1
|
Song W, Yang H, Wang Y, Chen S, Zhong W, Wang Q, Ding W, Xu G, Meng C, Liang Y, Chen Z, Cao S, Wei L, Li F. Glutathione-Sensitive Photosensitizer-Drug Conjugates Target the Mitochondria to Overcome Multi-Drug Resistance in Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307765. [PMID: 38898730 PMCID: PMC11321625 DOI: 10.1002/advs.202307765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/11/2024] [Indexed: 06/21/2024]
Abstract
Multi-drug resistance (MDR) is a major cause of cancer therapy failure. Photodynamic therapy (PDT) is a promising modality that can circumvent MDR and synergize with chemotherapies, based on the generation of reactive oxygen species (ROS) by photosensitizers. However, overproduction of glutathione (GSH) by cancer cells scavenges ROS and restricts the efficacy of PDT. Additionally, side effects on normal tissues are unavoidable after PDT treatment. Here, to develop organic systems that deliver effective anticancer PDT and chemotherapy simultaneously with very little side effects, three GSH-sensitive photosensitizer-drug conjugates (CyR-SS-L) are designed and synthesized. CyR-SS-L localized in the mitochondria then is cleaved into CyR-SG and SG-L parts by reacting with and consuming high levels of intracellular GSH. Notably, CyR-SG generates high levels of ROS in tumor cells instead of normal cells and be exploited for PDT and the SG-L part is used for chemotherapy. CyR-SS-L inhibits better MDR cancer tumor inhibitory activity than indocyanine green, a photosensitizer (PS) used for PDT in clinical applications. The results appear to be the first to show that CyR-SS-L may be used as an alternative PDT agent to be more effective against MDR cancers without obvious damaging normal cells by the combination of PDT, GSH depletion, and chemotherapy.
Collapse
Affiliation(s)
- Weiguo Song
- Department of Medicinal ChemistrySchool of PharmacyShandong UniversityJinan250012China
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Hekai Yang
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Ying Wang
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Shuzhen Chen
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Wenda Zhong
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Qian Wang
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Wenshuo Ding
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Guangzhao Xu
- Weifang Synovtech New Material Technology CO., LTD.Weifang262700China
- Harway Pharma Co., Ltd.Dongying254753China
| | - Chen Meng
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Ying Liang
- Department of General PracticeThe First Affiliated Hospital of Shandong First Medical UniversityJinan250013China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Shuhua Cao
- College of ChemistryChemical and Environmental EngineeringWeifang UniversityWeifang261061China
| | - Liuya Wei
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Fahui Li
- School of PharmacyWeifang Medical UniversityWeifang261053China
| |
Collapse
|
2
|
Kim TE, Chang JE. Recent Studies in Photodynamic Therapy for Cancer Treatment: From Basic Research to Clinical Trials. Pharmaceutics 2023; 15:2257. [PMID: 37765226 PMCID: PMC10535460 DOI: 10.3390/pharmaceutics15092257] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Photodynamic therapy (PDT) is an emerging and less invasive treatment modality for various types of cancer. This review provides an overview of recent trends in PDT research, ranging from basic research to ongoing clinical trials, focusing on different cancer types. Lung cancer, head and neck cancer, non-melanoma skin cancer, prostate cancer, and breast cancer are discussed in this context. In lung cancer, porfimer sodium, chlorin e6, and verteporfin have shown promising results in preclinical studies and clinical trials. For head and neck cancer, PDT has demonstrated effectiveness as an adjuvant treatment after surgery. PDT with temoporfin, redaporfin, photochlor, and IR700 shows potential in early stage larynx cancer and recurrent head and neck carcinoma. Non-melanoma skin cancer has been effectively treated with PDT using methyl aminolevulinate and 5-aminolevulinic acid. In prostate cancer and breast cancer, PDT research is focused on developing targeted photosensitizers to improve tumor-specific uptake and treatment response. In conclusion, PDT continues to evolve as a promising cancer treatment strategy, with ongoing research spanning from fundamental investigations to clinical trials, exploring various photosensitizers and treatment combinations. This review sheds light on the recent advancements in PDT for cancer therapy and highlights its potential for personalized and targeted treatments.
