1
|
Xu L, Zhou XY, Ju WT, Ge YD, Xing MY, Wang X. Effect of the presence of berberine/curcumin on the binding of limonin to human serum albumin and antitumor activity in vitro. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124929. [PMID: 39116592 DOI: 10.1016/j.saa.2024.124929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The competition among drugs for binding to plasma proteins is regarded as a pharmacokinetic drug interaction. Competition between antitumor agents and other drugs for plasma protein binding can alter the free concentration of the drug, potentially impacting its efficacy and increasing the risk of toxic side effects. Through a range of spectroscopic techniques, this study examined the interaction between limonin and human serum albumin (HSA) in the context of berberine (Ber) and curcumin (Cur) under physiological conditions to clarify the binding mechanisms of binary and ternary systems at the molecular level. As demonstrated by fluorescence quenching experiments, Static quenching was identified as the mechanism of interaction between HSA and limonin. The results of site competition experiments indicated that the binding site between limonin and HSA was site I, a result further supported by molecular docking simulations. Through the use of thermodynamic data calculations, it was determined that limonin forms a stable complex with HSA by establishing hydrogen bonds and van der Waals forces. Circular dichroism (CD) spectroscopy, three-dimensional (3D) fluorescence spectroscopy, and synchronous fluorescence spectroscopy (SFS) employed to validate the notion that limonin perturbed the microenvironment of amino acids and induced conformational changes in HSA. What's more, the presence of Ber or Cur was found to have further modified the alterations observed in the interaction between the original HSA-limonin binary system. In vitro cellular experiments showed that interaction with HSA reduced the antitumor activity of limonin. In contrast, adding Ber or Cur increased the inhibition rate of tumor cells. The coexistence of both Ber and Cur significantly diminished limonin's binding affinity to HSA. The current investigation enhances comprehension regarding the binding characteristics and interaction mechanisms involving limonin, Ber, Cur, and HSA. It explores the potential of HSA as a versatile drug carrier and furnishes theoretical underpinnings for co-administrative strategies.
Collapse
Affiliation(s)
- Liang Xu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Liaoning University, Shenyang 110036, China
| | - Xin-Yi Zhou
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Wan-Ting Ju
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Ying-Di Ge
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Mei-Yi Xing
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China; Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
2
|
Xu F, Shen Y, Pan Z, Zhou X, Gu W, Dong J, Yin S, Liu S, Xu M, Chen B. The hemostatic molecular mechanism of Sanguisorbae Radix's pharmacological active components based on HSA: Spectroscopic investigations, molecular docking and dynamics simulation. Heliyon 2024; 10:e37020. [PMID: 39296229 PMCID: PMC11407948 DOI: 10.1016/j.heliyon.2024.e37020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/15/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
The interactions between human serum albumin (HSA) and the hemostatic components of the Chinese medicine Sanguisorbae Radix (SR), specifically phenolic acid compounds such as caffeic acid (CA), ferulic acid (FA) and their 1:1 mixture (1:1) were studied to investigate the molecular mechanism underlying the hemostatic effect of SR. Network pharmacology combined with the experimental and computational data revealed that HSA is one of the hemostatic targets to SR phenolic acids. SDS-PAGE and multi-spectroscopy demonstrated that the phenolic acids bind to the Sudlow site I on HSA, altering its structure and influencing its migration velocity. There is an observed synergistic effect upon the mixture of CA and FA. Quantum chemistry, molecular docking, and molecular dynamics simulations indicate that the binding of phenolic acids to HSA is stable, and variations in binding efficiency are associated with the hydrophobicity of the substituent at the C3 position of the side chain, and also, the key amino acids and functional groups for hemostasis of SR were identified, along with the active sites that contribute to the synergistic enhancement by phenolic acids.
Collapse
Affiliation(s)
- Fei Xu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine/Jangsu Kanion Pharmaceutical Co., Ltd., Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - YuQing Shen
- The Second People's Hospital of Taizhou City, Taizhou, 225500, China
| | - ZhiQiang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuan Zhou
- School of Elderly Care Services and Management, Nanjing University of Chinese Medicine, 210023, China
| | - Wei Gu
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing, 210023, China
| | - Jie Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shaoping Yin
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - ShengJin Liu
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine/Jangsu Kanion Pharmaceutical Co., Ltd., Nanjing, 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ming Xu
- Jiangsu Sunan Pharmaceutical Group Co., Ltd., Zhenjiang, 212400, China
| | - Baoduan Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
3
|
Ansari S, Zia MK, Ahsan H, Hashmi MA, Khan FH. Binding characteristics and conformational changes in alpha-2-macroglobulin by the dietary flavanone naringenin: biophysical and computational approach. J Biomol Struct Dyn 2024; 42:7485-7500. [PMID: 37498152 DOI: 10.1080/07391102.2023.2240420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
