1
|
Li JX, Lu N, Tian R. (-)-Epigallocatechin gallate as an inhibitor of hemoglobin-catalyzed lipid oxidation: molecular mechanism of action and nutritional application. Toxicol In Vitro 2024; 99:105871. [PMID: 38851603 DOI: 10.1016/j.tiv.2024.105871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Hemoglobin (Hb) is effective inducer for lipid oxidation and protein-polyphenol interaction is a well-known phenomenon. The effects of the interaction of (-)-epigallocatechin gallate (EGCG) with Hb on lipid oxidation were rarely elucidated. The detailed interaction between bovine Hb and EGCG was systematically explored by experimental and theoretical approaches, to illustrate the molecular mechanisms by which EGCG influenced the redox states and stability of Hb. EGCG would bind to the central pocket of protein with one binding site to form Hb-EGCG complex. The binding constant for Hb-EGCG complex was 0.34 × 104 M-1 at 277 K, and thermodynamic parameters (ΔH > 0, ΔS > 0 and ΔG < 0) revealed the participation of hydrophobic forces in the binding process. The binding of EGCG would increase the compactness of protein molecule and diminish the crevice near the heme cavity, which was responsible for the reduction of met-Hb to oxy-Hb and inhibition of hemin release from met-Hb. Moreover, EGCG efficiently suppressed Hb-caused lipid oxidation in liposomes and cod muscles, which was possibly attributed to the reduction to oxy-Hb state and declined hemin dissociation from met-Hb. Altogether, our results provide significant insights into the binding of EGCG to redox-active Hb, which represents a novel mechanism for the anti-oxidant capacity of EGCG in human health and is favorable to the applications of natural EGCG in the good quality of Hb-containing products.
Collapse
Affiliation(s)
- Jia-Xin Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Naihao Lu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Rong Tian
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
2
|
Mohammadi MA, Shareghi B, Farhadian S, Uversky VN. Investigating the effect of pH on the interaction of cypermethrin with human serum albumin: Insights from spectroscopic and molecular dynamics simulation studies. Int J Biol Macromol 2024; 257:128459. [PMID: 38035951 DOI: 10.1016/j.ijbiomac.2023.128459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
To efficiently combat the negative consequences of the utilization of pesticides and hazardous substances with biomolecules, it is crucial to comprehend the features of the corresponding compounds. In this study, interactions between cypermethrin (CYP) and HSA at neutral and acidic pH were investigated using a set of spectroscopic and computational tools, such as UV/VIS's absorption spectroscopy, fluorescence, Fourier-transform infrared (FTIR) spectroscopy, molecular docking, and molecular dynamics. Furthermore, the effect of CYP on the HSA thermal stability was investigated. The increase in the CYP concentration at acidic and neutral pH resulted in static HSA fluorescence quenching. In the interaction between HSA and CYP at both pH, increasing the temperature led to a decrease in the Stern-Volmer quenching constant and the binding constant. We also revealed that with increasing CYP concentration, the melting temperature of HSA increases at both pH values.
