spectroscopy, viscosity, thermal melting, and molecular modeling techniques. RESULTS The fluorescence intensity of the ctDNA-malathion complex in the presence of EMF, has revealed quenching of fluorescence emission curves. The dynamic interaction and RLS studies have implied the changes in ctDNA-malathion complex throughout the presence of EMF which suggested that hydrophobic forces play the main role in the binding. Studies have revealed that malathion does not have any effect on binding ethidium bromide to ctDNA, which signifies the groove binding. The viscosity of ctDNA increased as the malathion concentration was enlarged. The circular dichroism technique suggested that the ellipticity values of the ctDNA-malathion complex have not increased with enhancing the malathion concentration. Molecular docking and dynamics studies have indicated a potent electrostatic interaction between ctDNA and malathion in the groove binding site. CONCLUSION The results of spectroscopic studies reinforced a potent interaction between malathion and ctDNA in the absence and presence of EMF which can help us for further pharmaceutical drug discoveries.
Collapse
Affiliation(s)
- Tahmineh Sohrabi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Zahra Shafie
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zeinab Amiri Tehranizadeh
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Medical Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
5
|
Kong F, An Y, Jiang L, Tian J, Yang M, Li M, Zhang Z, Guan B, Zheng Y, Yue X. Spectroscopic and docking studies of the interaction mechanisms of xylitol with α-casein and κ-casein. Colloids Surf B Biointerfaces 2021; 206:111930. [PMID: 34182429 DOI: 10.1016/j.colsurfb.2021.111930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022]
Abstract
The molecular interactions of xylitol (XY) with α-casein (α-CN) and κ-casein (κ-CN) at pH 7.4 as a function of temperature (298, 308, and 318 K) were characterized by multispectral techniques and molecular docking. The fluorescence results showed that XY strongly quenched the intrinsic fluorescence of α- and κ-CN by static quenching, as well as the presence of a single binding site for XY on both proteins with a binding constant value of ∼105 L/mol. The binding affinity of both proteins for XY decreased with increasing temperature, and Van der Waals forces, hydrogen bonding and protonation were the key forces in the interactions. The addition of XY altered the polarity of the microenvironment of proteins and changed their secondary structure from ordered to disordered. The molecular docking results showed that XY had different binding sites to α- and κ-CN, with several amino acids involved in the binding processes.
Collapse
Affiliation(s)
- Fanhua Kong
- College of Food Science, Shenyang Agriculture University, Shenyang, 110866, China
| | - Yuejia An
- College of Food Science, Shenyang Agriculture University, Shenyang, 110866, China
| | - Lu Jiang
- College of Food Science, Shenyang Agriculture University, Shenyang, 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agriculture University, Shenyang, 110866, China
| | - Mei Yang
- College of Food Science, Shenyang Agriculture University, Shenyang, 110866, China
| | - Mohan Li
- College of Food Science, Shenyang Agriculture University, Shenyang, 110866, China
| | - Zhenghan Zhang
- College of Food Science, Shenyang Agriculture University, Shenyang, 110866, China
| | - Boyuan Guan
- College of Food Science, Shenyang Agriculture University, Shenyang, 110866, China
| | - Yan Zheng
- College of Food Science, Shenyang Agriculture University, Shenyang, 110866, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agriculture University, Shenyang, 110866, China.