In the present study, we investigated the interaction of alpha-2-macroglobulin (α2M) with naringenin using multi-spectroscopic, molecular docking, and molecular simulation approaches to identify the functional changes and structural variations in the α2M structure. Our study suggests that naringenin compromised α2M anti-proteinase activity. The results of absorption spectroscopy and fluorescence measurement showed that naringenin-α2M formed a complex with a binding constant of (kb)∼104, indicative of moderate binding. The value of ΔG° in the binding indicates the process to be spontaneous and the major force responsible to be hydrophobic interaction. The findings of FRET reveal the binding distance between naringenin and the amino acids of α2M was 2.82 nm. The secondary structural analysis of α2M with naringenin using multi-spectroscopic methods like synchronous fluorescence, red-edge excitation shift (REES), FTIR, and CD spectra further confirmed the significant conformational alterations in the protein. Molecular docking approach reveals the interactions between naringenin and α2M to be hydrogen bonds, van der Waals forces, and pi interactions, which considerably favour and stabilise the binding. Molecular dynamics modelling simulations also supported the steady binding with the least RMSD deviations. Our study suggests that naringenin interacts with α2M to alter its confirmation and compromise its activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sana Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohammad Khalid Zia
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Md Amiruddin Hashmi
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Fahim H Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
4
|
Yang H, Ji X, Wang H, Yang R, Ma J. Mechanism understanding of PIKfyve inhibitor YM201636 with human serum albumin: Insights from molecular modeling and multiple spectroscopic techniques. LUMINESCENCE 2024; 39:e4838. [PMID: 39051537 DOI: 10.1002/bio.4838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
YM201636 is the potent PIKfyve inhibitor that is being actively investigated for liver cancer efficacy. In this study, computer simulations and experiments were conducted to investigate the interaction mechanism between YM201636 and the transport protein HSA. Results indicated that YM201636 is stably bound between the subdomains IIA and IIIA of HSA, supported by site marker displacement experiments. YM201636 quenched the endogenous fluorescence of HSA by static quenching since a decrease in quenching constants was observed from 7.74 to 2.39 × 104 M-1. UV-vis and time-resolved fluorescence spectroscopy confirmed the YM201636-HSA complex formation and this binding followed a static mechanism. Thermodynamic parameters ΔG, ΔH, and ΔS obtained negative values suggesting the binding was a spontaneous process driven by Van der Waals interactions and hydrogen binding. Binding constants ranged between 5.71 and 0.33 × 104 M-1, which demonstrated a moderately strong affinity of YM201636 to HSA. CD, synchronous, and 3D fluorescence spectroscopy revealed that YM201636 showed a slight change in secondary structure. The increase of Kapp and a decrease of PSH with YM201636 addition showed that YM201636 changed the surface hydrophobicity of HSA. The research provides reasonable models helping us further understand the transportation and distribution of YM201636 when it absorbs into the blood circulatory system.
Collapse
Affiliation(s)
- Hongqin Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Xinzhu Ji
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Huiling Wang
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Ruijing Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Junyi Ma
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| |
Collapse
|
5
|
Kim TY, Park NJ, Jo BG, Lee BS, Keem MJ, Kwon TH, Kim KH, Kim SN, Yang MH. Anti-Wrinkling Effect of 3,4,5-tri- O-caffeoylquinic Acid from the Roots of Nymphoides peltata through MAPK/AP-1, NF-κB, and Nrf2 Signaling in UVB-Irradiated HaCaT Cells. Antioxidants (Basel) 2023; 12:1899. [PMID: 37891978 PMCID: PMC10604296 DOI: 10.3390/antiox12101899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Nymphoides peltata has been widely used pharmacologically in traditional Chinese medicine to treat heat strangury and polyuria. The aim of this study was to isolate the bioactive components from N. peltata and evaluate their potential use as antioxidant and anti-wrinkle agents. Phytochemical investigation of the methanolic extract of N. peltata roots led to the isolation of 15 compounds (1-15), which were structurally determined as α-spinasterol (1), 3-O-β-D-glucopyranosyl-oleanolic acid 28-O-β-D-glucuronopyranoside (2), 4-hydroxybenzoic acid (3), protocatechuic acid (4), vanillic acid (5), p-coumaric acid (6), caffeic acid (7), ferulic acid (8), neochlorogenic acid (neo-CQA) (9), chlorogenic acid (CQA) (10), cryptochlorogenic acid (crypto-CQA) (11), isochlorogenic acid B (3,4-DCQA) (12), isochlorogenic acid A (3,5-DCQA) (13), isochlorogenic acid C (4,5-DCQA) (14), and 3,4,5-tri-O-caffeoylquinic acid (TCQA) (15). Of these 15 compounds, compound 2 was a new oleanane saponin, the chemical structure of which was characterized by 1D and 2D nuclear magnetic resonance (NMR) spectroscopic data and high-resolution electrospray ionization mass spectrometry (HRESIMS), as well as chemical reaction. Biological evaluation of the isolated compounds revealed that 3,4,5-tri-O-caffeoylquinic acid (TCQA) significantly improved Nrf2 levels in an Nrf2-ARE reporter HaCaT cell screening assay. TCQA was found to potently inhibit the Nrf2/HO-1 pathway and to possess strong anti-wrinkle activity by modulating the MAPK/NF-κB/AP-1 signaling pathway and thus inhibiting MMP-1 synthesis in HaCaT cells exposed to UVB. Our results suggest that TCQA isolated from N. peltata might be useful for developing effective antioxidant and anti-wrinkle agents.
Collapse
Affiliation(s)
- Tae-Young Kim
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| | - No-June Park
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Beom-Geun Jo
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Min-Ji Keem
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| | - Taek-Hwan Kwon
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Min Hye Yang
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (T.-Y.K.); (B.-G.J.); (M.-J.K.); (T.-H.K.)
