1
|
Nunes KC, Lazarin-Bidoia D, Ueda-Nakamura T, de Oliveira Silva Lautenschlager S, Michel R, Auzély-Velty R, Nakamura CV. Syringic acid protective role: Combatting oxidative stress induced by UVB radiation in L-929 fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 264:113104. [PMID: 39884103 DOI: 10.1016/j.jphotobiol.2025.113104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/10/2024] [Accepted: 01/18/2025] [Indexed: 02/01/2025]
Abstract
Neglecting proper skin care and repeated exposure to ultraviolet (UV) radiation can have serious consequences, including skin burns, photoaging and even the development of skin cancer. UV radiation-induced damage is mediated by highly unstable and reactive molecules, named reactive oxygen species (ROS). To counteract ROS, the skin has an endogenous antioxidant system. Considering that, many sunscreens incorporate antioxidant substances to ensure additional photochemioprotective action in the formulation. Syringic acid (SA) is classified as a phenolic acid derived from hydroxybenzoic acid. It has antioxidant properties, which can reduce oxidative stress, and has shown potential to prevent skin cancer. The aim of this study was to assess the ability of SA to protect L-929 fibroblasts from UVB radiation by evaluating oxidative stress biomarkers. As a result, we demonstrated the antioxidant activity of SA through four methodologies, and confirmed the photochemioprotective activity of SA by attenuating the cytotoxicity of UVB radiation in L-929 fibroblasts. The mechanisms involved in the photoprotection of SA include a significant reduction in total ROS, maintenance of mitochondrial membrane potential, decrease in lipid peroxidation, preservation of endogenous antioxidant system enzymes and reduced glutathione (GSH) levels, thereby mitigating the ultrastructural damage caused by UVB. Additionally, SA showed promising results in wound healing. Considering such properties, SA emerges as a strong candidate for incorporation into photoprotective and multifunctional formulations.
Collapse
Affiliation(s)
- Karine Campos Nunes
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Danielle Lazarin-Bidoia
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Tânia Ueda-Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Raphaël Michel
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | | | - Celso Vataru Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
2
|
Wu X, Koch M, Martínez FPP, Schirhagl R, Włodarczyk‐Biegun MK. Quantum Sensing Unravels Antioxidant Efficacy Within PCL/Matrigel Skin Equivalents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403729. [PMID: 39246220 PMCID: PMC11618742 DOI: 10.1002/smll.202403729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/27/2024] [Indexed: 09/10/2024]
Abstract
Skin equivalents (SE) that recapitulate biological and mechanical characteristics of the native tissue are promising platforms for assessing cosmetics and studying fundamental biological processes. Methods to achieve SEs with well-organized structure, and ideal biological and mechanical properties are limited. Here, the combination of melt electrowritten PCL scaffolds and cell-laden Matrigel to fabricate SE is described. The PCL scaffold provides ideal structural and mechanical properties, preventing deformation of the model. The model consists of a top layer for seeding keratinocytes to mimic the epidermis, and a bottom layer of Matrigel-based dermal compartment with fibroblasts. The compressive modulus and the biological properties after 3-day coculture indicate a close resemblance with the native skin. Using the SE, a testing system to study the damage caused by UVA irradiation and evaluate antioxidant efficacy is established. The effectiveness of Tea polyphenols (TPs) and L-ascorbic acid (Laa) is compared based on free radical generation. TPs are demonstrated to be more effective in downregulating free radical generation. Further, T1 relaxometry is used to detect the generation of free radicals at a single-cell level, which allows tracking of the same cell before and after UVA treatment.
Collapse
Affiliation(s)
- Xixi Wu
- Department of Biomedical EngineeringUniversity Medical Centre Groningen and University of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Marcus Koch
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrueckenGermany
| | - Felipe P. Perona Martínez
- Department of Biomedical EngineeringUniversity Medical Centre Groningen and University of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Romana Schirhagl
- Department of Biomedical EngineeringUniversity Medical Centre Groningen and University of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Małgorzata K. Włodarczyk‐Biegun
- Polymer ScienceZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
- Biotechnology CentreThe Silesian University of TechnologyKrzywoustego 8Gliwice44‐100Poland
| |
Collapse
|
3
|
Mendieta-Brito S, Sayed M, Son E, Kim DS, Dávila M, Pyo SH. Identification, Characterization, and Antibacterial Evaluation of Five Endophytic Fungi from Psychotria poeppigiana Müll. Arg., an Amazon Plant. Microorganisms 2024; 12:1590. [PMID: 39203432 PMCID: PMC11356722 DOI: 10.3390/microorganisms12081590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Endophytic fungi, residing within plants without causing disease, are known for their ability to produce bioactive metabolites with diverse properties such as antibacterial, antioxidant, and antifungal activities, while also influencing plant defense mechanisms. In this study, five novel endophytic fungi species were isolated from the leaves of Psychotria poeppigiana Müll. Arg., a plant from the Rubiaceae family, collected in the tropical Amazon region of Bolivia. The endophytic fungi were identified as a Neopestalotiopsis sp., three Penicillium sp., and an Aspergillus sp. through 18S ribosomal RNA sequencing and NCBI-BLAST analysis. Chemical profiling revealed that their extracts obtained by ethyl acetate contained terpenes, flavonoids, and phenolic compounds. In a bioautography study, the terpenes showed high antimicrobial activity against Escherichia coli. Notably, extracts from the three Penicillium species exhibited potent antibacterial activity, with minimum inhibitory concentration (MIC) values ranging from 62.5 to 2000 µg/mL against all three pathogens: Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis (both Gram-positive and Gram-negative bacteria). These findings highlight the potential of these endophytic fungi, especially Penicillium species as valuable sources of secondary metabolites with significant antibacterial activities, suggesting promising applications in medicine, pharmaceuticals, agriculture, and environmental technologies.