Collapse
Affiliation(s)
| | - Ji-Eun Chang
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
3
|
Liang Y, Jiang Q, Gong Y, Yu Y, Zou H, Zhao J, Zhang T, Zhang J. In vitro and in silico assessment of endocrine disrupting effects of food contaminants through pregnane X receptor. Food Chem Toxicol 2023; 175:113711. [PMID: 36893891 DOI: 10.1016/j.fct.2023.113711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
As a promiscuous xenobiotic receptor, pregnane X receptor (PXR) has been confirmed to participate in numerous physiological process. In addition to the conventional estrogen/androgen receptor, PXR also serves as an alternative target for environmental chemical contaminants. In this work, the PXR-mediated endocrine disrupting effects of typical food contaminants were explored. Firstly, the time-resolved fluorescence resonance energy transfer assays confirmed the PXR binding affinities of 2,2',4,4',5,5'-hexachlorobiphenyl, bis(2-ethylhexyl) phthalate, dibutyl phthalate, chlorpyrifos, bisphenol A, and zearalenone, with IC50 values ranging from 1.88 to 4284.00 nM. Then their PXR agonist activities were assessed by PXR-mediated CYP3A4 reporter gene assays. Subsequently, the regulation of gene expressions of PXR and its targets CYP3A4, UGT1A1, and MDR1 by these compounds was further investigated. Intriguingly, all the tested compounds interfered with these gene expressions, confirming their endocrine disrupting effects via PXR-mediated signaling. The compound-PXR-LBD binding interactions were explored by molecular docking and molecular dynamics simulations to unravel the structural basis of their PXR binding capacities. The weak intermolecular interactions are key players in stabilizing these compound-PXR-LBD complexes. During the simulation process, 2,2',4,4',5,5'-hexachlorobiphenyl remained stable while the other 5 compounds underwent relatively severe disturbances. In conclusion, these food contaminants might exhibit endocrine disrupting effects via PXR.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
4
|
Lapcik P, Pospisilova A, Janacova L, Grell P, Fabian P, Bouchal P. How Different Are the Molecular Mechanisms of Nodal and Distant Metastasis in Luminal A Breast Cancer? Cancers (Basel) 2020; 12:E2638. [PMID: 32947901 PMCID: PMC7563588 DOI: 10.3390/cancers12092638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 11/17/2022] Open
Abstract
Lymph node status is one of the best prognostic factors in breast cancer, however, its association with distant metastasis is not straightforward. Here we compare molecular mechanisms of nodal and distant metastasis in molecular subtypes of breast cancer, with major focus on luminal A patients. We analyze a new cohort of 706 patients (MMCI_706) as well as an independent cohort of 836 primary tumors with full gene expression information (SUPERTAM_HGU133A). We evaluate the risk of distant metastasis, analyze targetable molecular mechanisms in Gene Set Enrichment Analysis and identify relevant inhibitors. Lymph node positivity is generally associated with NF-κB and Src pathways and is related to high risk (OR: 5.062 and 2.401 in MMCI_706 and SUPERTAM_HGU133A, respectively, p < 0.05) of distant metastasis in luminal A patients. However, a part (≤15%) of lymph node negative tumors at the diagnosis develop the distant metastasis which is related to cell proliferation control and thrombolysis. Distant metastasis of lymph node positive patients is mostly associated with immune response. These pro-metastatic mechanisms further vary in other molecular subtypes. Our data indicate that the management of breast cancer and prevention of distant metastasis requires stratified approach based on targeted strategies.