| |
Collapse
|
6
|
Probing the binding interactions between perfluoroalkyl carboxylic acids and adenosine A2A receptors by spectroscopic techniques, molecular simulations and quantum chemistry. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
Manivel P, Marimuthu P, Yu S, Chen X. Multispectroscopic and Computational Investigations on the Binding Mechanism of Dicaffeoylquinic Acids with Ovalbumin. J Chem Inf Model 2022; 62:6133-6147. [PMID: 36398926 DOI: 10.1021/acs.jcim.2c01011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, studies on the interactions between ovalbumin (OVA) and polyphenols have received a great deal of interest. This study explored the conformational changes and the interaction mechanism of the binding between OVA and chlorogenic acid (CGA) isomers such as 3,4-dicaffeoylquinic acids (3,4-diCQA), 4,5-dicaffeoylquinic acids (4,5-diCQA), and 3,5-dicaffeoylquinic acids (3,5-diCQA) using multispectroscopic and in silico analyses. The emission spectra show that the diCQAs caused strong quenching of OVA fluorescence under different temperatures through a static quenching mechanism with hydrogen bond (H-bond) and van der Waals (vdW) interactions. The values of binding constants (OVA-3,4-diCQA = 6.123 × 105, OVA-3,5-diCQA = 2.485 × 105, OVA-4,5-diCQA = 4.698 × 105 dm3 mol-1 at 298 K) suggested that diCQAs had a strong binding affinity toward OVA, among which OVA-3,4-diCQA exhibits higher binding constant. The results of UV-vis absorption and synchronous fluorescence indicated that the binding of all three diCQAs to OVA induced conformational and micro-environmental changes in the protein. The findings of molecular modeling further validate the significant role of vdW force and H-bond interactions in ensuring the stable binding of OVA-diCQA complexes. Temperature-dependent molecular dynamics simulation studies allow estimation of the individual components that contribute to the total bound free energy value, which allows evaluation of the nature of the interactions involved. This research can provide information for future investigations on food proteins' physicochemical stability and CGA bioavailability in vitro or in vivo.
Collapse
Affiliation(s)
- Perumal Manivel
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu212013, P.R. China
| | - Parthiban Marimuthu
- Structural Bioinformatics Laboratory (SBL─Biochemistry) and Pharmaceutical Science Laboratory (PSL─Pharmacy), Faculty of Science and Engineering, Åbo Akademi University, TurkuFI-20520, Finland
| | - Sun Yu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu212013, P.R. China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu212013, P.R. China.,Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu212013, P.R. China.,International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang212013, China
| |
Collapse
|
8
|
Li Z, Zhao L, Sun Q, Gan N, Zhang Q, Yang J, Yi B, Liao X, Zhu D, Li H. Study on the interaction between 2,6-dihydroxybenzoic acid nicotine salt and human serum albumin by multi-spectroscopy and molecular dynamics simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120868. [PMID: 35032760 DOI: 10.1016/j.saa.2022.120868] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/13/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
As a new form of nicotine introduction for novel tobacco products, the interaction of nicotine salt with biological macromolecules may differ from that of free nicotine and thus affect its transport and distribution in vivo. Hence, the mechanism underlying the interaction between 2,6-dihydroxybenzoic acid nicotine salt (DBN) and human serum albumin (HSA) was investigated by multi-spectroscopy, molecular docking, and dynamic simulation. Experiments on steady-state fluorescence and fluorescence lifetime revealed that the quenching mechanism of DBN and HSA was dynamic quenching, and binding constant was in the order of 10^4 L mol-1. Thermodynamic parameters exhibited that the binding was a spontaneous process with hydrophobic forces as the main driving force. Fluorescence competition experiments revealed that DBN bound to site I of HSA IIA subdomain. According to the results of synchronous fluorescence, 3D fluorescence, FT-IR spectroscopy, circular dichroism (CD) spectroscopy, and molecular dynamics (MD) simulation, DBN did not affect the basic skeleton structure of HSA but changed the microenvironment around the amino acid residues. Computer simulations positively corroborated the experimental results. Moreover, DBN decreased the surface hydrophobicity and weakened the esterase-like activity of HSA, leading to the impaired function of the latter. This work provides important information for studying the interaction between DBN as a nicotine substitute and biological macromolecules and contributes to the further development and application of DBN.
Collapse
Affiliation(s)
- Zhiqiang Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China; R&D Center of China Tobacco Yunnan Industrial Co., Ltd, No.367, Hongjin Road, Kunming 650231, China
| | - Ludan Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qiaomei Sun
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Na Gan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qiyi Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Ji Yang
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd, No.367, Hongjin Road, Kunming 650231, China
| | - Bin Yi
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd, No.367, Hongjin Road, Kunming 650231, China
| | - Xiaoxiang Liao
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd, No.367, Hongjin Road, Kunming 650231, China
| | - Donglai Zhu
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd, No.367, Hongjin Road, Kunming 650231, China
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
9
|
Makori SI, Mu TH, Sun HN. Functionalization of sweet potato leaf polyphenols by nanostructured composite β-lactoglobulin particles from molecular level complexations: A review. Food Chem 2022; 372:131304. [PMID: 34655825 DOI: 10.1016/j.foodchem.2021.131304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022]
Abstract
Sweet potato leaf polyphenols (SPLPs) have shown potential health benefits in the food and pharmaceutical industries. Nowadays, consumption of SPLPs from animal feeds to foodstuff is becoming a trend worldwide. However, the application of SPLPs is limited by their low bioavailability and stability. β-lactoglobulin (βlg), a highly regarded whey protein, can interact with SPLPs at the molecular level to form reversible or irreversible nanocomplexes (NCs). Consequently, the functional properties and final quality of SPLPs are directly modified. In this review, the composition and structure of SPLPs and βlg, as well as methods of molecular complexation and mechanisms of formation of SPLPsβlgNCs, are revisited. The modified functionalities of SPLPsβlgNCs, especially protein conformational structures, antioxidant activity, solubility, thermal stability, emulsifying, and gelling properties including allergenic potential, digestibility, and practical applications are discussed for SPLPs future development.