Collapse
Affiliation(s)
- Sonia Mendieta-Brito
- Centro de Tecnología Agroindustrial, Universidad Mayor de San Simón, Cochabamba 00591, Bolivia
- Division of Biotechnology, Department of Chemistry, Faculty of Engineering, Lund University, SE-22100 Lund, Sweden
| | - Mahmoud Sayed
- Division of Biotechnology, Department of Chemistry, Faculty of Engineering, Lund University, SE-22100 Lund, Sweden
- Department of Botany and Microbiology, South Valley University, Qena 83523, Egypt
| | - Eunjung Son
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-Daero, Yuseong-Gu, Daejeon 34054, Republic of Korea
| | - Dong-Seon Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-Daero, Yuseong-Gu, Daejeon 34054, Republic of Korea
| | - Marcelo Dávila
- Centro de Tecnología Agroindustrial, Universidad Mayor de San Simón, Cochabamba 00591, Bolivia
| | - Sang-Hyun Pyo
- Division of Biotechnology, Department of Chemistry, Faculty of Engineering, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
4
|
de Melo Pereira DÍ, Gurgel RS, de Souza ATF, Matias RR, de Souza Falcão L, Chaves FCM, da Silva GF, Martínez JG, de Lima Procópio RE, Fantin C, Albuquerque PM. Isolation and Identification of Pigment-Producing Endophytic Fungi from the Amazonian Species Fridericia chica. J Fungi (Basel) 2024; 10:77. [PMID: 38276023 PMCID: PMC10821134 DOI: 10.3390/jof10010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Pigments of fungal origin have aroused increasing interest in the food dye and cosmetic industries since the global demand for natural dyes has grown. Endophytic microorganisms are a source of bioactive compounds, and Amazonian plant species can harbor fungi with a wide range of biotechnological applications. Popularly known in Brazil as crajiru, Fridericia chica is a medicinal plant that produces a red pigment. In this study, a total of 121 fungi were isolated in potato dextrose agar from three plants. We identified nine pigment-producing endophytic fungi isolated from branches and leaves of F. chica. The isolates that showed pigment production in solid media were molecularly identified via multilocus analysis as Aspergillus welwitschiae, A. sydowii, Curvularia sp., Diaporthe cerradensis (two strains), Hypoxylon investiens, Neoscytalidium sp. (two strains) and Penicillium rubens. These isolates were subjected to submerged fermentation in two culture media to obtain metabolic extracts. The extracts obtained were analyzed in terms of their absorbance between 400 and 700 nm. The pigmented extract produced by H. investiens in medium containing yeast extract showed maximum absorbance in the red absorption range (UA700 = 0.550) and significant antioxidant and antimicrobial activity. This isolate can thus be considered a new source of extracellular pigment.
Collapse
Affiliation(s)
- Dorothy Ívila de Melo Pereira
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil; (D.Í.d.M.P.); (R.S.G.)
- Grupo de Pesquisa Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus 69050-020, Brazil; (A.T.F.d.S.); (R.R.M.); (L.d.S.F.); (R.E.d.L.P.)
| | - Raiana Silveira Gurgel
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil; (D.Í.d.M.P.); (R.S.G.)
- Grupo de Pesquisa Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus 69050-020, Brazil; (A.T.F.d.S.); (R.R.M.); (L.d.S.F.); (R.E.d.L.P.)
| | - Anne Terezinha Fernandes de Souza
- Grupo de Pesquisa Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus 69050-020, Brazil; (A.T.F.d.S.); (R.R.M.); (L.d.S.F.); (R.E.d.L.P.)
- Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil;
| | - Rosiane Rodrigues Matias
- Grupo de Pesquisa Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus 69050-020, Brazil; (A.T.F.d.S.); (R.R.M.); (L.d.S.F.); (R.E.d.L.P.)
| | - Lucas de Souza Falcão
- Grupo de Pesquisa Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus 69050-020, Brazil; (A.T.F.d.S.); (R.R.M.); (L.d.S.F.); (R.E.d.L.P.)
| | | | | | - José Gregorio Martínez
- Grupo de Investigación Biociencias, Institución Universitaria Colegio Mayor de Antioquia, Medellin 050001, Colombia;
| | - Rudi Emerson de Lima Procópio
- Grupo de Pesquisa Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus 69050-020, Brazil; (A.T.F.d.S.); (R.R.M.); (L.d.S.F.); (R.E.d.L.P.)
- Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil;
| | - Cleiton Fantin
- Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil;
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil
| | - Patrícia Melchionna Albuquerque
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil; (D.Í.d.M.P.); (R.S.G.)
- Grupo de Pesquisa Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus 69050-020, Brazil; (A.T.F.d.S.); (R.R.M.); (L.d.S.F.); (R.E.d.L.P.)
- Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil;
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil
| |
Collapse
|
5
|
Zhang Y, Shang C, Sun C, Wang L. Simultaneously regulating absorption capacities and antioxidant activities of four stilbene derivatives utilizing substitution effect: A theoretical and experimental study against UVB radiation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123325. [PMID: 37678043 DOI: 10.1016/j.saa.2023.123325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/29/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
With the continued depletion of the ozone layer, the sun protection consciousness of humans has gradually enhanced. Long-term ultraviolet (UV) rays exposure will lead to skin tanning, even skin cancer in severe cases, and generate free radicals to cause skin aging. To better protect human skin against UV rays, this work explores the absorption capacities and antioxidant activities of four stilbene derivatives (EHDB, EDMB, EAPD, and HPTP) through the computational chemistry method and DPPH radical scavenging experiment. The research results indicate that their absorption spectra cover the entire UV region, and can effectively protect against UVB radiation. Moreover, three prevailing antioxidant mechanisms: hydrogen atom transfer, sequential proton loss electron transfer, and single electron transfer followed by proton transfer mechanisms, were used to evaluate their antioxidant activities in the ground state. It can be concluded that the O1H1 sites of EHDB and HPTP are the most active, and the SPLET mechanism is the most preferred for the four compounds in ethanol solvent. Furthermore, the DPPH radical scavenging experiment compensates for the theoretical calculation deficiency in the excited state, revealing that the EHDB and HPTP are the most suitable for sunscreen due to their excellent performance on antioxidant capacities, whether before or after sunlight. This work will facilitate EHDB and HPTP to be applied in sunscreen and provide a novel idea in sunscreen research.
Collapse
Affiliation(s)
- Yajie Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Changjiao Shang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin 150040, China.
| | - Lingling Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
6
|
Gurgel RS, de Melo Pereira DÍ, Garcia AVF, Fernandes de Souza AT, Mendes da Silva T, de Andrade CP, Lima da Silva W, Nunez CV, Fantin C, de Lima Procópio RE, Albuquerque PM. Antimicrobial and Antioxidant Activities of Endophytic Fungi Associated with Arrabidaea chica (Bignoniaceae). J Fungi (Basel) 2023; 9:864. [PMID: 37623634 PMCID: PMC10455555 DOI: 10.3390/jof9080864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
The endophytic fungal community of the Amazonian medicinal plant Arrabidaea chica (Bignoniaceae) was evaluated based on the hypothesis that microbial communities associated with plant species in the Amazon region may produce metabolites with interesting bioactive properties. Therefore, the antimicrobial and antioxidant activities of the fungal extracts were investigated. A total of 107 endophytic fungi were grown in liquid medium and the metabolites were extracted with ethyl acetate. In the screening of fungal extracts for antimicrobial activity, the fungus identified as Botryosphaeria mamane CF2-13 was the most promising, with activity against E. coli, S. epidermidis, P. mirabilis, B. subtilis, S. marcescens, K. pneumoniae, S. enterica, A. brasiliensis, C. albicans, C. tropicalis and, especially, against S. aureus and C. parapsilosis (MIC = 0.312 mg/mL). Screening for antioxidant potential using the DPPH elimination assay showed that the Colletotrichum sp. CG1-7 endophyte extract exhibited potential activity with an EC50 of 11 µg/mL, which is equivalent to quercetin (8 µg/mL). The FRAP method confirmed the antioxidant potential of the fungal extracts. The presence of phenolic compounds and flavonoids in the active extracts was confirmed using TLC. These results indicate that two of the fungi isolated from A. chica exhibit significant antimicrobial and antioxidant potential.
Collapse
Affiliation(s)
- Raiana Silveira Gurgel
- Programa Graduate Program in Biodiversity and Biotechnology of the Bionorte Network, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil; (R.S.G.); (D.Í.d.M.P.); (C.P.d.A.)
- Research Group on Chemistry Applied to Technology, School of Technology, Amazonas State University, Manaus 69050-020, Brazil; (A.V.F.G.); (A.T.F.d.S.); (T.M.d.S.); (R.E.d.L.P.)
| | - Dorothy Ívila de Melo Pereira
- Programa Graduate Program in Biodiversity and Biotechnology of the Bionorte Network, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil; (R.S.G.); (D.Í.d.M.P.); (C.P.d.A.)
- Research Group on Chemistry Applied to Technology, School of Technology, Amazonas State University, Manaus 69050-020, Brazil; (A.V.F.G.); (A.T.F.d.S.); (T.M.d.S.); (R.E.d.L.P.)
| | - Ana Vyktória França Garcia
- Research Group on Chemistry Applied to Technology, School of Technology, Amazonas State University, Manaus 69050-020, Brazil; (A.V.F.G.); (A.T.F.d.S.); (T.M.d.S.); (R.E.d.L.P.)
| | - Anne Terezinha Fernandes de Souza
- Research Group on Chemistry Applied to Technology, School of Technology, Amazonas State University, Manaus 69050-020, Brazil; (A.V.F.G.); (A.T.F.d.S.); (T.M.d.S.); (R.E.d.L.P.)
- Graduate Program in Biotechnology and Natural Resources of the Amazon, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil; (C.V.N.); (C.F.)
| | - Thaysa Mendes da Silva
- Research Group on Chemistry Applied to Technology, School of Technology, Amazonas State University, Manaus 69050-020, Brazil; (A.V.F.G.); (A.T.F.d.S.); (T.M.d.S.); (R.E.d.L.P.)
| | - Cleudiane Pereira de Andrade
- Programa Graduate Program in Biodiversity and Biotechnology of the Bionorte Network, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil; (R.S.G.); (D.Í.d.M.P.); (C.P.d.A.)