Collapse
Affiliation(s)
- Mohammad Ali Mohammadi
- Department of Biology, Faculty of Science, Shahr-e Kord University, Shahr-e Kord, P. O. Box.115, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahr-e Kord University, Shahr-e Kord, P. O. Box.115, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahr-e Kord University, Shahr-e Kord, P. O. Box.115, Iran
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
3
|
Taniguchi M, LaRocca CA, Bernat JD, Lindsey JS. Digital Database of Absorption Spectra of Diverse Flavonoids Enables Structural Comparisons and Quantitative Evaluations. JOURNAL OF NATURAL PRODUCTS 2023; 86:1087-1119. [PMID: 36848595 DOI: 10.1021/acs.jnatprod.2c00720] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flavonoids play diverse roles in plants, comprise a non-negligible fraction of net primary photosynthetic production, and impart beneficial effects in human health from a plant-based diet. Absorption spectroscopy is an essential tool for quantitation of flavonoids isolated from complex plant extracts. The absorption spectra of flavonoids typically consist of two major bands, band I (300-380 nm) and band II (240-295 nm), where the former engenders a yellow color; in some flavonoids the absorption tails to 400-450 nm. The absorption spectra of 177 flavonoids and analogues of natural or synthetic origin have been assembled, including molar absorption coefficients (109 from the literature, 68 measured here). The spectral data are in digital form and can be viewed and accessed at http://www.photochemcad.com. The database enables comparison of the absorption spectral features of 12 distinct types of flavonoids including flavan-3-ols (e.g., catechin, epigallocatechin), flavanones (e.g., hesperidin, naringin), 3-hydroxyflavanones (e.g., taxifolin, silybin), isoflavones (e.g., daidzein, genistein), flavones (e.g., diosmin, luteolin), and flavonols (e.g., fisetin, myricetin). The structural features that give rise to shifts in wavelength and intensity are delineated. The availability of digital absorption spectra for diverse flavonoids facilitates analysis and quantitation of these valuable plant secondary metabolites. Four examples are provided of calculations─multicomponent analysis, solar ultraviolet photoprotection, sun protection factor (SPF), and Förster resonance energy transfer (FRET)─for which the spectra and accompanying molar absorption coefficients are sine qua non.
Collapse
Affiliation(s)
- Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Connor A LaRocca
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jake D Bernat
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
4
|
Tian R, Zhou L, Lu N. Binding of Quercetin to Hemoglobin Reduced Hemin Release and Lipid Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12925-12934. [PMID: 36169386 DOI: 10.1021/acs.jafc.2c04129] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The interactions between quercetin and bovine (or human) hemoglobin (Hb) were systematically investigated by fluorescence, UV-vis absorption spectroscopy, and molecular docking to demonstrate the structural mechanism by which quercetin affected the Hb redox state and stability. Quercetin could interact with the central cavity of the Hb molecule with one binding site to generate an Hb-quercetin complex, and the hydrophobic interaction played an important role in the formation of the complex. The binding constant for the Hb-quercetin complex at 298 K was observed to be 1.25 × 104 M-1. In addition, quercetin effectively inhibited Hb-induced lipid oxidation in liposomes or washed muscles, which was ascribed to the conversion to oxy-Hb and decreased hemin dissociation from met-Hb. Consistent with its lower abilities to bind Hb and scavenge free radicals, rutin (i.e., quercetin-3-rhamnosylglucsoside) did not significantly influence the redox state of Hb nor reduce hemin release from Hb, and subsequently, it less effectively inhibited Hb-induced lipid oxidation than quercetin. Altogether, the results herein provide novel insights into the antioxidant mechanism for quercetin and are beneficial to the application of natural quercetin in Hb-containing foods.
Collapse
Affiliation(s)
- Rong Tian
- College of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang 330022, China
| | - Lan Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang 330022, China
| | - Naihao Lu
- College of Chemistry and Chemical Engineering, Jiangxi Key Laboratory of Green Chemistry, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
5
|
Ma X, Sun Y, Pan D, Cao J, Dang Y. Structural characterization and stability analysis of phosphorylated nitrosohemoglobin. Food Chem 2022; 373:131475. [PMID: 34763930 DOI: 10.1016/j.foodchem.2021.131475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/18/2021] [Accepted: 10/24/2021] [Indexed: 11/04/2022]
Abstract
Phosphorylation modification by sodium tripolyphosphate (STP) on nitrosohemoglobin (NO-Hb) and its effect on the protein structure and stability were studied. Phosphate groups were found to bridge to NO-Hb via C-O-P bonds through serine and tyrosine residues. Hydrothermal treatment with STP maintained the α-helix stability of NO-Hb, and this change in secondary structure improved the proteins stability. Compared to NO-Hb, phosphorylated NO-Hb (P-NO-Hb) was more stable with respect to light (outdoor light, indoor light, and dark conditions), oxidant (hydrogen peroxide), high temperature, and non-neutral pH. The absorbance of P-NO-Hb was nearly twice those of Hb and NO-Hb (P < 0.05), and the absorbance of P-NO-Hb decreased more slowly over time than those of Hb and NO-Hb. The results confirm that the presence of phosphate groups can increase the stability of Hb through structural changes.