| |
Collapse
|
6
|
Dantas MDDA, Silva MDM, Silva ON, Franco OL, Fensterseifer ICM, Tenório HDA, Pereira HJV, Figueiredo IM, Santos JCC. Interactions of tetracyclines with milk allergenic protein (casein): a molecular and biological approach. J Biomol Struct Dyn 2019; 38:5389-5400. [PMID: 31814537 DOI: 10.1080/07391102.2019.1702587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC) interactions with the allergenic milk protein casein (CAS) were here evaluated simulating food conditions. The antibiotics assessed interact with CAS through static quenching and form non-fluorescent complexes. At 30 °C, the binding constant (Kb) varied from 0.05 to 1.23 × 106 M-1. Tetracycline interacts with CAS preferably through electrostatic forces, while oxytetracycline and chlortetracycline interactions occur by hydrogen bonds and van der Waals forces. The interaction process is spontaneous, and the magnitude of interaction based on Kb values, followed the order: TC < CTC < OTC. The distances between the donor (protein) and the receptors (TC, OTC, and CTC) were determined by Förster resonance energy transfer (FRET) and varied from 3.67 to 4.08 nm. Under natural feeding conditions, the citrate decreased the affinity between TC and CAS; a similar effect was observed for OTC in the presence of Ca(II), Fe(III) and lactose. Synchronized and three-dimensional (3D) fluorescence studies indicated alterations in the original protein conformation due to the interaction process, which may influence allergenic processes. In addition, complexation with CAS modulated the antimicrobial activity of CTC against S. aureus, demonstrated that the interaction process possibly alters the biological properties of antibiotics and the own protein, in the food conditions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Osmar Nascimento Silva
- S-Inova Biotech, Post-Graduate Program in Biotechnology, Dom Bosco Catholic University, Campo Grande, Brazil
| | - Octavio Luiz Franco
- S-Inova Biotech, Post-Graduate Program in Biotechnology, Dom Bosco Catholic University, Campo Grande, Brazil
| | | | | | - Hugo Juarez V Pereira
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | - Isis M Figueiredo
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | | |
Collapse
|
7
|
Al-Shabib NA, Khan JM, Malik A, Alsenaidy AM, Alsenaidy MA, Husain FM, Shamsi MB, Hidayathulla S, Khan RH. Negatively charged food additive dye “Allura Red” rapidly induces SDS-soluble amyloid fibril in beta-lactoglobulin protein. Int J Biol Macromol 2018; 107:1706-1716. [DOI: 10.1016/j.ijbiomac.2017.10.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
|
8
|
Portnaya I, Avni S, Kesselman E, Boyarski Y, Sukenik S, Harries D, Dan N, Cogan U, Danino D. Competing processes of micellization and fibrillization in native and reduced casein proteins. Phys Chem Chem Phys 2016; 18:22516-25. [DOI: 10.1039/c6cp04582k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Competition between micellization and fibrillization in milk caseins, intrinsically disordered proteins (IDPs).
Collapse
Affiliation(s)
- Irina Portnaya
- Department of Biotechnology and Food Engineering
- Technion – Israel Institute of Technology
- Haifa 3200003
- Israel
| | - Sharon Avni
- Department of Biotechnology and Food Engineering
- Technion – Israel Institute of Technology
- Haifa 3200003
- Israel
| | - Ellina Kesselman
- Department of Biotechnology and Food Engineering
- Technion – Israel Institute of Technology
- Haifa 3200003
- Israel
| | - Yoav Boyarski
- Institute of Chemistry and the Fritz Haber Research Center
- The Hebrew University
- Jerusalem 91904
- Israel
| | - Shahar Sukenik
- Institute of Chemistry and the Fritz Haber Research Center
- The Hebrew University
- Jerusalem 91904
- Israel
| | - Daniel Harries
- Institute of Chemistry and the Fritz Haber Research Center
- The Hebrew University
- Jerusalem 91904
- Israel
| | - Nily Dan
- Department of Chemical and Biological Engineering
- Drexel University
- Philadelphia
- USA
| | - Uri Cogan
- Department of Biotechnology and Food Engineering
- Technion – Israel Institute of Technology
- Haifa 3200003
- Israel
| | - Dganit Danino
- Department of Biotechnology and Food Engineering
- Technion – Israel Institute of Technology
- Haifa 3200003
- Israel
| |
Collapse
|
9
|
Borzova VA, Markossian KA, Kara DA, Kurganov B. Kinetic regime of dithiothreitol-induced aggregation of bovine serum albumin. Int J Biol Macromol 2015; 80:130-8. [PMID: 26116389 DOI: 10.1016/j.ijbiomac.2015.06.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 12/25/2022]
Abstract
A search for agents, which are capable of effectively suppressing protein aggregation, and elaboration of the appropriate test systems, are among important problems of modern biochemistry and biotechnology. One such test system is based on dithiothreitol (DTT)-induced aggregation of bovine serum albumin (BSA). Study of the kinetics of DTT-induced aggregation of BSA by asymmetric flow field flow fractionation showed that a decrease in the portion of the non-aggregated protein in time followed the exponential law, the rate constant of the first order remaining unchanged at varying protein concentration (0.1M Na-phosphate buffer, pH 7.0; 45 °C). The obtained results indicate that the rate-limiting stage of the general aggregation process is that of unfolding of the protein molecule. When studying the kinetics of DTT-induced aggregation of BSA by dynamic light scattering, we proposed to use parameter K(LS) as a measure of the initial rate of aggregation. Parameter K(LS) corresponds to the initial slope of the dependence of (I-I0)(0.5) on time (I0 and I are the initial and current values of the light scattering intensity, respectively). The K(LS) value has been applied to estimate anti-aggregation activity of chemical chaperones (arginine, its derivatives and proline).
Collapse
Affiliation(s)
- Vera A Borzova
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Kira A Markossian
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Dmitriy A Kara
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Boris Kurganov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia.
| |
Collapse
|