- Research Group on Chemistry Applied to Technology, School of Technology, Amazonas State University, Manaus 69050-020, Brazil; (A.V.F.G.); (A.T.F.d.S.); (T.M.d.S.); (R.E.d.L.P.)
| | - Weison Lima da Silva
- Bioprospection and Biotechnology Laboratory, National Institute of Amazonian Research, Manaus 69067-375, Brazil;
| | - Cecilia Veronica Nunez
- Graduate Program in Biotechnology and Natural Resources of the Amazon, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil; (C.V.N.); (C.F.)
- Bioprospection and Biotechnology Laboratory, National Institute of Amazonian Research, Manaus 69067-375, Brazil;
| | - Cleiton Fantin
- Graduate Program in Biotechnology and Natural Resources of the Amazon, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil; (C.V.N.); (C.F.)
- Multicentric Graduate Program in Biochemistry and Molecular Biology, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil
| | - Rudi Emerson de Lima Procópio
- Research Group on Chemistry Applied to Technology, School of Technology, Amazonas State University, Manaus 69050-020, Brazil; (A.V.F.G.); (A.T.F.d.S.); (T.M.d.S.); (R.E.d.L.P.)
- Graduate Program in Biotechnology and Natural Resources of the Amazon, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil; (C.V.N.); (C.F.)
| | - Patrícia Melchionna Albuquerque
- Programa Graduate Program in Biodiversity and Biotechnology of the Bionorte Network, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil; (R.S.G.); (D.Í.d.M.P.); (C.P.d.A.)
- Research Group on Chemistry Applied to Technology, School of Technology, Amazonas State University, Manaus 69050-020, Brazil; (A.V.F.G.); (A.T.F.d.S.); (T.M.d.S.); (R.E.d.L.P.)
- Graduate Program in Biotechnology and Natural Resources of the Amazon, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil; (C.V.N.); (C.F.)
- Multicentric Graduate Program in Biochemistry and Molecular Biology, School of Health Sciences, Amazonas State University, Manaus 69050-010, Brazil
| |
Collapse
|
7
|
de Siqueira FC, Barbosa-Carvalho APP, Costa Leitão DDST, Furtado KF, Chagas-Junior GCA, Lopes AS, Chisté RC. Scavenging Capacity of Extracts of Arrabidaea chica Leaves from the Amazonia against ROS and RNS of Physiological and Food Relevance. Antioxidants (Basel) 2022; 11:1909. [PMID: 36290636 PMCID: PMC9598737 DOI: 10.3390/antiox11101909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Arrabidaea chica, a medicinal plant found in the Amazon rainforest, is a promising source of bioactive compounds which can be used to inhibit oxidative damage in both food and biological systems. In this study, the in vitro scavenging capacity of characterized extracts of A. chica leaves, obtained with green solvents of different polarities [water, ethanol, and ethanol/water (1:1, v/v)] through ultrasound-assisted extraction, was investigated against reactive oxygen (ROS) and nitrogen (RNS) species, namely superoxide anion radicals (O2•-), hydrogen peroxide (H2O2), hypochlorous acid (HOCl), and peroxynitrite anion (ONOO-). The extract obtained with ethanol-water presented about three times more phenolic compound contents (11.8 mg/g) than ethanol and water extracts (3.8 and 3.6 mg/g, respectively), with scutellarein being the major compound (6.76 mg/g). All extracts showed high scavenging efficiency against the tested ROS and RNS, in a concentration-dependent manner with low IC50 values, and the ethanol-water extract was the most effective one. In addition, all the extracts were five times more efficient against ROO• than Trolox. Therefore, the extracts from A. chica leaves exhibited high promising antioxidant potential to be used against oxidative damage in food and physiological systems.
Collapse
Affiliation(s)
- Francilia Campos de Siqueira
- Graduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil
| | | | | | - Kalebe Ferreira Furtado
- School of Biotechnology, Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Belém 66075-110, Brazil
| | | | - Alessandra Santos Lopes
- Graduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil
- School of Food Engineering, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil
| | - Renan Campos Chisté
- Graduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil
- School of Food Engineering, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil
- Renan Campos Chisté, Faculdade de Engenharia de Alimentos (FEA), Instituto de Tecnologia (ITEC), Federal University of Pará (UFPA), Rua Augusto Corrêa, 01-Guamá, Belém 66075-110, Brazil
| |
Collapse
|
8
|
Batalha ADDSJ, Souza DCDM, Ubiera RD, Chaves FCM, Monteiro WM, da Silva FMA, Koolen HHF, Boechat AL, Sartim MA. Therapeutic Potential of Leaves from Fridericia chica (Bonpl.) L. G. Lohmann: Botanical Aspects, Phytochemical and Biological, Anti-Inflammatory, Antioxidant and Healing Action. Biomolecules 2022; 12:biom12091208. [PMID: 36139047 PMCID: PMC9496332 DOI: 10.3390/biom12091208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Plants of the species Fridericia chica (Bonpl.) L. G. Lohmann (Bignoniaceae), which are widely distributed in Brazil and named crajiru in the state of Amazonas, are known in folk medicine as a traditional medicine in the form of a tea for the treatment of intestinal colic, diarrhea, and anemia, among other diseases. The chemical analysis of extracts of the leaves has identified phenolic compounds, a class of secondary metabolites that provide defense for plants and benefits to the health of humans. Several studies have shown the therapeutic efficacy of F. chica extracts, with antitumor, antiviral, wound healing, anti-inflammatory, and antioxidant activities being among the therapeutic applications already proven. The healing action of F. chica leaf extract has been demonstrated in several experimental models, and shows the ability to favor the proliferation of fibroblasts, which is essential for tissue repair. The anti-inflammatory activity of F. chica has been clearly demonstrated by several authors, who suggest that it is related to the presence of 3-deoxyanthocyanidins, which is capable of inhibiting pro-inflammatory pathways such as the kappa B (NF-kB) nuclear transcription factor pathway. Another important effect attributed to this species is the antioxidant effect, attributed to phenolic compounds interrupting chain reactions caused by free radicals and donating hydrogen atoms or electrons. In conclusion, the species Fridericia chica has great therapeutic potential, which is detailed in this paper with the objective of encouraging new research and promoting the sum of efforts for the inclusion of herbal medicines in health systems around the world.