Collapse
Affiliation(s)
- Shadrack Isaboke Makori
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China; Food Technology Division, Kenya Industrial Research and Development Institute (KIRDI), P.O. Box 30650, GPO, Nairobi, Kenya
| | - Tai-Hua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| | - Hong-Nan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, China.
| |
Collapse
|
10
|
Liu J, Hu W, Ma X, Liang X, Lin L, Huang J, Liu J. 3,4,5-O-tricaffeoylquinic acid alleviates ionizing radiation-induced injury in vitro and in vivo through regulating ROS/JNK/p38 signaling. ENVIRONMENTAL TOXICOLOGY 2022; 37:349-361. [PMID: 34741589 DOI: 10.1002/tox.23403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Ionizing radiation (IR) brings many health problems to humans, causing damage to the digestive system, hematopoietic system, and immune system. Natural compounds derived from plants have attracted widespread attention due to their low toxicity. Here, we found that 3,4,5-O-tricaffeoylquinic acid (tCQA) extracted from natural plant Azolla imbricata could significantly alleviate the systemic damage in mice caused by IR. In order to further explore the molecular mechanism of the radioprotective effect of tCQA, in vitro experiments confirmed that tCQA could attenuate the cytotoxic effect of IR on the colonic epithelial cell line NCM460 and alleviate the IR-induced mitochondrial dysfunction characterized by the decrease of mitochondrial transmembrane potential, ROS production, and caspase-dependent apoptosis. In addition, the generation of ROS induced by H2 O2 could also be reversed by tCQA. Then, Western blot demonstrated that tCQA could reverse the MAPK signaling pathway activated by IR. However, the inhibitory effect of tCQA on JNK and P38 levels activated by the JNK agonist anisomycin is not obvious; meanwhile, tCQA could inhibit the activation of JNK/P38 induced by H2 O2 , which suggests that tCQA might inhibit the JNK/P38 signaling pathway by reducing ROS. In short, tCQA inhibits the generation of ROS caused by IR, and then regulates the activity of caspase in the mitochondrial pathway by inhibiting the JNK/P38 signaling pathway, thereby alleviating the apoptosis of NCM460. This research provides an experimental basis for the development of new types of radioprotective agents for medical diagnosis and radiotherapy.
Collapse
Affiliation(s)
- Jiajun Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wen Hu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Long Lin
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jianming Huang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
11
|
Xue SW, Tian YX, Pan JC, Liu YN, Ma YL. Binding interaction of a ring-hydroxylating dioxygenase with fluoranthene in Pseudomonas aeruginosa DN1. Sci Rep 2021; 11:21317. [PMID: 34716364 PMCID: PMC8556375 DOI: 10.1038/s41598-021-00783-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/18/2021] [Indexed: 11/11/2022] Open
Abstract
Pseudomonas aeruginosa DN1 can efficiently utilize fluoranthene as its sole carbon source, and the initial reaction in the biodegradation process is catalyzed by a ring-hydroxylating dioxygenase (RHD). To clarify the binding interaction of RHD with fluoranthene in the strain DN1, the genes encoding alpha subunit (RS30940) and beta subunit (RS05115) of RHD were functionally characterized through multi-technique combination such as gene knockout and homology modeling as well as molecular docking analysis. The results showed that the mutants lacking the characteristic alpha subunit and/or beta subunit failed to degrade fluoranthene effectively. Based on the translated protein sequence and Ramachandran plot, 96.5% of the primary amino-acid sequences of the alpha subunit in the modeled structure of the RHD were in the permitted region, 2.3% in the allowed region, but 1.2% in the disallowed area. The catalytic mechanism mediated by key residues was proposed by the simulations of molecular docking, wherein the active site of alpha subunit constituted a triangle structure of the mononuclear iron atom and the two oxygen atoms coupled with the predicted catalytic ternary of His217-His222-Asp372 for the dihydroxylation reaction with fluoranthene. Those amino acid residues adjacent to fluoranthene were nonpolar groups, and the C7-C8 positions on the fluoranthene ring were estimated to be the best oxidation sites. The distance of C7-O and C8-O was 3.77 Å and 3.04 Å respectively, and both of them were parallel. The results of synchronous fluorescence and site-directed mutagenesis confirmed the roles of the predicted residues during catalysis. This binding interaction could enhance our understanding of the catalytic mechanism of RHDs and provide a solid foundation for further enzymatic modification.
Collapse
Affiliation(s)
- Shu-Wen Xue
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| | - Yue-Xin Tian
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| | - Jin-Cheng Pan
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| | - Ya-Ni Liu
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| | - Yan-Ling Ma
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| |
Collapse
|
12
|
Huang M, Yong L, Xu J, Zuo Y, Yi Z, Liu H. Determinants of Adenosine A
2A
Receptors‐Perfluoroalkyl Sulfonates Complex: Multi‐Spectroscopic and Molecular Dynamics Simulation Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202100863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manting Huang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Li Yong
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Jie Xu
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Yanqiu Zuo
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Zhongsheng Yi
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| | - Hongyan Liu
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection College of Chemistry and Bioengineering Guilin University of Technology Guilin 541004 China
| |
Collapse
|
13
|
Bejaoui M, Ferdousi F, Zheng YW, Oda T, Isoda H. Regulating cell fate of human amnion epithelial cells using natural compounds: an example of enhanced neural and pigment differentiation by 3,4,5-tri-O-caffeoylquinic acid. Cell Commun Signal 2021; 19:26. [PMID: 33627134 PMCID: PMC7903623 DOI: 10.1186/s12964-020-00697-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Over the past years, Human Amnion Epithelial Cells (hAECs), a placental stem cell, are gaining higher attention from the scientific community as they showed several advantages over other types of stem cells, including availability, easy accessibility, reduced rejection rate, non-tumorigenicity, and minimal legal constraint. Recently, natural compounds are used to stimulate stem cell differentiation and proliferation and to enhance their disease-treating potential. A polyphenolic compound 3,4,5-Tri-O-Caffeoylquinic Acid (TCQA) has been previously reported to induce human neural stem cell differentiation and may affect melanocyte stem cell differentiation as well. In this study, TCQA was tested on 3D cultured hAECs after seven days of treatment, and then, microarray gene expression profiling was conducted of TCQA-treated and untreated control cells on day 0 and day 7. Analyses revealed that TCQA treatment significantly enriched pigment and neural cells sets; besides, genes linked with neurogenesis, oxidation-reduction process, epidermal development, and metabolism were positively regulated. Interestingly, TCQA stimulated cell cycle arrest-related pathways and differentiation signaling. On the other hand, TCQA decreased interleukins and cytokines expression and this due to its anti-inflammatory properties as a polyphenolic compound. Results were validated to highlight the main activities of TCQA on hAECs, including differentiation, cell cycle arrest, and anti-inflammatory. This study highlights the important role of hAECs in regenerative medicine and the use of natural compounds to regulate their fate. Video abstract.