Collapse
Affiliation(s)
- Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (P.L.); (A.P.); (L.J.)
| | - Anna Pospisilova
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (P.L.); (A.P.); (L.J.)
| | - Lucia Janacova
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (P.L.); (A.P.); (L.J.)
| | - Peter Grell
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic;
| | - Pavel Fabian
- Department of Oncological Pathology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic;
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (P.L.); (A.P.); (L.J.)
| |
Collapse
|
5
|
Chekwube AE, George B, Abrahamse H. Phototoxic effectiveness of zinc phthalocyanine tetrasulfonic acid on MCF-7 cells with overexpressed P-glycoprotein. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111811. [PMID: 32028187 DOI: 10.1016/j.jphotobiol.2020.111811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 01/12/2023]
Abstract
The development of multidrug resistance is often associated with the over-expression of P-glycoprotein (P-gp). This protein prevents drug accumulation and extrudes them out of the cell before they reach the intended target. The aim of this study was to develop an in vitro MCF-7 cell line with increased expression of P-gp and test the phototoxicity of a novel photoactivated zinc phthalocyanine tetrasulfonic acid (ZnPcS4) on these cells. The over-expressed P-gp MCF-7 cells (MCF-7/DOX) were developed from wildtype (WT) MCF-7 cells by a stepwise continuous exposure of the WT cells to different concentrations of Doxorubicin (DOX) (0.1 - 1 μM) over a period of 4 months. The P-gp expression was measured using flow cytometry, immunofluorescence and enzyme immunoassay. To verify whether zinc phthalocyanine-mediated photodynamic therapy (ZnPcS4 - PDT) is effective in MCF-7/DOX, we studied the subcellular localization, phototoxicity and nuclear damage. The flow cytometry result showed two distinct peaks of P-gp positive and negative expression in MCF-7/DOX cell population, which correlates with the ELISA-based assay (p˂0.001). The ME16C (Normal breast cells) was used as control. The localization studies showed that ZnPcS4 have greater affinity for lysosome than mitochondria. Phototoxicity results indicated that photoactivated zinc phthalocyanine decreased the cell proliferation and viability as the drug and laser light dosages increased to 16 μM and 20 J/cm2 respectively. PDT-induced cytotoxicity using lactose dehydrogenase (LDH) enzyme leakage as measure did not increase likewise. The ZnPcS4-induced PDT was less effective for MCF-7/DOX cells which could be attributed to decreased retention of ZnPcS4 in major cellular organelles due to the presence of increased drug efflux P-gp. The current findings suggest that, increased P-gp expression, a characteristic of multidrug resistance together with other related intrinsic mechanisms might contribute to render MCF-7/DOX cells less sensitive to ZnPcS4-induced phototoxicity.
Collapse
Affiliation(s)
- Aniogo Eric Chekwube
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Blassan George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
6
|
Jose S, Cinu TA, Sebastian R, Shoja MH, Aleykutty NA, Durazzo A, Lucarini M, Santini A, Souto EB. Transferrin-Conjugated Docetaxel-PLGA Nanoparticles for Tumor Targeting: Influence on MCF-7 Cell Cycle. Polymers (Basel) 2019; 11:polym11111905. [PMID: 31752417 PMCID: PMC6918445 DOI: 10.3390/polym11111905] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 01/09/2023] Open
Abstract
Targeted drug delivery systems are commonly used to improve the therapeutic index of anti-cancer drugs by increasing their selectivity and reducing systemic distribution and toxicity. Ligand-conjugated nanoparticles (NPs) can be effectively applied for active chemotherapeutic targeting to overexpressed receptors of tumor cells. In this study, transferrin (Tf) was successfully conjugated with poly-l-lactic-co-glycolic acid (PLGA) using ethylene diamine confirmed by NMR, for the loading of docetaxel trihydrate (DCT) into PLGA nanoparticles (NPs). The DCT-loaded Tf-conjugated PLGA NPs were produced by an emulsion-solvent evaporation technique, and a 32 full factorial design was used to optimize the nanoparticle formulations. The DCT-loaded Tf-conjugated PLGA NPs were characterized by FTIR spectroscopy, differential scanning calorimetry, powder X-ray diffraction (PXRD), TEM, particle size, and zeta potential analysis. In vitro release kinetics confirmed that release of DCT from the designed formulations followed a zero-order kinetics and a diffusion controlled non-Fickian release profile. The DCT-loaded Tf-conjugated PLGA NPs were evaluated in vitro in MCF-7 cells for bioactivity assessment. Cytotoxicity studies confirmed that the Tf-conjugated PLGA NPs were more active than the non-conjugated counterparts. Cell uptake studies re-confirmed the ligand-mediated active targeting of the formulated NPs. From the cell cycle analysis, the anti-cancer activity of DCT-loaded Tf-conjugated PLGA NPs was shown to occur by arresting the G2/M phase.
