1
|
Gałęcki K, Kowalska-Baron A, Nowak KE, Gajda A, Kolesińska B. Steady-State and Time-Resolved Fluorescence Study of Selected Tryptophan-Containing Peptides in an AOT Reverse Micelle Environment. Int J Mol Sci 2023; 24:15438. [PMID: 37895121 PMCID: PMC10607525 DOI: 10.3390/ijms242015438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this study was to demonstrate the utility of time-resolved fluorescence spectroscopy in the detection of subtle changes in the local microenvironment of a tryptophan chromophore in a confined and crowded medium of AOT reverse micelles, which mimic biological membranes and cell compartmentalization. For this purpose, fluorescence properties of L-tryptophan and several newly synthesized tryptophan-containing peptides in buffer and in an AOT reverse micelle medium were determined. It was shown that insertion of tryptophan and its short di- and tripeptides inside micelles led to evident changes in both the steady-state emission spectra and in fluorescence decay kinetics. The observed differences in spectral characteristics, such as a blue shift in the emission maxima, changes in the average fluorescence lifetime, and the appearance of environmental-dependent fluorescent species, showed the utility of time-resolved fluorescence spectroscopy as a sensitive tool for detecting subtle conformational modifications in tryptophan and its peptides induced by changes in polarity, viscosity, and specific interactions between chromophores and water molecules/polar groups/ions that occur inside reverse micelles.
Collapse
Affiliation(s)
- Krystian Gałęcki
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego St. 2/22, 90-537 Lodz, Poland;
| | - Agnieszka Kowalska-Baron
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego St. 2/22, 90-537 Lodz, Poland;
| | - Katarzyna E. Nowak
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St. 141/143, 90-236 Lodz, Poland;
| | - Anna Gajda
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego St. 114, 90-924 Lodz, Poland; (A.G.); (B.K.)
| | - Beata Kolesińska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego St. 114, 90-924 Lodz, Poland; (A.G.); (B.K.)
| |
Collapse
|
2
|
Li H, Cao S, Zhang S, Chen J, Xu J, Knutson JR. Ultrafast Förster resonance energy transfer from tyrosine to tryptophan in monellin: potential intrinsic spectroscopic ruler. Phys Chem Chem Phys 2023; 25:7239-7250. [PMID: 36853740 DOI: 10.1039/d2cp05842a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Ultrafast Förster Resonance Energy Transfer (FRET) between tyrosine (Tyr) and tryptophan (Trp) residues in the protein monellin has been investigated using picosecond and femtosecond time-resolved fluorescence spectroscopy. Decay associated spectra (DAS) and time-resolved emission spectra (TRES) taken with the different excitation wavelengths of 275, 290 and 295 nm were constructed via global analysis. At two of those three excitation loci (275 and 290 nm), earmarks of energy transfer from Tyr to Trp in monellin are seen, and particularly when the excitation is 275 nm, the energy transfer between Tyr and Trp clearly changes the signature emission DAS shape to that indicating excited state reaction (especially on the red side of fluorescence emission, near 380 nm). Those FRET signatures may overlap with the conventional signatory DAS in heterogeneous systems. When overlap and addition occur between FRET type DAS and "full positive" QSSQ (quasi-static self-quenching), mixed DAS shapes will emerge that still show "positive blue side and negative red sides", just with zero crossing shifted. In addition, excitation decay associated spectra (EDAS) taken with the different emission wavelengths of 330, 350 and 370 nm were constructed. In the study of protein dynamics, ultrafast FRET between Tyr and Trp could provide a basis for an intrinsic (non-perturbing) "spectroscopic ruler", potentially a powerful tool to detect even slight changes in protein structures.