Collapse
Affiliation(s)
- Xiaoqing Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China.
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, PR China
| |
Collapse
|
6
|
Hu Q, Chen M, Yan M, Wang P, Lei H, Xue H, Ma Q. Comprehensive analysis of Sini decoction and investigation of acid-base self-assembled complexes using cold spray ionization mass spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Baruah K, Haque M, Langbang L, Das S, Aguan K, Singha Roy A. Ocimum sanctum mediated green synthesis of silver nanoparticles: A biophysical study towards lysozyme binding and anti-bacterial activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Evaluation of the binding behavior of olmutinib (HM61713) with model transport protein: Insights from spectroscopic and molecular docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129024] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Liu R, Wu L, Feng H, Tang F, Si H, Yao X, He W. The study on the interactions of two 1,2,3-triazoles with several biological macromolecules by multiple spectroscopic methodologies and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118795. [PMID: 32814256 DOI: 10.1016/j.saa.2020.118795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/18/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
1-(4-chlorophenyl)-5-phenyl-1H-1,2,3-triazole (CPTC) and 5-(3-chlorophenyl) -1-phenyl-1H-1,2,3-triazole (PCTA) are two new derivatives of 1,2,3-triazole. Their structural and spectral properties were characterized by density functional theory calculations (DFT). The binding properties of CPTC or PCTA with several typical biomacromolecules such as human serum albumin (HSA), bovine hemoglobin (BHb), human immunoglobulin (HIgG) or DNA were investigated by molecular docking and multiple spectroscopic methodologies. The different parameters including binding constants and thermodynamic parameters for CPTC/PCTA-HSA/BHb/HIgG/DNA systems were obtained based on various fluorescence enhancement or quenching mechanisms. The results of binding constants indicated that there were the strong interactions between two triazoles and four biological macromolecules due to the higher order of magnitude between 103 and 105. The values of thermodynamic parameters revealed that the binding forces for these systems are mainly hydrophobic interactions, electrostatic force, or hydrogen bond, respectively, which are in agreement with the results of molecular docking to a certain extent. Moreover, the information from synchronous, 3D fluorescence and UV-Vis spectroscopies proved that two compounds CPTC and PCTA could affect the microenvironment of amino acids residues of three kinds of proteins. Based on the above experimental results, a comparison of the interaction mechanisms for CPTC/PCTA-proteins/DNA systems have been performed in view of their different molecular structures, which is beneficial for the further research in order to design them as the novel drugs.
Collapse
Affiliation(s)
- Rongqiang Liu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China
| | - Luyong Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China
| | - Huajie Feng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China
| | - Fengqi Tang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China
| | - Hongzong Si
- Institute for Computational Science and Engineering, Qingdao University, 266071 Qingdao, China
| | - Xiaojun Yao
- College of Chemical and Chemical Engineering, Lanzhou University, 730000 Lanzhou, China
| | - Wenying He
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, 571158 Haikou, China.
| |
Collapse
|
10
|
Konar M, Sahoo H. Exploring the chemistry behind protein-glycosaminoglycan conjugate: A steady-state and kinetic spectroscopy based approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118726. [PMID: 32745937 DOI: 10.1016/j.saa.2020.118726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The impact of glycosaminoglycan (chondroitin sulphate, CS) on bone morphogenetic protein - 2 (BMP - 2) structure, stability (thermal and chemical), association kinetics and conformation was monitored by multiple spectroscopic techniques (UV-Visible, fluorescence and circular dichroism). The absorbance in peptide region and fluorescence intensity of BMP - 2 was quenched in presence of CS; thus, confirming the formation of a ground-state complex. As there was an increase in Stern-Volmer constant observed as a function of temperature, idea of dynamic quenching was established. However, the negligible changes in lifetime indicated static quenching; thus, making the process a combination of static-dynamic quenching. Basically, the protein - glycan interaction was driven by entropy of the system and mediated by hydrophobic interactions. Secondary structure (CD spectroscopy) of native protein was significantly affected (intensity became more negative) in presence of CS, thus, introducing more compactness in the protein. CS infused thermal and chemical stability into BMP - 2 via alteration in its conformation. The rate of association was inversely proportional to concentration of quencher (CS), which confirmed the correlation between large size (~ 5 times the size of protein) and structural complexity of CS with fewer binding sites present in BMP - 2. The rate of association in presence of urea, suggested a decrease in association rate as a function of urea concentration for 15 μM CS. Experimental evidences suggested an interaction between protein and glycan mediated by hydrophobic interactions, which deciphers structural, thermal and chemical stability into protein.