Collapse
Affiliation(s)
| | - Damy Caroline de Melo Souza
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
| | - Rosmery Duran Ubiera
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
| | | | - Wuelton Marcelo Monteiro
- Tropical Medicine Graduate Program, Amazonas State University—UEA, Manaus 69040-000, Brazil
- Tropical Medicine Foundation Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, Brazil
| | | | - Hector Henrique Ferreira Koolen
- Tropical Medicine Graduate Program, Amazonas State University—UEA, Manaus 69040-000, Brazil
- Research Group in Metabolomics and Mass Spectrometry, Amazonas State University, Manaus 690065-130, Brazil
| | - Antônio Luiz Boechat
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
- Laboratory of Innovative Therapies, Department of Parasitology, Amazonas State University—UEA, Manaus 69080-900, Brazil
| | - Marco Aurélio Sartim
- Basic and Applied Graduate Program—PPGIBA, Biological Science Institute, Federal University of Amazonas, Manaus 69080-900, Brazil
- Tropical Medicine Graduate Program, Amazonas State University—UEA, Manaus 69040-000, Brazil
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Brazil
- Correspondence:
| |
Collapse
|
9
|
Noddeland HK, Kemp P, Urquhart AJ, Herchenhan A, Rytved KA, Petersson K, B. Jensen L. Reactive Oxygen Species-Responsive Polymer Nanoparticles to Improve the Treatment of Inflammatory Skin Diseases. ACS OMEGA 2022; 7:25055-25065. [PMID: 35910173 PMCID: PMC9330180 DOI: 10.1021/acsomega.2c01071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
To improve the quality of life for people living with chronic inflammatory skin diseases, we propose a new treatment strategy by exploring a stimuli-responsive drug delivery system. Formulations designed by exploiting smart materials can be programmed to perform a specific action upon exposure to disease-related stimuli. For instance, increased levels of reactive oxygen species (ROS), especially the accumulation of hydrogen peroxide, can be utilized to differentiate between healthy and inflamed tissues. In this concept-proofing study, the polymer poly(1,4 phenyleneacetone dimethylene thioketal) (PPADT) was investigated for its ROS-responsive properties and potential to treat inflammatory skin diseases. PPADT nanoparticles were formulated by oil-in-water emulsification followed by solvent evaporation and characterized by size, zeta-potential, and release kinetic profiles. Release profiles revealed that the PPADT nanoparticles were sensitive toward elevated levels of ROS in an ROS-stimulus concentration (0.1-10 mM) and time-dependent manner (flare-up mimicked). The safety assessment proved that the PPADT polymer and the monomers generated by oxidation do not show any sign of being cytotoxic to fibroblasts and no mutagenic liabilities were observed. In conclusion, the PPADT polymer demonstrated to be a promising material for stimuli-responsive delivery of hydrophobic small molecules in the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Heidi K. Noddeland
- Explorative
Formulation & Technologies, LEO Pharma
A/S, 2750 Ballerup, Denmark
- Department
of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Pernille Kemp
- Explorative
Formulation & Technologies, LEO Pharma
A/S, 2750 Ballerup, Denmark
| | - Andrew J. Urquhart
- Department
of Health Technology, Technical University
of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Klaus A. Rytved
- In
Vivo Biology & Safety, LEO Pharma A/S, 2750 Ballerup, Denmark
| | - Karsten Petersson
- Explorative
Formulation & Technologies, LEO Pharma
A/S, 2750 Ballerup, Denmark
| | - Louise B. Jensen
- Explorative
Formulation & Technologies, LEO Pharma
A/S, 2750 Ballerup, Denmark
| |
Collapse
|
10
|
Chae SY, Park R, Hong SW. Surface-mediated high antioxidant and anti-inflammatory effects of astaxanthin-loaded ultrathin graphene oxide film that inhibits the overproduction of intracellular reactive oxygen species. Biomater Res 2022; 26:30. [PMID: 35794645 PMCID: PMC9258176 DOI: 10.1186/s40824-022-00276-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/10/2022] [Indexed: 12/20/2022] Open
Abstract
Background Astaxanthin (AST) is known as a powerful antioxidant that affects the removal of active oxygen and inhibits the production of lipid peroxide caused by ultraviolet light. However, it is easily decomposed by heat or light during production and storage because of the unsaturated compound nature with a structural double bond. The activity of AST can be reduced and lose its antioxidant capability. Graphene oxide (GO) is an ultrathin nanomaterial produced by oxidizing layered graphite. The chemical combination of AST with GO can improve the dispersion properties to maintain structural stability and antioxidant activity because of the tightly bonded functionalized GO surface. Methods Layered GO films were used as nanocarriers for the AST molecule, which was produced via flow-enabled self-assembly and subsequent controlled solution deposition of RGD peptide and AST molecules. Synthesis of the GO-AST complex was also carried out for the optimized concentration. The characterization of prepared materials was analyzed through transmission electron microscopy (TEM), scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FT-IR), atomic force microscope (AFM), and Raman spectroscopy. Antioxidant activity was tested by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2.2-diphenyl-1-picrylhydrazyl (DPPH) assays. The antibacterial effect and antioxidant effects were monitored for the ultrathin GO/RGD/AST Film. Further, reactive oxygen species (ROS) assay was used to evaluate the anti-inflammatory effects on L-929 fibroblasts. Results Cotreatment of GO-AST solution demonstrated a high antioxidant combined effect with a high ABTS and DPPH radicals scavenging activity. The GO/RGD/AST film was produced by the self-assembly process exhibited excellent antibacterial effects based on physicochemical damage against E. coli and S. aureus. In addition, the GO/RGD/AST film inhibited H2O2-induced intracellular ROS, suppressed the toxicity of lipopolysaccharide (LPS)-induced cells, and restored it, thereby exhibiting strong antioxidant and anti-inflammatory effects. Conclusion As GO nanocarrier-assisted AST exerted promising antioxidant and antibacterial reactions, presented a new concept to expand basic research into the field of tissue engineering. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00276-4.
Collapse
|
11
|
A Review of the Phytochemistry and Pharmacological Properties of the Genus Arrabidaea. Pharmaceuticals (Basel) 2022; 15:ph15060658. [PMID: 35745577 PMCID: PMC9227117 DOI: 10.3390/ph15060658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
The genus Arrabidaea, consisting of ~170 species, belongs to the family Bignoniaceae, distributed around the Neotropics and temperate zone. The center of diversity of the family is in Brazil, where 56 genera and about 340 species exist. Most species of the genus Arrabidaea are traditionally utilized as diuretics and antiseptics, as well as for treating intestinal colic, diarrhea, kidney stones, rheumatoid arthritis, wounds, and enterocolitis. The genus is chemically diverse with different substance classes; most of them are triterpenes, phenolic acids, and flavonoids, and they exhibit valuable pharmacological properties, such as antitumor, antioxidant, leishmanicidal, trypanocidal, anti-inflammatory, and healing properties. This review presents information on the chemical constituents isolated from seven Arrabidaea species, and the pharmacological activities of the extracts, fractions and pure substances isolated since 1994, obtained from electronic databases. The various constituents present in the different species of this genus demonstrate a wide pharmacological potential for the development of new therapeutic agents, however its potential has been underestimated.
Collapse
|
12
|
Chen B, Chen H, Qu H, Qiao K, Xu M, Wu J, Su Y, Shi Y, Liu Z, Wang Q. Photoprotective effects of Sargassum thunbergii on ultraviolet B-induced mouse L929 fibroblasts and zebrafish. BMC Complement Med Ther 2022; 22:144. [PMID: 35597942 PMCID: PMC9123674 DOI: 10.1186/s12906-022-03609-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 04/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Chronic exposure to ultraviolet B (UVB) causes a series of adverse skin reactions, such as erythema, sunburn, photoaging, and cancer, by altering signaling pathways related to inflammation, oxidative stress, and DNA damage. Marine algae have abundant amounts and varieties of bioactive compounds that possess antioxidant and anti-inflammatory properties. Thus, the objective of this study was to investigate the photoprotective effects of an ethanol extract of Sargassum thunbergii. METHODS Sargassum thunbergii phenolic-rich extract (STPE) was prepared, and its activity against UVB damage was evaluated using L929 fibroblast cells and zebrafish. STPE was extracted and purified by 40% ethanol and macroporous resin XDA-7. Reactive oxygen species (ROS) and antioxidant markers, such as superoxide dismutase (SOD), catalase (CAT) activities, and malondialdehyde (MDA) content were analyzed. The effect of STPE on UVB-induced inflammation was determined by inflammatory cytokine gene and protein expression. The expression of signaling molecules in the Nuclear Factor KappaB (NF-κB) pathway was determined by western blotting. DNA condensation was analyzed and visualized by Hoechst 33342 staining. In vivo evaluation was performed by tail fin area and ROS measurement using the zebrafish model. RESULTS The total polyphenol content of STPE was 72%. STPE reduced ROS content in L929 cells, improved SOD and CAT activities, and significantly reduced MDA content, thereby effectively alleviating UVB radiation-induced oxidative damage. STPE inhibited the mRNA and protein expression of TNF-α, IL-6, and IL-1α. STPE reversed DNA condensation at concentrations of 20 and 40 μg/mL compared with the UVB control. Moreover, STPE inhibited NF-κB signaling pathway activation and alleviated DNA agglutination in L929 cells after UVB irradiation. Additionally, 1.67 μg/mL STPE significantly increased the tail fin area in zebrafish, and 0.8-1.6 μg/mL STPE effectively eliminated excessive ROS after UVB radiation. CONCLUSIONS STPE inhibited UVB-induced oxidative stress, inflammatory cytokine expression, and DNA condensation via the downregulation of the NF-κB signaling pathway, suggesting that it prevents UVB-induced photodamage, and has potential for clinical development for skin disease treatment.