Collapse
Affiliation(s)
- Meriem Bejaoui
- Alliance for Research On the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Farhana Ferdousi
- Alliance for Research On the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 Japan
| | - Yun-Wen Zheng
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tatsuya Oda
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Alliance for Research On the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 Japan
| |
Collapse
|
14
|
Liu R, Wu L, Feng H, Tang F, Si H, Yao X, He W. The study on the interactions of two 1,2,3-triazoles with several biological macromolecules by multiple spectroscopic methodologies and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118795. [PMID: 32814256 DOI: 10.1016/j.saa.2020.118795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/18/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
1-(4-chlorophenyl)-5-phenyl-1H-1,2,3-triazole (CPTC) and 5-(3-chlorophenyl) -1-phenyl-1H-1,2,3-triazole (PCTA) are two new derivatives of 1,2,3-triazole. Their structural and spectral properties were characterized by density functional theory calculations (DFT). The binding properties of CPTC or PCTA with several typical biomacromolecules such as human serum albumin (HSA), bovine hemoglobin (BHb), human immunoglobulin (HIgG) or DNA were investigated by molecular docking and multiple spectroscopic methodologies. The different parameters including binding constants and thermodynamic parameters for CPTC/PCTA-HSA/BHb/HIgG/DNA systems were obtained based on various fluorescence enhancement or quenching mechanisms. The results of binding constants indicated that there were the strong interactions between two triazoles and four biological macromolecules due to the higher order of magnitude between 103 and 105. The values of thermodynamic parameters revealed that the binding forces for these systems are mainly hydrophobic interactions, electrostatic force, or hydrogen bond, respectively, which are in agreement with the results of molecular docking to a certain extent. Moreover, the information from synchronous, 3D fluorescence and UV-Vis spectroscopies proved that two compounds CPTC and PCTA could affect the microenvironment of amino acids residues of three kinds of proteins. Based on the above experimental results, a comparison of the interaction mechanisms for CPTC/PCTA-proteins/DNA systems have been performed in view of their different molecular structures, which is beneficial for the further research in order to design them as the novel drugs.
Collapse
Affiliation(s)
- Rongqiang Liu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China
| | - Luyong Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China
| | - Huajie Feng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China
| | - Fengqi Tang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China
| | - Hongzong Si
- Institute for Computational Science and Engineering, Qingdao University, 266071 Qingdao, China
| | - Xiaojun Yao
- College of Chemical and Chemical Engineering, Lanzhou University, 730000 Lanzhou, China
| | - Wenying He
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China.
| |
Collapse
|
15
|
Bejaoui M, Villareal MO, Isoda H. β-catenin-mediated hair growth induction effect of 3,4,5-tri- O-caffeoylquinic acid. Aging (Albany NY) 2020; 11:4216-4237. [PMID: 31256073 PMCID: PMC6628991 DOI: 10.18632/aging.102048] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/17/2019] [Indexed: 12/13/2022]
Abstract
The hair follicle is a complex structure that goes through a cyclic period of growth (anagen), regression (catagen), and rest (telogen) under the regulation of several signaling pathways, including Wnt/ β-catenin, FGF, Shh, and Notch. The Wnt/β-catenin signaling is specifically involved in hair follicle morphogenesis, regeneration, and growth. β-catenin is expressed in the dermal papilla and promotes anagen induction and duration, as well as keratinocyte regulation and differentiation. In this study, we demonstrated the activation of β-catenin by a polyphenolic compound 3,4,5-tri-O-caffeoylquinic acid (TCQA) in mice model and in human dermal papilla cells to promote hair growth cycle. A complete regrowth of the shaved area of C3H mice was observed upon treatment with TCQA. Global gene expression analysis using microarray showed an upregulation in hair growth-associated genes. Moreover, the expression of β-catenin was remarkably upregulated in vivo and in vitro. These findings suggest that β-catenin activation by TCQA promoted the initiation of the anagen phase of the hair cycle.