Collapse
Affiliation(s)
- Monidipa Konar
- Biophysical Chemistry Lab, Department of Chemistry, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Harekrushna Sahoo
- Biophysical Chemistry Lab, Department of Chemistry, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
11
|
Bovine hemoglobin adsorption onto modified silica nanoparticles: Multi-spectroscopic measurements based on kinetics and protein conformation. Int J Biol Macromol 2020; 155:208-215. [DOI: 10.1016/j.ijbiomac.2020.03.211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/23/2022]
|
12
|
Saha S, Chowdhury J. Understanding the structure and conformation of bovine hemoglobin in presence of the drug hydroxyurea: multi-spectroscopic studies supported by docking and molecular dynamics simulation. J Biomol Struct Dyn 2020; 39:3533-3547. [PMID: 32397828 DOI: 10.1080/07391102.2020.1766568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Binding interaction between the small antitumor drug Hydroxyurea (HU) and Bovine Hemoglobin (BHb) has been explored in details from multi-spectroscopic and computational studies. The formation of ground state complex between BHb and HU has been suggested from the electronic UV-Vis and steady-state fluorescence spectroscopic studies. The quenching in fluorescence of BHb in presence of HU at varied concentrations has been analyzed from the SV plots. Static type of quenching has been suggested from time-resolved fluorescence spectroscopic studies. Binding parameters associated with the BHb-HU complex have also been estimated from the temperature dependent fluorescence spectroscopic studies. Alterations in the micro-environment of the Tyr and Trp residues of BHb in presence of HU have been observed from the synchronous fluorescence measurement. The result obtained from CD spectroscopic measurements signify partial unfolding in the secondary structure of BHb due to binding with HU molecule. The experimental observations are supported by theoretical studies. Molecular docking and molecular dynamics simulations have been performed to investigate the structural stability and compactness of BHb in the binding interaction between BHb and HU. The interaction of BHb with HU is expected to provide fundamental insights towards understanding the therapeutic effectiveness of HU upon interaction with BHb used in chemo-, radio therpeutic procedures and also in the treatment of SCD.
Collapse
Affiliation(s)
- Saumen Saha
- Department of Physics, Jadavpur University, Kolkata, India
| | | |
Collapse
|
13
|
Sarmah S, Pahari S, Das S, Belwal VK, Jana M, Singha Roy A. Non-enzymatic glycation of human serum albumin modulates its binding efficacy towards bioactive flavonoid chrysin: A detailed study using multi-spectroscopic and computational methods. J Biomol Struct Dyn 2020; 39:476-492. [PMID: 31900044 DOI: 10.1080/07391102.2019.1711196] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The non-enzymatic glycation of plasma proteins by reducing sugars have important consequences on the conformational and functional properties of protein. The formation of advanced glycation end products (AGEs) is responsible for cell death and other pathological conditions. We have synthesized the glycated human serum albumin (gHSA) and characterized the same by using differential spectroscopic measurements. The aim of the present study is to determine the effect of glycation on the binding of human serum albumin (HSA) with bioactive flavonoid chrysin, which possesses anti-cancer, anti-inflammatory and anti-oxidant activities. The interaction of chrysin with HSA and gHSA was studied using multi-spectroscopic, molecular docking and molecular dynamics (MD) simulation techniques. Chrysin quenched the intrinsic fluorescence of both HSA and gHSA by static quenching mechanism. The value of the binding constant (Kb) for the interaction of HSA-chrysin complex (4.779 ± 0.623 × 105 M-1 at 300 K) was found to be higher than that of gHSA-chrysin complex (2.206 ± 0.234 × 105 M-1 at 300 K). Hence, non-enzymatic glycation of HSA significantly reduced its binding affinity towards chrysin. The % α-helicity of HSA was found to get enhanced upon binding with chrysin, and minimal changes were observed for the gHSA-chrysin complex. Site marker probe studies indicated that chrysin binds to subdomain IIA and IIIA of both HSA and gHSA. The results from molecular docking and MD simulation studies correlated well with the experimental findings. Electrostatic interactions followed by hydrogen bonding and hydrophobic interactions played major roles in the binding process. These observations may have some useful insights into the field of pharmaceutics.