Collapse
Affiliation(s)
- Haoyang Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Simin Cao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Jay R Knutson
- Laboratory of Advanced Microscopy & Biophotonics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
3
|
Li H, Cao S, Chen J, Zhang S, Xu J, Knutson JR. Ultrafast fluorescence dynamics of NADH in aprotic solvents: Quasi-static self-quenching unmasked. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Li D, He X, Zhao L, Jia M, Li H, Zhang S, Zhang X, Chen J, Jin Q, Xu J. Ultrafast Electron Transfer Dynamics of Organic Polymer Nanoparticles with Graphene Oxide. Chemistry 2023; 29:e202300025. [PMID: 36691919 DOI: 10.1002/chem.202300025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/25/2023]
Abstract
We prepared organic polymer poly-3-hexylthiophene (p3ht) nanoparticles (NPs) and graphene oxide (GO)/reduced graphene oxide (RGO) composites p3ht NPs-GO/RGO by using the reprecipitation method. We demonstrated that GO/RGO could improve the ordering and planarity of p3ht chains as well as the formation of p3ht NPs, and confirmed the effects of GO/RGO on the fluorescence and carrier transport dynamics of p3ht NPs by using femtosecond fluorescence upconversion and transient absorption (TA) techniques. Ultrafast electron transfer (∼1 ps) between GO/RGO and p3ht NPs quenched the fluorescence of p3ht NPs, indicating excellent properties of p3ht NPs-GO/RGO as the charge transfer complexes. Efficient electron transfer may promote the applications of p3ht NPs-GO/RGO composites in organic polymer solar cells and photocatalysis. Moreover, RGO had stronger interfacial interactions and more matched conduction band energy levels with p3ht NPs than GO did, which implied that p3ht NPs-RGO might have greater application values than p3ht NPs-GO.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Xiaoxiao He
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Litao Zhao
- Key Laboratory of Spin Electron and Nanomaterials of, Anhui Higher Education Institutes, Suzhou University, 49 Bianhe Middle Road, Suzhou, 234000, P. R. China
| | - Menghui Jia
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Haoyang Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Xiaolei Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Qingyuan Jin
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| |
Collapse
|
5
|
Wang X, Li H, Li D, He Y, Zhang S, Chen J, Xu J. Unraveling the Binding Interaction between Polyvinyl Chloride Microplastics and Bovine Hemoglobin: Multi-Spectroscopic Studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Li H, Jiang G, Jia M, Cao S, Zhang S, Chen J, Sun H, Xu J, Knutson JR. Ultrafast Förster resonance energy transfer between tyrosine and tryptophan: potential contributions to protein-water dynamics measurements. Phys Chem Chem Phys 2022; 24:18055-18066. [PMID: 35861343 DOI: 10.1039/d2cp02139k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ultrafast Förster Resonance Energy Transfer (FRET) between Tyrosine (Tyr, Y) and Tryptophan (Trp, W) in the model peptides Trp-(Pro)n-Tyr (WPnY) has been investigated using a femtosecond up-conversion spectrophotofluorometer. The ultrafast energy transfer process (<100 ps) in short peptides (WY, WPY and WP2Y) has been resolved. In fact, this FRET rate is found to be mixed with the rates of solvent relaxation (SR), ultrafast population decay (QSSQ) and other lifetime components. To further dissect and analyze the FRET, a spectral working model is constructed, and the contribution of a FRET lifetime is separated by reconciling the shapes of decay associated spectra (DAS). Surprisingly, FRET efficiency did not decrease monotonically with the growth of the peptide chain (as expected) but increased first and then decreased. The highest FRET efficiency occurred in peptide WPY. The kinetic results have been accompanied with molecular dynamics simulations that reconcile and explain this strange phenomenon: due to the strong interaction between amino acids, the distance between the donor and receptor in peptide WPY is actually closest, resulting in the fastest FRET. In addition, the FRET lifetimes (τcal) were estimated within the molecular dynamics simulations, and they were consistent with the lifetimes (τexp) separated out by the experimental measurements and the DAS working model. This benchmark study has implications for both previous and future studies of protein ultrafast dynamics. The approach taken can be generalized for the study of proximate tyrosine and tryptophan in proteins and it suggests spectral strategies for extracting mixed rates in other complex FRET problems.