Collapse
Affiliation(s)
- Meriem Bejaoui
- School of Integrative and Global Majors (SIGMA) University of Tsukuba, Tsukuba City, 305-8572 Japan
| | - Myra O Villareal
- School of Integrative and Global Majors (SIGMA) University of Tsukuba, Tsukuba City, 305-8572 Japan.,Faculty of Life and Environmental Sciences University of Tsukuba, Tsukuba City, 305-8572 Japan.,Alliance for Research on the Mediterranean and North Africa (ARENA) University of Tsukuba, Tsukuba City, 305-8572 Japan
| | - Hiroko Isoda
- School of Integrative and Global Majors (SIGMA) University of Tsukuba, Tsukuba City, 305-8572 Japan.,Faculty of Life and Environmental Sciences University of Tsukuba, Tsukuba City, 305-8572 Japan.,Alliance for Research on the Mediterranean and North Africa (ARENA) University of Tsukuba, Tsukuba City, 305-8572 Japan
| |
Collapse
|
16
|
Dohare N, Siddiquee MA, Parray MD, Kumar A, Patel R. Esterase activity and interaction of human hemoglobin with diclofenac sodium: A spectroscopic and molecular docking study. J Mol Recognit 2020; 33:e2841. [PMID: 32150309 DOI: 10.1002/jmr.2841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 12/23/2022]
Abstract
To get an idea about the pharmacokinetics and pharmacodynamics, it is important to study the drug-protein interaction. Therefore, herein, we studied the interaction of diclofenac sodium (DIC) with human hemoglobin. The binding study of nonsteroidal antiinflammatory drug, DIC with human hemoglobin (HHB) was done by utilizing fluorescence, UV-visible, time-resolved fluorescence and far-UV circular dichroism spectroscopy (CD). Various thermodynamic parameters such as enthalpy change (ΔH), entropy change (ΔS), and Gibbs free energy change (ΔG) were also calculated. CD results showed that DIC induces secondary structure change in HHB. Fluorescence resonance energy transfer was also performed. Additionally, it was also observed that DIC inhibits the esterase-like enzymatic activity of HHB via competitive inhibition.
Collapse
Affiliation(s)
- Neeraj Dohare
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Abrar Siddiquee
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mehrajud Din Parray
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
17
|
Clifford MN, Kerimi A, Williamson G. Bioavailability and metabolism of chlorogenic acids (acyl‐quinic acids) in humans. Compr Rev Food Sci Food Saf 2020; 19:1299-1352. [DOI: 10.1111/1541-4337.12518] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/08/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Michael N. Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical SciencesUniversity of Surrey Guildford UK
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash HealthFaculty of Medicine Nursing and Health SciencesMonash University Notting Hill Victoria Australia
| | - Asimina Kerimi
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash HealthFaculty of Medicine Nursing and Health SciencesMonash University Notting Hill Victoria Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash HealthFaculty of Medicine Nursing and Health SciencesMonash University Notting Hill Victoria Australia
| |
Collapse
|
18
|
Yang H, Zeng Q, He Z, Wu D, Li H. Interaction of novel Aurora kinase inhibitor MK-0457 with human serum albumin: Insights into the dynamic behavior, binding mechanism, conformation and esterase activity of human serum albumin. J Pharm Biomed Anal 2020; 178:112962. [DOI: 10.1016/j.jpba.2019.112962] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
|
19
|
Mohammadnia F, Fatemi MH, Taghizadeh SM. Study on the interaction of anti-inflammatory drugs with human serum albumin using molecular docking, quantitative structure-activity relationship, and fluorescence spectroscopy. LUMINESCENCE 2019; 35:266-273. [PMID: 31766079 DOI: 10.1002/bio.3723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/27/2019] [Accepted: 09/30/2019] [Indexed: 11/06/2022]
Abstract
The interaction of 14 anti-inflammatory drugs with human serum albumin (HSA) was investigated using fluorescence quenching, molecular docking studies, and quantitative structure-activity relationship (QSAR) methodology. Binding of anti-inflammatory drugs to HSA plays a fundamental role in their transport, distribution, delivery, and elimination. Binding constants of these drugs to HSA, obtained using the fluorescence quenching method, were within the range 0.01 × 104 M-1 (acetaminophen) to 1881.05 × 104 M-1 (meloxicam). Binding sites and binding constants of these anti-inflammatory drugs were estimated using molecular docking. Inspection of the obtained values for docking score, logKb and Kb , showed that the drugs in this data set have a relatively strong binding constant for HSA. QSAR modelling was applied for binding constants obtained from fluorescence quenching and theoretical molecular descriptors. This modelling led to a linear two-parameter model with a correlation coefficient of 0.95 and adequate robustness. The descriptor results showed the importance of a bonding network and electronegativity as the discriminative structural factors in binding affinity for the HSA molecule.
Collapse
Affiliation(s)
- F Mohammadnia
- Laboratory of Chemometrics, Faculty of Chemistry, University of Mazandarn, Babolsar, Iran
| | - M H Fatemi
- Laboratory of Chemometrics, Faculty of Chemistry, University of Mazandarn, Babolsar, Iran
| | - S M Taghizadeh
- Novel Drug Delivery Systems, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Islamic Republic of Iran
| |
Collapse
|
20
|
Cao XY, Liu D, Bi RC, He YL, He Y, Liu JL. The protective effects of a novel polysaccharide from Lentinus edodes mycelia on islet β (INS-1) cells damaged by glucose and its transportation mechanism with human serum albumin. Int J Biol Macromol 2019; 134:344-353. [DOI: 10.1016/j.ijbiomac.2019.05.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/05/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
|
21
|