Collapse
Affiliation(s)
- Sajan Jose
- Department of Pharmaceutical Sciences, Mahatma Gandhi University, Cheruvandoor Campus, Ettumanoor 686631, India; (T.A.C.); (R.S.)
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (S.J.); (A.S.); (E.B.S.); Tel.: +91-9447600750 (S.J.); +39-081-253-9317 (A.S.); +351-239-488-400 (E.B.S.)
| | - Thomas A. Cinu
- Department of Pharmaceutical Sciences, Mahatma Gandhi University, Cheruvandoor Campus, Ettumanoor 686631, India; (T.A.C.); (R.S.)
| | - Rosmy Sebastian
- Department of Pharmaceutical Sciences, Mahatma Gandhi University, Cheruvandoor Campus, Ettumanoor 686631, India; (T.A.C.); (R.S.)
| | - M. H. Shoja
- College of Pharmaceutical Sciences, Manipal University, Manipal 576104, India;
| | | | - Alessandra Durazzo
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
- Correspondence: (S.J.); (A.S.); (E.B.S.); Tel.: +91-9447600750 (S.J.); +39-081-253-9317 (A.S.); +351-239-488-400 (E.B.S.)
| | - Eliana B. Souto
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
- Correspondence: (S.J.); (A.S.); (E.B.S.); Tel.: +91-9447600750 (S.J.); +39-081-253-9317 (A.S.); +351-239-488-400 (E.B.S.)
| |
Collapse
|
7
|
Aniogo EC, Plackal Adimuriyil George B, Abrahamse H. The role of photodynamic therapy on multidrug resistant breast cancer. Cancer Cell Int 2019; 19:91. [PMID: 31007609 PMCID: PMC6458738 DOI: 10.1186/s12935-019-0815-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/05/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer heterogeneity allows cells with different phenotypes to co-exist, contributing to treatment failure and development of drug resistance. In addition, abnormal signal transduction and dysfunctional DNA repair genes are common features with breast cancer resistance. Chemo-resistance of breast cancer associated with multidrug resistance events utilizes ATP-binding cassette (ABC) efflux transporters to decrease drug intracellular concentration. Photodynamic therapy (PDT) is the treatment that involves a combination of a photosensitizer (PS), light and molecular oxygen to induce cell death. This treatment modality has been considered as a possible approach in combatting multidrug resistance phenomenon although its therapeutic potential towards chemo-resistance is still unclear. Attempts to minimize the impact of efflux transporters on drug resistance suggested concurrent use of chemotherapy agents, nanotechnology, endolysosomal release of drug by photochemical internalization and the use of structurally related compound inhibitors to block the transport function of the multidrug resistant transporters. In this review, we briefly summarize the role of membrane ABC efflux transporters in therapeutic outcomes and highlight research findings related to PDT and its applications on breast cancer with multidrug resistance phenotype. With the development of an ideal PS for photodynamic cancer treatment, it is possible that light activation may be used not only to sensitize the tumour but also to enable release of PS into the cytosol and as such bypass efflux membrane proteins and inhibit escape pathways that may lead to resistance.