Collapse
Affiliation(s)
- Haoyang Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Guanyu Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Menghui Jia
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Simin Cao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | - Jay R Knutson
- Laboratory of Advanced Microscopy & Biophotonics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
7
|
Lai R, Liu Y, Luo X, Chen L, Han Y, Lv M, Liang G, Chen J, Zhang C, Di D, Scholes GD, Castellano FN, Wu K. Shallow distance-dependent triplet energy migration mediated by endothermic charge-transfer. Nat Commun 2021; 12:1532. [PMID: 33750766 PMCID: PMC7943758 DOI: 10.1038/s41467-021-21561-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Conventional wisdom posits that spin-triplet energy transfer (TET) is only operative over short distances because Dexter-type electronic coupling for TET rapidly decreases with increasing donor acceptor separation. While coherent mechanisms such as super-exchange can enhance the magnitude of electronic coupling, they are equally attenuated with distance. Here, we report endothermic charge-transfer-mediated TET as an alternative mechanism featuring shallow distance-dependence and experimentally demonstrated it using a linked nanocrystal-polyacene donor acceptor pair. Donor-acceptor electronic coupling is quantitatively controlled through wavefunction leakage out of the core/shell semiconductor nanocrystals, while the charge/energy transfer driving force is conserved. Attenuation of the TET rate as a function of shell thickness clearly follows the trend of hole probability density on nanocrystal surfaces rather than the product of electron and hole densities, consistent with endothermic hole-transfer-mediated TET. The shallow distance-dependence afforded by this mechanism enables efficient TET across distances well beyond the nominal range of Dexter or super-exchange paradigms.
Collapse
Affiliation(s)
- Runchen Lai
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yangyi Liu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Xiao Luo
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Lan Chen
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, China
| | - Yaoyao Han
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Meng Lv
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Art and Science, Xiangyang, Hubei, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, China
| | - Dawei Di
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gregory D Scholes
- Frick Chemistry Laboratory, Princeton University, Princeton, NJ, USA
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China.
| |
Collapse
|
8
|
Liu Y, Chen Z, Wang X, Cao S, Xu J, Jimenez R, Chen J. Ultrafast spectroscopy of biliverdin dimethyl ester in solution: pathways of excited-state depopulation. Phys Chem Chem Phys 2020; 22:19903-19912. [PMID: 32853308 DOI: 10.1039/d0cp02971h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biliverdin is a bile pigment that has a very low fluorescence quantum yield in solution, but serves as a chromophore in far-red fluorescent proteins being developed for bio-imaging. In this work, excited-state dynamics of biliverdin dimethyl ether (BVE) in solvents were investigated using femtosecond (fs) and picosecond (ps) time-resolved absorption and fluorescence spectroscopy. This study is the first fs timescale investigation of BVE in solvents, and therefore revealed numerous dynamics that were not resolved in previous, 200 ps time resolution measurements. Viscosity- and isotope-dependent experiments were performed to identify the contributions of isomerization and proton transfer to the excited-state dynamics. In aprotic solvents, a ∼2 ps non-radiative decay accounts for 95% of the excited-state population loss. In addition, a minor ∼30 ps emissive decay pathway is likely associated with an incomplete isomerization process around the C15[double bond, length as m-dash]C16 double bond that results in a flip of the D-ring. In protic solvents, the dynamics are more complex due to hydrogen bond interactions between solute and solvent. In this case, the ∼2 ps decay pathway is a minor channel (15%), whereas ∼70% of the excited-state population decays through an 800 fs emissive pathway. The ∼30 ps timescale associated with isomerization is also observed in protic solvents. The most significant difference in protic solvents is the presence of a >300 ps timescale in which BVE can decay through an emissive state, in parallel with excited-state proton transfer to the solvent. Interestingly, a small fraction of a luminous species, which we designate lumin-BVE (LBVE), is present in protic solvents.