Li J, Feng H, Liu R, Ding G, Si H, He W, Sun Z. The computational and experimental studies on a 1, 2, 3-triazole compound and its special binding to three kinds of blood proteins. J Biomol Struct Dyn 2019; 38:1185-1196. [PMID: 30909827 DOI: 10.1080/07391102.2019.1598498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A newly synthesized compound, ethyl 5-phenyl-2-(p-tolyl)-2H-1, 2, 3-triazole-4-carboxylate (EPPC) may be considered as a drug candidate and was exploited to study the structural and spectral properties by using quantum chemical calculation and multiple spectroscopic techniques. The results on theoretical spectrum of EPPC were consistent with experimental spectrum in great degree. In addition, EPPC has been as a special probe and investigated on the interactions with three kinds of blood proteins including human serum albumin (HSA), human immunoglobulin (HIgG) and bovine hemoglobin (BHb) by using UV-Vis, fluorescence spectroscopy and molecular modeling, respectively. Changes in various fluorescence and UV-Vis spectra were observed upon ligand binding along with a remarkable degree of fluorescence enhancement on complex formation under physiological condition with binding constant about 105 order of magnitudes, which caused the variations of conformation and microenvironment of these proteins in aqueous solution. The obtained results from the thermodynamic parameters calculated according to the van't Hoff equation indicated that the entropy change ΔS° and enthalpy change ΔH° were found to be 0.168 KJ/mol K and 22.154 KJ/mol for EPPC-HSA system, 0.284 KJ/mol K and 54.408 KJ/mol for EPPC-HIgG system, and 0.228 KJ/mol K and 37.548 KJ/mol for EPPC-BHb system, respectively, which demonstrated that the primary binding pattern is determined by hydrophobic interaction. The results of docking and molecular dynamics simulation using three proteins crystal models revealed that EPPC could bind to three proteins well into hydrophobic cavity, which showed good consistence with the spectroscopic measurements.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jianling Li
- College of Chemical and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Huajie Feng
- College of Chemical and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Rongqiang Liu
- College of Chemical and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Guohua Ding
- College of Chemical and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Hongzong Si
- Institute for Computational Science and Engineering, Qingdao University, Qingdao, China
| | - Wenying He
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, China
| | - Zhenfan Sun
- College of Chemical and Chemical Engineering, Hainan Normal University, Haikou, China
| |
Collapse
|
22
|
Cao X, Yang Z, He Y, Xia Y, He Y, Liu J. Multispectroscopic exploration and molecular docking analysis on interaction of eriocitrin with bovine serum albumin. J Mol Recognit 2019; 32:e2779. [DOI: 10.1002/jmr.2779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Xiangyu Cao
- Department of Biological Sciences, School of Life ScienceLiaoning University Shenyang China
| | - Zhijun Yang
- Department of Biological Sciences, School of Life ScienceLiaoning University Shenyang China
| | - Yonglin He
- Department of Biological Sciences, School of Life ScienceLiaoning University Shenyang China
| | - Ying Xia
- Department of Biological Sciences, School of Life ScienceLiaoning University Shenyang China
| | - Yin He
- Department of Biological Sciences, School of Life ScienceLiaoning University Shenyang China
| | - Jianli Liu
- Department of Biological Sciences, School of Life ScienceLiaoning University Shenyang China
| |
Collapse
|
23
|
Cao XY, Wang S, Tian SQ, Lou H, Kong YC, Yang ZJ, Liu JL. Spectroscopic and molecular modeling studies on the interactions of fluoranthene with bovine hemoglobin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:301-307. [PMID: 29879645 DOI: 10.1016/j.saa.2018.05.091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/16/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
This study aims to investigate the interaction between fluoranthene (FLA) and Bovine hemoglobin (BHb) by ultraviolet-visible (UV-vis) absorption, fluorescence, synchronous fluorescence, circular dichroism (CD) spectroscopy and molecular docking method. The results showed that the fluorescence intensity of BHb was declined with the increase of FLA concentration. The binding procedure was spontaneous mainly driven by hydrophobic force. The number of binding sites were 0.709 (298 K), and 1.41 (310 K). The binding constants were equal to 4.68 × 103 mol·L-1 at 298 K and 6.17 × 105 mol·L-1 at 310 K. The binding distance between FLA and the tryptophan residue of BHb was 4.50 nm. The results of UV-vis spectra, synchronous fluorescence and CD spectra revealed that FLA could change the conformation of BHb, which might affect the physiological functions of hemoglobin. Moreover, molecular modeling results showed that the fluorescence experimental results were in agreement with the results obtained by molecular docking.
Collapse
Affiliation(s)
- Xiang-Yu Cao
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Shuai Wang
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Si-Qi Tian
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Hong Lou
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Yu-Chi Kong
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Zhi-Jun Yang
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Jian-Li Liu
- School of Life Science, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
24
|
Liu JL, He YL, Wang S, He Y, Wang WY, Li QJ, Cao XY. Ferulic acid inhibits advanced glycation end products (AGEs) formation and mitigates the AGEs-induced inflammatory response in HUVEC cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
25
|
Ali MS, Amina M, Al-Lohedan HA, Al Musayeib NM. Human serum albumin binding to the biologically active labdane diterpene “leoheterin”: Spectroscopic and in silico analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 182:9-17. [DOI: 10.1016/j.jphotobiol.2018.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
|
26
|
Aneja B, Kumari M, Azam A, Kumar A, Abid M, Patel R. Effect of triazole-tryptophan hybrid on the conformation stability of bovine serum albumin. LUMINESCENCE 2018; 33:464-474. [DOI: 10.1002/bio.3435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/27/2017] [Accepted: 11/06/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Babita Aneja
- Medicinal Chemistry Laboratory, Department of Biosciences; Jamia Millia Islamia; New Delhi India
| | - Meena Kumari
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences; Jamia Millia Islamia (A Central University); Jamia Nagar New Delhi India
| | - Amir Azam
- Department of Chemistr; Jamia Millia Islamia; New Delhi India
| | - Amit Kumar
- Centre for Nano and Material Sciences; Jain University; Jain Global Campus, Jakkasandra Post Bangalore India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences; Jamia Millia Islamia; New Delhi India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences; Jamia Millia Islamia (A Central University); Jamia Nagar New Delhi India
| |
Collapse
|
27
|
