1
|
Wang J, Teng Z, Zhang L, Yang Y, Qian J, Cao T, Cao Y, Qin W, Liu Y, Guo H. Multifunctional Near-Infrared Fluorescent Probes with Different Ring-Structure Trigger Groups for Cell Health Monitoring and In Vivo Esterase Activity Detection. ACS Sens 2020; 5:3264-3273. [PMID: 32969648 DOI: 10.1021/acssensors.0c01734] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A series of multifunctional ratiometric near-infrared fluorescent probes (CYOH-3, CYOH-4, CYOH-5, and CYOH-6) for esterase detection are designed by gradually changing the deflection of the plane twist in the molecule. These probes are composed of different ring-structure trigger groups (from three-membered ring to six-membered ring) and the same luminescent group CYOH. These probes show maximum absorption at ∼585 nm and a fluorescence emission peak at ∼655 ± 5 nm. In the presence of esterase, the probes were hydrolyzed to expose the fluorophore CYOH (λabs = 690 nm, λem = 710 ± 5 nm), thus exhibiting ratiometric near-infrared fluorescence. The probe CYOH-6 has lower plane deflection angle and better ratiometric (R = I710±5nm/I657±4nm) fluorescence properties than probes CYOH-3, CYOH-4, and CYOH-5. CYOH-6 (six-membered ring) has been successfully used to target esterase in mitochondria and distinguish between dead cells (esterase inactivation) and live cells. In addition, CYOH-6 has been well used for monitoring of esterase activity in zebrafish and mice, which proves that these probes have good prospects for clinical biomedical applications.
Collapse
Affiliation(s)
- Jiemin Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhidong Teng
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu Province 730046, P. R. China
| | - Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Yuexia Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jing Qian
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ting Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuping Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenwu Qin
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun Liu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P. R. China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu Province 730046, P. R. China
| |
Collapse
|
2
|
Shahabadi N, Maghsudi M, Kashanian S. A fluorescent sensor based on methyldopa drug modified γ-Fe2O3 nanoparticles for ultrasensitive detection of calf thymus DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 157:104-109. [PMID: 26742013 DOI: 10.1016/j.saa.2015.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/08/2015] [Accepted: 12/20/2015] [Indexed: 06/05/2023]
Abstract
We reported the study of calf thymus DNA (ct-DNA) adsorption by the polymer of methyldopa (2-amino-3-(3,4-dihydroxyphenyl)-2-methyl acid, propanoic) (PMDP), magnetofluorescent PMDP-γ-Fe2O3 nanocrystal. The method is based on the extraordinarily high quenching efficiency of ct-DNA and the specific interaction between ct-DNA and PMDP-γ-Fe2O3 via guanine base and metal coordination, probably. It was found that the designed magnetic nanoparticles can adsorb ct-DNA in nM levels in the presence of NaCl and KCl. In acetate and phosphate buffers DNA were adsorbed completely. Also, we found that pH plays an important role in DNA adsorption onto PMDP-γ-Fe2O3 nanocrystal. PMDP-γ-Fe2O3 nanocrystal is highly hydrophilic and DNA desorption wasn't observed. We believe this study will further stimulate the application of PMDP-γ-Fe2O3 nanocrystal in bioanalytical chemistry and nanotechnology. PMDP-γ-Fe2O3 nanocrystal possesses the ability to interact with ct-DNA via a partial intercalative binding mechanism, as demonstrated by fluorescence displacement experiments and a significant red shift (ca, 10nm) in UV-vis spectra.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran; Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Maryam Maghsudi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Soheila Kashanian
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) & Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, Iran
| |
Collapse
|
3
|
Shahabadi N, Maghsudi M, Shiri F. Application of a fluorescent biosensor based-on magneto-γ-Fe2O3-methyldopa nanoparticles for adsorption of human serum albumin. LUMINESCENCE 2015; 31:937-44. [DOI: 10.1002/bio.3053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 09/19/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry; Razi University; Kermanshah Iran
- Medical Biology Research Center (MBRC); Kermanshah University of Medical Sciences; Kermanshah Iran
| | - Maryam Maghsudi
- Department of Inorganic Chemistry, Faculty of Chemistry; Razi University; Kermanshah Iran
| | - Farshad Shiri
- Department of Inorganic Chemistry, Faculty of Chemistry; Razi University; Kermanshah Iran
| |
Collapse
|