Collapse
Affiliation(s)
- Yangyi Liu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Cao S, Li H, Liu Y, Wang M, Zhang M, Zhang S, Chen J, Xu J, Knutson JR, Brand L. Dehydrogenase Binding Sites Abolish the "Dark" Fraction of NADH: Implication for Metabolic Sensing via FLIM. J Phys Chem B 2020; 124:6721-6727. [PMID: 32660250 PMCID: PMC7477841 DOI: 10.1021/acs.jpcb.0c04835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The fluorescence of dinucleotide NADH has been exploited for decades to determine the redox state of cells and tissues in vivo and in vitro. Particularly, nanosecond (ns) fluorescence lifetime imaging microscopy (FLIM) of NADH (in free vs bound forms) has recently offered a label-free readout of mitochondrial function and allowed the different "pools" of NADH to be distinguished in living cells. In this study, the ultrafast fluorescence dynamics of NADH-dehydrogenase (MDH/LDH) complexes have been investigated by using both a femtosecond (fs) upconversion spectrophotofluorometer and a picosecond (ps) time-correlated single photon counting (TCSPC) apparatus. With these enhanced time-resolved tools, a few-picosecond decay process with a signatory spectrum was indeed found for bound NADH, and it can best be ascribed to the solvent relaxation originating in "bulk water". However, it is quite unlike our previously discovered ultrafast "dark" component (∼26 ps) that is prominent in free NADH (Chemical Physics Letters 2019, 726, 18-21). For these two critical protein-bound NADH exemplars, the decay transients lack the ultrafast quenching that creates the "dark" subpopulation of free NADH. Therefore, we infer that the apparent ratio of free to bound NADH recovered by ordinary (>50 ps) FLIM methods may be low, since the "dark" molecule subpopulation (lifetime too short for conventional FLIM), which effectively hides about a quarter of free molecules, is not present in the dehydrogenase-bound state.
Collapse
Affiliation(s)
- Simin Cao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Haoyang Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Yangyi Liu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Mengyu Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Mengjie Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jay R Knutson
- Laboratory for Advanced Microscopy and Biophotonics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ludwig Brand
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
10
|
Xu R, Hu Z, Wang X, Liu Y, Zhou Z, Xu J, Sun Z, Sun H, Chen J. Intramolecular Charge Transfer in 5-Halogen Cytidines Revealed by Femtosecond Time-Resolved Spectroscopy. J Phys Chem B 2020; 124:2560-2567. [DOI: 10.1021/acs.jpcb.0c00455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rui Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Yufeng Liu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Zhongneng Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
11
|
Cao S, Li H, Liu Y, Zhang M, Wang M, Zhou Z, Chen J, Zhang S, Xu J, Knutson JR. Femtosecond Fluorescence Spectra of NADH in Solution: Ultrafast Solvation Dynamics. J Phys Chem B 2020; 124:771-776. [PMID: 31941277 PMCID: PMC7477843 DOI: 10.1021/acs.jpcb.9b10656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ultrafast solvation dynamics of reduced nicotinamide adenine dinucleotide (NADH) free in solution has been investigated, using both a femtosecond upconversion spectrophotofluorometer and a picosecond time-correlated single-photon counting (TCSPC) apparatus. The familiar time constant of solvent relaxation originating in "bulk water" was found to be ∼1.4 ps, revealing ultrafast solvent reorientation upon excitation. We also found a slower spectral relaxation process with an apparent time of 27 ps, suggesting there could either be dissociable "biological water" hydration sites on the surface of NADH or internal dielectric rearrangements of the flexible solvated molecule on that timescale. In contrast, the femtosecond fluorescence anisotropy measurement revealed that rotational diffusion happened on two different timescales (3.6 ps (local) and 141 ps (tumbling)); thus, any dielectric rearrangement scenario for the 27 ps relaxation must occur without significant chromophore oscillator rotation. The coexistence of quasi-static self quenching (QSSQ) with the slower relaxation is also discussed.