Collapse
Affiliation(s)
- Bei Chen
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, No. 7, Haishan Road, Huli District, Xiamen, 361013 Fujian China
| | - Honghong Chen
- School of Life Sciences, Xiamen University, South Xiangan Road, Xiang’an District, Xiamen, 361102 Fujian China
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Haidong Qu
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102 Fujian China
| | - Kun Qiao
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, No. 7, Haishan Road, Huli District, Xiamen, 361013 Fujian China
| | - Min Xu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, No. 7, Haishan Road, Huli District, Xiamen, 361013 Fujian China
| | - Jingna Wu
- Xiamen Medical College, Xiamen, 361023 Fujian China
| | - Yongchang Su
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, No. 7, Haishan Road, Huli District, Xiamen, 361013 Fujian China
| | - Yan Shi
- School of Life Sciences, Xiamen University, South Xiangan Road, Xiang’an District, Xiamen, 361102 Fujian China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, No. 7, Haishan Road, Huli District, Xiamen, 361013 Fujian China
| | - Qin Wang
- School of Life Sciences, Xiamen University, South Xiangan Road, Xiang’an District, Xiamen, 361102 Fujian China
| |
Collapse
|
13
|
Comparative Study of Three Raspberry Cultivar (Rubus idaeus L.) Leaves Metabolites: Metabolome Profiling and Antioxidant Activities. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12030990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Raspberry (Rubus idaeus L.), known as one of the famous healthy fruits an d are consumed fresh or processed products all over the world. The antioxidation activity of raspberry fruits as well as leaves have been widely investigated. To better understand the metabolite accumulation mechanisms and to develop different functional cultivars, we performed a non-targeted metabolomics analysis using LC-MS/MS to investigate the contents of existing components from three raspberry cultivars, Autumn Britten, Autumn Bliss, and Red Autumn leaves, respectively. The results show multiple differentially accumulated metabolites among three cultivars, especially for the lipids (α-linolenic acid and eicosatetraenoic acid), amino acids and their derivatives (L-cysteine, Phenylalanine), flavonoids (Kaempferol 3-O-rhamnoside-7-O-glucoside, Quercetin 3-glucoside), and vitamins (Biotin, Thiamine, Vitamin K2), etc. The in vitro cellular antioxidant activities of three raspberry cultivars leaves ethanol extracts (RLEE) were also characterized. Through comparison the superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), and reactive oxygen species (ROS) levels before or after RLEE protection of L929 fibroblast cells upon excessive UVB exposure, we evaluated the antioxidation potentials for all three cultivar RLEEs. It turns out the raspberry Autumn Britten leaf extract holds the greatest potential for protecting the L929 fibroblast cells from UVB induced damage. Our study provides theoretical support for screening of active metabolites from three raspberry cultivars leaves, spanning metabolites’ accumulation to cell damage protection, which could be used to refine bioactivity assessment for different raspberry cultivars suitable for antioxidant products extraction.
Collapse
|
14
|
Silva-Silva JV, Moragas-Tellis CJ, Chagas MSS, Souza PVR, Moreira DL, de Souza CSF, Teixeira KF, Cenci AR, de Oliveira AS, Almeida-Souza F, Behrens MD, Calabrese KS. Carajurin: a anthocyanidin from Arrabidaea chica as a potential biological marker of antileishmanial activity. Biomed Pharmacother 2021; 141:111910. [PMID: 34323692 DOI: 10.1016/j.biopha.2021.111910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022] Open
Abstract
Leishmaniasis is a group of neglected tropical diseases whose treatment with antimonials bears limitations and has changed little in over 80 years. Medicinal plants have been evaluated as a therapeutic alternative for leishmaniasis. Arrabidaea chica is popularly used as a wound healing and antiparasitic agent, especially as leishmanicidal agent. This study examined the leishmanicidal activity of a crude extract (ACCE), an anthocyanidin-rich fraction (ACAF), and three isolated anthocyanidins from A. chica: carajurin, 3'-hydroxy-carajurone, and carajurone. We evaluated the antileishmanial activity against promastigote and intracellular amastigote forms of Leishmania amazonensis and determined cytotoxicity in BALB/c peritoneal macrophages, as well as nitrite quantification, using the Griess method. Molecular docking was carried out to evaluate interactions of carajurin at the nitric oxide synthase enzyme. All compounds were active against promastigotes after 72 h, with IC50 values of 101.5 ± 0.06 μg/mL for ACCE and 4.976 ± 1.09 μg/mL for ACAF. Anthocyanidins carajurin, 3'-hydroxy-carajurone, and carajurone had IC50 values of 3.66 ± 1.16, 22.70 ± 1.20, and 28.28 ± 0.07 μg/mL, respectively. The cytotoxicity assay after 72 h showed results ranging from 9.640 to 66.74 µg/mL for anthocyanidins. ACAF and carajurin showed selectivity against intracellular amastigote forms (SI> 10), with low cytotoxicity within 24 h, a statistically significant reduction in all infection parameters, and induced nitrite production. Molecular docking studies were developed to understand a possible mechanism of activation of the nitric oxide synthase enzyme, which leads to an increase in the production of nitric oxide observed in the other experiments reported. These results encourage us to suggest carajurin as a biological marker of A. chica.