Collapse
Affiliation(s)
- Eric Chekwube Aniogo
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028 South Africa
| | - Blassan Plackal Adimuriyil George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028 South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028 South Africa
| |
Collapse
|
8
|
Fang L, Sheng H, Wan D, Zhu C, Jiang R, Sun X, Feng J. Prognostic role of multidrug resistance-associated protein 1 expression and platelet count in operable non-small cell lung cancer. Oncol Lett 2018; 16:1123-1132. [PMID: 30061938 PMCID: PMC6063026 DOI: 10.3892/ol.2018.8763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
The overall survival rate of patients with non-small cell lung cancer (NSCLC) following resection remains poor due to the high rates of recurrence and metastasis. The investigation of novel biomarkers is clinically necessary to improve treatment strategies. Multidrug resistance-associated protein 1 (MRP1) and platelet count are linked to a poor prognosis in various types of cancer. However, it is unknown whether MRP1 or platelet count is a suitable prognostic indicator of NSCLC. In the present study, 427 patients with operable NSCLC were enlisted. The association of MRP1 expression and platelet count with clinical pathological factors and patient outcome was evaluated. MRP1 expression was found to be significantly associated with sex, histological type and tumor differentiation, while platelet count was significantly associated with smoking behavior, histological type and clinical stage. Platelet count was significantly higher in patients with negative MRP1 expression than in those with positive MRP1 expression. Survival analysis indicated that there was no association between MRP1 expression and disease-free survival (DFS) or overall survival (OS) time. In the patients with no lymph node metastasis, the OS time was significantly longer in patients with positive MRP1 expression than in those with negative expression. However, in the patients with lymph node metastasis, the DFS time was significantly shorter in patients with positive MRP1 expression than in those with negative expression. There was an association between the platelet count and DFS and OS times, which were significantly longer in patients with a normal platelet count than in those with thrombocytosis. In conclusion, MRP1 expression and platelet count are valuable independent prognostic biomarkers for survival in operable NSCLC.
Collapse
Affiliation(s)
- Linming Fang
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Huaying Sheng
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Danying Wan
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Chihong Zhu
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Ruibin Jiang
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiaojiang Sun
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, Zhejiang 310022, P.R. China
| | - Jianguo Feng
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
9
|
Xutao G, PengCheng S, Yin L, Huijuan D, Yan W, Haiqing Z, Bing X. BCL11A and MDR1 expressions have prognostic impact in patients with acute myeloid leukemia treated with chemotherapy. Pharmacogenomics 2018; 19:343-348. [PMID: 29469608 DOI: 10.2217/pgs-2017-0157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignant disease. Many different genetic factors can affect a patient’s clinical outcome. Aim: The aim of this study was to assess the expression of BCL11A and MDR1 in AML patients, and its relation to clinical outcome. Materials & methods: We grouped the 142 patients by the levels of BCL11A and MDR1 and identified three different subgroups: high BCL11A and high MDR1 (n = 47), low BCL11A and low MDR1 (n = 47) and high BCL11A alone or high MDR1 alone (n = 48). Results: The results showed that AML patients with high BCL11A and MDR1 expression had the lowest complete remission and highest relapse rate. The median overall survival of the high BCL11A and high MDR1 group was the shortest among the three groups. With regards to overall survival, there were also significant differences among the groups (p < 0.001). Conclusion: High BCL11A and MDR1 expression was associated with a poor response to chemotherapy, and identified a subset of AML patients with a very poor prognosis.
Collapse
Affiliation(s)
- Guo Xutao
- Department of Hematology, Nanfang Hospital, Southern Medical University, 510515, Guan Zhou City, PR China
| | - Shi PengCheng
- Department of Hematology, Nanfang Hospital, Southern Medical University, 510515, Guan Zhou City, PR China
| | - Li Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, 510515, Guan Zhou City, PR China
| | - Dong Huijuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, 510515, Guan Zhou City, PR China
| | - Wang Yan
- Department of Hematology, Nanfang Hospital, Southern Medical University, 510515, Guan Zhou City, PR China
| | - Zheng Haiqing
- Department of Hematology, Nanfang Hospital, Southern Medical University, 510515, Guan Zhou City, PR China
| | - Xu Bing
- Department of hematology The First Affiliated Hospital of Xiamen University, 361001, XiaMen City, PR China
| |
Collapse
|