Collapse
Affiliation(s)
- Simin Cao
- State Key Laboratory of Precision Spectroscopy , East China Normal University , Shanghai 200062 , China
| | - Haoyang Li
- State Key Laboratory of Precision Spectroscopy , East China Normal University , Shanghai 200062 , China
| | - Yangyi Liu
- State Key Laboratory of Precision Spectroscopy , East China Normal University , Shanghai 200062 , China
| | - Mengjie Zhang
- State Key Laboratory of Precision Spectroscopy , East China Normal University , Shanghai 200062 , China
| | - Mengyu Wang
- State Key Laboratory of Precision Spectroscopy , East China Normal University , Shanghai 200062 , China
| | - Zhongneng Zhou
- State Key Laboratory of Precision Spectroscopy , East China Normal University , Shanghai 200062 , China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy , East China Normal University , Shanghai 200062 , China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy , East China Normal University , Shanghai 200062 , China
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy , East China Normal University , Shanghai 200062 , China
| | - Jay R Knutson
- Laboratory for Advanced Microscopy and Biophotonics, National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| |
Collapse
|
12
|
Cao S, Zhou Z, Li H, Jia M, Liu Y, Wang M, Zhang M, Zhang S, Chen J, Xu J, Knutson JR. A fraction of NADH in solution is "dark": Implications for metabolic sensing via fluorescence lifetime. Chem Phys Lett 2019; 726:18-21. [PMID: 32921799 PMCID: PMC7486008 DOI: 10.1016/j.cplett.2019.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The metabolic cofactor and energy carrier NADH (nicotinamide adenine dinucleotide, reduced) has fluorescence yield and lifetime that depends strongly on conformation, a fact that has enabled metabolic monitoring of cells via FLIM (Fluorescence Lifetime Microscopy). Using femtosecond fluorescence upconversion, we show that this molecule in solution participates in ultrafast self-quenching along with both bulk solvent relaxation and spectral relaxation on 1.4 and 26 ps timescales. This, in effect, means up to a third of NADH is effectively "dark" for FLIM in the 400-500 nm observation window commonly employed. Methods to compensate for, avoid or measure dark species corrections are outlined.
Collapse
Affiliation(s)
- Simin Cao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Zhongneng Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Haoyang Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Menghui Jia
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Yangyi Liu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Mengyu Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Mengjie Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jay R. Knutson
- Laboratory for Advanced Microscopy and Biophotonics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
13
|
Zhou Z, Wang X, Chen J, Xu J. Direct observation of an intramolecular charge transfer state in epigenetic nucleobase N6-methyladenine. Phys Chem Chem Phys 2019; 21:6878-6885. [PMID: 30887998 DOI: 10.1039/c9cp00325h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
N6-Methyladenine (6MeAde), the most abundant internal modification in mRNA, has proved to be an important epigenetic biomarker for gene regulation just like 5-methylcytosine in DNA. Recently, a unique UV-induced response of 6MeAde was reported, which makes it instructive and intriguing to reveal the excited state relaxation mechanism in this methylated adenine and its derivatives. In this work, we investigated 6MeAde and its ribose species N6-methyladenosine (6MeAdo) by using femtosecond time-resolved fluorescence up-conversion (FUC) and broadband transient absorption (TA) spectroscopy. Both 6MeAde and 6MeAdo exhibit a hundreds of femtoseconds lifetime, which originates from the efficient depletion of the ππ* (La) state. A several picoseconds lifetime is also observed and it should be attributed to the ππ* (Lb) state. Surprisingly, dual peak fluorescence emission is observed in 6MeAde and the long wavelength emission is ascribed to an intramolecular charge transfer (ICT) state. The lifetime of this ICT state is determined to be 107 ps. The kinetic isotope effect shows that the ICT state is closely associated with the solute-solvent H-bonding in aqueous solution. In 6MeAdo, the ICT state is apparently quenched and adenine-like excited state dynamics suggests that DNA/RNA containing such modification could still possess excellent photostability under UV irradiation. Our results contain an important insight for understanding excited state properties in epigenetic modified DNA/RNA.