Collapse
Affiliation(s)
- Sharat Sarmah
- Department of Chemistry, National Institute of Technology, Meghalaya, Shillong, India
| | - Somdev Pahari
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela, India
| | - Sourav Das
- Department of Chemistry, National Institute of Technology, Meghalaya, Shillong, India
| | - Vinay Kumar Belwal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Madhurima Jana
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology, Meghalaya, Shillong, India
| |
Collapse
|
14
|
Liu F, Zhang Y, Yu Q, Shen Y, Zheng Z, Cheng J, Zhang W, Ye Y. Exploration of the binding between ellagic acid, a potentially risky food additive, and bovine serum albumin. Food Chem Toxicol 2019; 134:110867. [PMID: 31586655 DOI: 10.1016/j.fct.2019.110867] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/17/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Ellagic acid (EA), a natural plant polyphenol, is usually used as a functional additive in variety of health foods. However, the potential toxicity of EA to human health should be paid enough attention. To clarify its biological toxicity in vivo, this study explored the binding mechanism of EA with bovine serum albumin (BSA) by means of spectroscopic approaches and molecular docking insimulative physiological conditions. The results showed that the mixture of BSA with EA could spontaneously cause the formation of BSA-EA complex through electrostatic interaction under simulative physiological conditions (0.01 mol·L-1Tris-HCl, 0.015 mol L-1 NaCl, pH = 7.4). Molecular docking experiments revealed that EA was primarily bound to the hydrophobic pocket of the site I (subdomain IIA) of BSA. It has been reported that the binding of small functional molecules to serum albumins remarkably impacts their absorption, distribution, metabolism, and excretion features. Therefore, this study might be helpful for human to have an in-depth understanding of the biological effect of EA in vivo and guide human to take it safely and reasonably.
Collapse
Affiliation(s)
- Fengru Liu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yiyin Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qiuyang Yu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yizhong Shen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Zhi Zheng
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jieshun Cheng
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yingwang Ye
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
15
|
Elucidation of the association of potential chemotherapeutic alkaloid chelerythrine with bovine hemoglobin by experimental probing and molecular docking simulation. Int J Biol Macromol 2019; 138:57-69. [DOI: 10.1016/j.ijbiomac.2019.07.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/26/2019] [Accepted: 07/09/2019] [Indexed: 12/30/2022]
|
16
|
Konar M, Sahoo H. Phosphate and sulphate-mediated structure and stability of bone morphogenetic protein - 2 (BMP - 2): A spectroscopy enabled investigation. Int J Biol Macromol 2019; 135:1123-1133. [DOI: 10.1016/j.ijbiomac.2019.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 01/20/2023]
|
17
|
Das S, Santra S, Rohman MA, Ray M, Jana M, Singha Roy A. An insight into the binding of 6-hydroxyflavone with hen egg white lysozyme: a combined approach of multi-spectroscopic and computational studies. J Biomol Struct Dyn 2018; 37:4019-4034. [DOI: 10.1080/07391102.2018.1535451] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sourav Das
- Department of Chemistry, National Institute of Technology, Meghalaya, Shillong, India
| | - Santanu Santra
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela, India
| | - Mostofa Ataur Rohman
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong, India
| | - Mahuah Ray