Cao X, He Y, Liu D, He Y, Hou X, Cheng Y, Liu J. Characterization of interaction between scoparone and bovine serum albumin: spectroscopic and molecular docking methods. RSC Adv 2018; 8:25519-25525. [PMID: 35539773 PMCID: PMC9082657 DOI: 10.1039/c8ra04065f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/02/2018] [Indexed: 11/21/2022] Open
Abstract
Scoparone is a major biological active substance derived from the traditional Chinese herbal medicine called Artemisia capillaris. It has been confirmed that scoparone has anti-inflammatory, anti-tumor, hepatoprotective and antioxidant effects. However, the binding interaction of scoparone with bovine serum albumin (BSA) still remains unknown. Therefore, the present study was conducted to clarify the binding interaction of scoparone with BSA under simulated physiological conditions (pH = 7.4) by utilizing spectroscopic and molecular docking methods. The formation of the scoparone–BSA complex was identified by UV-vis absorption spectroscopy experiment results. The fluorescence experiment results revealed that the quenching mechanism was static quenching and the binding procedure was spontaneous mainly driven by hydrophobic interaction. At 310 K, the number of binding sites was approximately equal to 1 and the binding constant was 6.79 × 105 mol L−1. The binding distance (4.81 nm) between scoparone and BSA was determined by Förster's non-radiative energy transfer theory. Molecular docking and site marker competitive experiment results verified that scoparone was more likely to be located in site I of BSA. In addition, the results of synchronous fluorescence spectroscopy and circular dichroism spectroscopy experiments proved that scoparone slightly changed the conformation of BSA by binding interaction with BSA. These findings would be useful for understanding the pharmacokinetics of scoparone in vivo, including scoparone transport, distribution, metabolism and excretion. The interaction of scoparone with bovine serum albumin (BSA) was studied by utilizing spectroscopic and molecular docking methodologies.![]()
Collapse
Affiliation(s)
- Xiangyu Cao
- School of Life Science
- Liaoning University
- Shenyang
- P. R. China
| | - Yonglin He
- School of Life Science
- Liaoning University
- Shenyang
- P. R. China
| | - Dan Liu
- School of Life Science
- Liaoning University
- Shenyang
- P. R. China
| | - Yin He
- School of Life Science
- Liaoning University
- Shenyang
- P. R. China
| | - Xiao Hou
- School of Life Science
- Liaoning University
- Shenyang
- P. R. China
| | - Ye Cheng
- School of Life Science
- Liaoning University
- Shenyang
- P. R. China
| | - Jianli Liu
- School of Life Science
- Liaoning University
- Shenyang
- P. R. China
| |
Collapse
|
28
|
Hasanzadeh A, Dehghan G, Shaghaghi M, Panahi Y, Jouyban A, Yekta R. Multispectral and molecular docking studies on the interaction of human serum albumin with iohexol. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Sen S, Sett R, Paul BK, Guchhait N. Interaction of phenazinium-based photosensitizers with the 'N' and 'B' isoforms of human serum albumin: Effect of methyl substitution. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:217-228. [PMID: 28802172 DOI: 10.1016/j.jphotobiol.2017.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 01/13/2023]
Abstract
The present work is focused on exploring the interaction of two phenazinium-based biological photosensitizers, phenosafranin (PSF) and safranin-O (SO), with human serum albumin (HSA), with particular emphasis on the physiologically significant NB conformational transition of the protein on the dye:HSA interaction. In addition, the presence of methyl substitution on the planar phenazinium ring in SO paves way for looking into the effect of simple chemical manipulation (that is, methyl substitution on the dye nucleus) on the dye:protein interaction behavior as a function of various (pH-induced) isoforms of HSA. Our results reveal a significantly stronger binding interaction of SO with the B isoform of HSA (at pH9.0) compared to that with the N isoform (at pH7.4). On the contrary, the PSF:HSA interaction is found to be reasonably insensitive to the aforesaid conformational transition of HSA. However, the probable binding location of both the dye molecules (PSF and SO) is found to be within the protein scaffolds (domain IB). This is further quantified from the modulation of fluorescence decay behavior of the dyes within the protein scaffolds. It is important to note that the rotational relaxation behavior of the protein-bound dyes reveals an unusual 'dip-rise-dip', an observation not reported earlier. Such unusual anisotropy decay is meticulously analyzed by an associated (or multicomponent) exponential decay model which emphasizes on the fractional contributions from differential classes of fluorophore populations characterized by the fast (due to unbound or solvent exposed part of the fluorophore) and slow (due to embedded or bound part) motions, in combination with their different local mobilities. Furthermore, the translational diffusion of the dye molecules in the presence of the protein in different isoforms (N-form or B-form) at a single molecule level is also measured by Fluorescence Correlation Spectroscopy (FCS).
Collapse
Affiliation(s)
- Swagata Sen
- Department of Chemistry, University of Calcutta, Kolkata 700 009, India
| | - Riya Sett
- Department of Chemistry, University of Calcutta, Kolkata 700 009, India
| | - Bijan K Paul
- Department of Chemistry, Mahadevananda Mahavidyalaya, Barrackpore, Kolkata 700 120, India.
| | - Nikhil Guchhait
- Department of Chemistry, University of Calcutta, Kolkata 700 009, India.
| |
Collapse
|
30
|
Zhao L, Liu J, Guo R, Sun Q, Yang H, Li H. Investigating the interaction mechanism of fluorescent whitening agents to human serum albumin using saturation transfer difference-NMR, multi-spectroscopy, and docking studies. RSC Adv 2017. [DOI: 10.1039/c7ra04008c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Characterization of the interaction between two fluorescent whitening agents and human serum albumin: 1H STD-NMR, multi-spectroscopy, and docking studies.
Collapse
Affiliation(s)
- Ludan Zhao
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jiuyang Liu
- School of Life Sciences
- University of Science and Technology of China
- Hefei 230026
- China
| | - Ronghui Guo
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Qiaomei Sun
- College of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Hongqin Yang
- College of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Hui Li
- College of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|