Collapse
Affiliation(s)
- Zhongneng Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.
| | | | | | | |
Collapse
|
14
|
Zhou Z, Hu Z, Zhang X, Jia M, Wang X, Su H, Sun H, Chen J, Xu J. pH Controlled Intersystem Crossing and Singlet Oxygen Generation of 8-Azaadenine in Aqueous Solution. Chemphyschem 2019; 20:757-765. [PMID: 30702794 DOI: 10.1002/cphc.201800969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/30/2019] [Indexed: 01/01/2023]
Abstract
Azabases are intriguing DNA and RNA analogues and have been used as effective antiviral and anticancer medicines. However, photosensitivity of these drugs has also been reported. Here, pH-controlled intersystem crossing (ISC) process of 9H 8-azaadenine (8-AA) in aqueous solution is reported. Broadband transient absorption measurements reveal that the hydrogen atom at N9 position can greatly affect ISC of 8-AA and ISC is more favorable when 8-AA is in its neutral form in aqueous solution. The initial excited ππ* (S2 ) state evolves through ultrafast internal conversion (IC) (4.2 ps) to the lower-lying nπ* state (S1 ), which further stands as a door way state for ISC with a time constant of 160 ps. The triplet state has a lifetime of 6.1 μs. On the other hand, deprotonation at N9 position promotes the IC from the ππ* (S2 ) state to the ground state (S0 ) and the lifetime of the S2 state is determined to be 10 ps. The experimental results are further supported by time-dependent density functional theory (TDDFT) calculations. Singlet oxygen generation yield is measured to be 13.8 % for the neutral 8-AA while the deprotonated one exhibit much lower yield (<2 %), implying that this compound could be a potential pH-sensitized photodynamic therapy agent.
Collapse
Affiliation(s)
- Zhongneng Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Xianwang Zhang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Menghui Jia
- Shanghai Institute of Optics and Fine Mechanics, Shanghai, 201800, China
| | - Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Hongmei Su
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
15
|
Chang M, Li L, Hu H, Hu Q, Wang A, Cao X, Yu X, Zhang S, Zhao Y, Chen J, Yang Y, Xu J. Using Fractional Intensities of Time-resolved Fluorescence to Sensitively Quantify NADH/NAD + with Genetically Encoded Fluorescent Biosensors. Sci Rep 2017. [PMID: 28646144 PMCID: PMC5482812 DOI: 10.1038/s41598-017-04051-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In this paper, we propose a novel and sensitive ratiometric analysis method that uses the fractional intensities of time-resolved fluorescence of genetically encoded fluorescent NADH/NAD+ biosensors, Peredox, SoNar, and Frex. When the conformations of the biosensors change upon NADH/NAD+ binding, the fractional intensities (αiτi) have opposite changing trends. Their ratios could be exploited to quantify NADH/NAD+ levels with a larger dynamic range and higher resolution versus commonly used fluorescence intensity and lifetime methods. Moreover, only one excitation and one emission wavelength are required for this ratiometric measurement. This eliminates problems of traditional excitation-ratiometric and emission-ratiometric methods. This method could be used to simplify the design and achieve highly sensitive analyte quantification of genetically encoded fluorescent biosensors. Wide potential applications could be developed for imaging live cell metabolism based on this new method.