- Department of Chemistry, National Institute of Technology, Meghalaya, Shillong, India
| | - Madhurima Jana
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology, Meghalaya, Shillong, India
| |
Collapse
|
18
|
Das S, Bora N, Rohman MA, Sharma R, Jha AN, Singha Roy A. Molecular recognition of bio-active flavonoids quercetin and rutin by bovine hemoglobin: an overview of the binding mechanism, thermodynamics and structural aspects through multi-spectroscopic and molecular dynamics simulation studies. Phys Chem Chem Phys 2018; 20:21668-21684. [PMID: 30101248 DOI: 10.1039/c8cp02760a] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The binding of two bio-active flavonoids, quercetin and rutin, with bovine hemoglobin (BHb) was investigated by multi-spectroscopic and computational (molecular docking and molecular dynamics simulation) studies. The two flavonoids were found to quench the intrinsic fluorescence of BHb through a static quenching mechanism. The binding constants at 288 K were observed to be (14.023 ± 0.73) × 104 M-1 and (7.848 ± 0.20) × 104 M-1, respectively for quercetin and rutin binding with BHb. Both rutin and quercetin were observed to increase the polarity around the Trp residues of BHb as indicated by synchronous and 3D spectral studies. No significant alterations in the secondary structural components of the protein were caused during the binding of the flavonoids as studied by CD and FTIR studies. The negative molar Gibbs free energies indicated the spontaneity of the interaction processes while the binding processes were characterized by a negative enthalpy change (ΔH) and a positive entropy change (ΔS). The possibility of energy transfer from the donor (BHb) to the acceptor molecules (flavonoids) was indicated by the FRET studies. According to the fluorescence studies, the flavonoids interact near to the β2-Trp37 residue of BHb. Excellent correlations with the experimental studies were observed from the molecular docking and molecular dynamics (MD) simulation studies. Further investigations established that these flavonoids are efficient in the inhibition of glucose mediated glycation of BHb.
Collapse
Affiliation(s)
- Sourav Das
- Department of Chemistry, National Institute of Technology, Meghalaya, Shillong 793003, India.
| | | | | | | | | | | |
Collapse
|
19
|
Ansari SS, Yousuf I, Arjmand F, Siddiqi MK, Naqvi S. Exploring the intermolecular interactions and contrasting binding of flufenamic acid with hemoglobin and lysozyme: A biophysical and docking insight. Int J Biol Macromol 2018; 116:1105-1118. [DOI: 10.1016/j.ijbiomac.2018.05.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/22/2018] [Accepted: 05/10/2018] [Indexed: 12/13/2022]
|
20
|
Das S, Khanikar P, Hazarika Z, Rohman MA, Uzir A, Nath Jha A, Singha Roy A. Deciphering the Interaction of 5,7-Dihydroxyflavone with Hen-Egg-White Lysozyme through Multispectroscopic and Molecular Dynamics Simulation Approaches. ChemistrySelect 2018. [DOI: 10.1002/slct.201800280] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sourav Das
- Department of Chemistry; National Institute of Technology; Meghalaya 793003 India
| | - Portia Khanikar
- Department of Chemistry; National Institute of Technology; Meghalaya 793003 India
| | - Zaved Hazarika
- Department of Molecular Biology and Biotechnology; Tezpur University; Tezpur 784028 India
| | - Mostofa Ataur Rohman
- Centre for Advanced Studies; Department of Chemistry; North-Eastern Hill University; Shillong 793022 India
| | - Antara Uzir
- Department of Chemistry; National Institute of Technology; Meghalaya 793003 India
| | - Anupam Nath Jha
- Department of Molecular Biology and Biotechnology; Tezpur University; Tezpur 784028 India
| | - Atanu Singha Roy
- Department of Chemistry; National Institute of Technology; Meghalaya 793003 India
| |
Collapse
|