1
|
Tian Z, Ding T, Niu H, Wang T, Zhang Z, Gao J, Kong M, Ming L, Tian Z, Ma J, Luo W, Wang C. 2-Phenylquinoline-polyamine conjugate (QPC): Interaction with bovine serum albumin (BSA). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122875. [PMID: 37276638 DOI: 10.1016/j.saa.2023.122875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
A novel 2-phenylquinoline-polyamine conjugate (QPC) was synthesized and characterized, its interaction with bovine serum albumin (BSA) was evaluated using UV-Vis, fluorescence and circular dichroism (CD) spectroscopy. The results showed that QPC caused a whole train of spectral variation, including enhancement of UV-vis absorption and reduction of fluorescence (FL), indicating QPC-BSA complex formed. FL results showed that the type of FL quenching waslarge static quenching, which was also accompanied with a process of dynamic quenching. Binding constants, thermodynamic parameters and docking results showed that the interaction between QPC and BSA was basically a Van der Waals, hydrogen bond and hydrophobic interaction. Synchronous and 3D-FL analysis revealed that QPC resulted in unapparent conformational alteration of BSA. The docking study suggested QPC was situated at the binding sites II of BSA, and 2-phenylquinoline moiety contributed to the hydrophobic interaction. The results of molecular dynamics revealed QPC altered the conformation of BSA, which showed that the inconsistency between experimental data and theoretical calculation results may be due to the instability of the compound.
Collapse
Affiliation(s)
- Zhiyong Tian
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Tengli Ding
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Hanjing Niu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Ting Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China
| | - Zhongze Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Jinhua Gao
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Ming Kong
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Li Ming
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Zhihui Tian
- The National Supercomputing Center in Zhengzhou, Zhengzhou University, Henan 450001, China
| | - Jing Ma
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Wen Luo
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
2
|
Lu XY, Lou YY, Zhou KL, Jiang SL, Shi JH. Exploring the binding characteristics of febuxostat, an inhibitor of xanthine oxidase with calf thymus DNA: Multi-spectroscopic methodologies and molecular docking. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:605-624. [PMID: 35410587 DOI: 10.1080/15257770.2022.2057534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/01/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
In this paper, the interacting characteristics of febuxostat (FBST), an inhibitor of xanthine oxidase for treating gout patients with hyperuricemia with calf thymus DNA (ctDNA) was investigated through multi-spectroscopic methodologies combined with theoretical calculation for understanding the interacting mode on ctDNA, affinity with ctDNA, interacting forces, as well as the alteration in the conformation of ctDNA after interacting FBST The experimental results demonstrated that interacting FBST with ctDNA formed 1:1 complex, the association constant was 913 M-1 at 298 K, suggesting the affinity of FBST on ctDNA was very weak, the interacting mode of FBST on ctDNA was groove binding, and it inserted into the minor groove with rich A-T region of ctDNA. Based on the results of the thermodynamic analysis and theoretical calculation, it can be inferred that the dominated interacting forces between FBST and ctDNA were van der Waals forces and hydrogen bond. And, interacting FBST with ctDNA was a spontaneous, enthalpy-driven, and exothermic process because of ΔG0 < 0, ΔH0 < 0, and |ΔH0| > T|ΔS0|. The results of the circular dichroism (CD) measurements indicated the conformation of ctDNA was weakly disturbed after interacting with FBST but still maintained B-conform. The studied results offer significant insight into further clarifying whether it has genotoxicity.
Collapse
Affiliation(s)
- Xin-Yan Lu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yan-Yue Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Kai-Li Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Shao-Liang Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
3
|
Guo H, Xie J, Liao T, Tuo X. Exploring the binding mode of donepezil with calf thymus DNA using spectroscopic and molecular docking methods. LUMINESCENCE 2020; 36:35-44. [PMID: 32614132 DOI: 10.1002/bio.3911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 01/21/2023]
Abstract
Donepezil (DNP) is one of approved drugs to treat Alzheimer's disease (AD). However, the potential effect of DNP on DNA is still unclear. Therefore, the interaction of DNP with calf thymus DNA (DNA) was studied in vitro using spectroscopic and molecular docking methods. Steady-state and transient fluorescence experiments showed that there was a clear binding interaction between DNP and DNA, resulting from DNP fluorescence being quenched using DNA. DNP and DNA have one binding site between them, and the binding constant (Kb ) was 0.78 × 104 L·mol-1 at 298 K. In this binding process, hydrophobic force was the main interaction force, because enthalpy change (ΔH) and entropy change (ΔS) of DNP-DNA were 67.92 kJ·mol-1 and 302.96 J·mol-1 ·K-1 , respectively. DNP bound to DNA in a groove-binding mode, which was verified using a competition displacement study and other typical spectroscopic methods. Fourier transform infrared (FTIR) spectrum results showed that DNP interacted with guanine (G) and cytosine (C) bases of DNA. The molecular docking results further supported the results of spectroscopic experiments, and suggested that both Pi-Sigma force and Pi-Alkyl force were the major hydrophobic force functioning between DNP and DNA.
Collapse
Affiliation(s)
- Hui Guo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Jiawen Xie
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Tancong Liao
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Berdnikova DV, Heider J, Ihmels H, Sewald N, Pithan PM. Photoinduced Release of DNA‐Binding Ligands from the [4+4] Dimers of Benzo[ b]quinolizinium and Anthracene Derivatives. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daria V. Berdnikova
- Department of Chemistry-BiologyUniversity of Siegen Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Josef Heider
- Department of Chemistry-BiologyUniversity of Siegen Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Heiko Ihmels
- Department of Chemistry-BiologyUniversity of Siegen Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Norbert Sewald
- Department of Chemistry, Organic and Bioorganic ChemistryBielefeld University PO Box 100121 33501 Bielefeld Germany
| | - Phil M. Pithan
- Department of Chemistry-BiologyUniversity of Siegen Adolf-Reichwein-Str. 2 57068 Siegen Germany
| |
Collapse
|
5
|
Synthesis, spectral characterization, and DNA binding studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff base 2-((1H-1,2,4-triazol-3-ylimino)methyl)-5-methoxyphenol. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.11.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Exploration of association of telmisartan with calf thymus DNA using a series of spectroscopic methodologies and theoretical calculation. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Shi JH, Pan DQ, Zhou KL, Lou YY. Exploring the binding interaction between herring sperm DNA and sunitinib: insights from spectroscopic and molecular docking approaches. J Biomol Struct Dyn 2018; 37:837-845. [DOI: 10.1080/07391102.2018.1445033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dong-Qi Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Kai-Li Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yan-Yue Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
8
|
Sex Differences in Spontaneous Degranulation Activity of Intrahepatic Natural Killer Cells during Chronic Hepatitis B: Association with Estradiol Levels. Mediators Inflamm 2017; 2017:3214917. [PMID: 28469292 PMCID: PMC5392396 DOI: 10.1155/2017/3214917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/25/2017] [Accepted: 03/02/2017] [Indexed: 01/31/2023] Open
Abstract
Major sex differences are observed in the prevalence, intensity, and severity of hepatitis B virus (HBV) infection. Here, we investigated degranulation activity of circulating and intrahepatic natural killer (NK) cells from HBV and HCV chronically infected patients before any treatment (n = 125). The frequency of CD107+ NK cells in the female liver was significantly higher compared to that in males during chronic HBV infection (p = 0.002) and correlated with the plasma levels of estradiol (correlation coefficient r = 0.634; p < 0.0001). Our results clearly show sex differences in degranulation activity of intrahepatic NK cells of HBV-infected patients. This probably contributes to the ability of females to better deal with HBV disease.
Collapse
|