Collapse
Affiliation(s)
- Mengfang Chang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Lei Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Hanyang Hu
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Mei Long Road, Shanghai, 200237, China.,Optogenetics & Synthetic Biology Interdisciplinary Research Center, CAS Center for Excellence in Brain Science, 130 Mei Long Road, Shanghai, 200237, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Qingxun Hu
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Mei Long Road, Shanghai, 200237, China.,Optogenetics & Synthetic Biology Interdisciplinary Research Center, CAS Center for Excellence in Brain Science, 130 Mei Long Road, Shanghai, 200237, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Aoxue Wang
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Mei Long Road, Shanghai, 200237, China.,Optogenetics & Synthetic Biology Interdisciplinary Research Center, CAS Center for Excellence in Brain Science, 130 Mei Long Road, Shanghai, 200237, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Xiaodan Cao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Xiantong Yu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| | - Yuzheng Zhao
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Mei Long Road, Shanghai, 200237, China. .,Optogenetics & Synthetic Biology Interdisciplinary Research Center, CAS Center for Excellence in Brain Science, 130 Mei Long Road, Shanghai, 200237, China. .,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China.
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Mei Long Road, Shanghai, 200237, China.,Optogenetics & Synthetic Biology Interdisciplinary Research Center, CAS Center for Excellence in Brain Science, 130 Mei Long Road, Shanghai, 200237, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
16
|
Li L, Chang M, Yi H, Jia M, Cao X, Zhou Z, Zhang S, Pan H, Shih CW, Jimenez R, Xu J. Using Pyridinium Styryl Dyes as the Standards of Time-Resolved Instrument Response. APPLIED SPECTROSCOPY 2016; 70:1195-1201. [PMID: 27231333 DOI: 10.1177/0003702816652363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/13/2015] [Indexed: 06/05/2023]
Abstract
In this paper, two pyridinium styryl dyes, [2-(4-dimethylamino-phenyl)-vinyl]-1-methylpyridinium iodide (DASPMI), were synthesized and characterized by steady state fluorescence spectroscopy as well as picosecond and femtosecond time-resolved fluorescence spectroscopies. Both dyes exhibit large Stokes shifts and fluorescence decays equivalent to the instrument response function (IRF) standards employed in time-correlated single-photon counting. Due to their styryl and pyridinium moieties, DASPMIs have higher peak fluorescence intensity and shorter excited-state lifetimes than iodide ion-quenched fluorophores. The fluorescence lifetimes of o-DASPMI and p-DASPMI were measured to be 6.6 ps and 12.4 ps, respectively. The fluorescence transients of these DASPMIs were used as the IRFs for iterative reconvolution fitting of the time-resolved fluorescence decay profiles of Rhodamine B (RhB), sulforhodamine B (SRB), and the SRB-SRB2m RNA aptamer complex. The quality of the fits employing the DASPMI-derived IRFs are consistently equivalent to those employing IRFs obtained from light scattering. These results indicate that DASPMI-derived IRFs may be suited for a broad range of applications in time-resolved spectroscopy and fluorescence lifetime imaging microscopy (FLIM), especially in the visible emission range.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Mengfang Chang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Hua Yi
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Menghui Jia
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Xiaodan Cao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Zhongneng Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Haifeng Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Chun-Wei Shih
- JILA, National Institute of Standards and Technology (NIST), University of Colorado, Boulder, Colorado, USA
| | - Ralph Jimenez
- JILA, National Institute of Standards and Technology (NIST), University of Colorado, Boulder, Colorado, USA
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| |
Collapse
|
17
|
Lin D, Ren R, Tan Q, Wu Q, Li F, Li L, Liu S, He J. A facile and dynamic assay for the detection of peptide aggregation. Anal Bioanal Chem 2016; 408:1609-14. [DOI: 10.1007/s00216-015-9271-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 01/22/2023]
|
18
|
Li L, Yi H, Chang M, Cao X, Zhou Z, Qin C, Zhang S, Pan H, Chen Y, Xu J. Fluorescence dynamics of N-terminal Trp–Trp residues in polypeptide: intrinsic indicators for monitoring pH. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0942-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|