Collapse
Affiliation(s)
- João Victor Silva-Silva
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Carla J Moragas-Tellis
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Maria S S Chagas
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Paulo Victor R Souza
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; Student on Postgraduate Program in Translational Research in Drugs and Medicines, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Davyson L Moreira
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; Research Directorate of the Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro, RJ, 22460-030, Brazil.
| | - Celeste S F de Souza
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Kerolain F Teixeira
- Department of Exact Sciences and Education. Federal University of Santa Catarina, Blumenau, SC, Brazil.
| | - Arthur R Cenci
- Department of Exact Sciences and Education. Federal University of Santa Catarina, Blumenau, SC, Brazil.
| | - Aldo S de Oliveira
- Department of Exact Sciences and Education. Federal University of Santa Catarina, Blumenau, SC, Brazil.
| | - Fernando Almeida-Souza
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Animal Science, State University of Maranhão, São Luis, MA, Brazil.
| | - Maria D Behrens
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Kátia S Calabrese
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
15
|
Aranha ESP, Portilho AJDS, Bentes de Sousa L, da Silva EL, Mesquita FP, Rocha WC, Araújo da Silva FM, Lima ES, Alves APNN, Koolen HHF, Montenegro RC, Vasconcellos MCD. 22β-hydroxytingenone induces apoptosis and suppresses invasiveness of melanoma cells by inhibiting MMP-9 activity and MAPK signaling. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113605. [PMID: 33232779 DOI: 10.1016/j.jep.2020.113605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 22β-hydroxytingenone (22-HTG) is a quinonemethide triterpene isolated from Salacia impressifolia (Miers) A. C. Smith (family Celastraceae), which has been used in traditional medicine to treat a variety of diseases, including dengue, renal infections, rheumatism and cancer. However, the anticancer effects of 22-HTG and the underlying molecular mechanisms in melanoma cells have not yet been elucidated. AIM OF THE STUDY The present study investigated apoptosis induction and antimetastatic potencial of 22-HTG in SK-MEL-28 human melanoma cells. MATERIALS AND METHODS First, the in vitro cytotoxic activity of 22-HTG in cultured cancer cells was evaluated. Then, cell viability was determined using the trypan blue assay in melanoma cells (SK-MEL-28), which was followed by cell cycle, annexin V-FITC/propidium iodide assays (Annexin/PI), as well as assays to evaluate mitochondrial membrane potential, production of reactive oxygen species (ROS) using flow cytometry. Fluorescence microscopy using acridine orange/ethidium bromide (AO/BE) staining was also performed. RT-qPCR was carried out to evaluate the expression of BRAF, NRAS, and KRAS genes. The anti-invasiveness potential of 22-HTG was evaluated in a three-dimensional (3D) model of reconstructed human skin. RESULTS 22-HTG reduced viability of SK-MEL-28 cells and caused morphological changes, as cell shrinkage, chromatin condensation, and nuclear fragmentation. Furthermore, 22-HTG caused apoptosis, which was demonstrated by increased staining with AO/BE and Annexin/PI. The apoptosis may have been caused by mitochondrial instability without the involvement of ROS production. The expression of BRAF, NRAS, and KRAS, which are important biomarkers in melanoma development, was reduced by the 22-HTG treatment. In the reconstructed skin model, 22-HTG was able to decrease the invasion capacity of melanoma cells in the dermis. CONCLUSIONS Our data indicate that 22-HTG has anti-tumorigenic properties against melanoma cells through the induction of cell cycle arrest, apoptosis and inhibition of invasiveness potential, as observed in the 3D model. As such, the results provide new insights for future work on the utilization of 22-HTG in malignant melanoma treatment.
Collapse
Affiliation(s)
- Elenn Suzany Pereira Aranha
- Faculty of Pharmaceutical Sciences, Post Graduate Program in Biodiversity and Biotechnology of the Amazon (Bionorte), Federal University of Amazonas, Manaus, Amazonas, 69080-900, Brazil.
| | | | - Leilane Bentes de Sousa
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus, Amazonas, 69080-900, Brazil.
| | - Emerson Lucena da Silva
- Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil.
| | - Felipe Pantoja Mesquita
- Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil.
| | - Waldireny C Rocha
- Health and Biotechnology Institute, Federal University of Amazonas, Coari, Amazonas, 69460-000, Brazil.
| | | | - Emerson Silva Lima
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus, Amazonas, 69080-900, Brazil.
| | | | | | - Raquel Carvalho Montenegro
- Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Ceará, 60430-275, Brazil.
| | | |
Collapse
|
16
|
da Silva BTA, Peloi KE, Ximenes VF, Nakamura CV, de Oliveira Silva Lautenschlager S. 2-acetylphenothiazine protects L929 fibroblasts against UVB-induced oxidative damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112130. [PMID: 33561688 DOI: 10.1016/j.jphotobiol.2021.112130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/10/2020] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Ultraviolet B (UVB) light corresponds to 5% of ultraviolet radiation. It is more genotoxic and mutagenic than UVA and causes direct and indirect cellular damage through the generation of reactive oxygen species (ROS). Even after radiation, ROS generation may continue through activation of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) enzyme. Long-term exposure can progress to premature skin aging and photocarcinogenesis. To prevent damage that is caused by UVB radiation, several studies have focused on the topical administration of compounds that have antioxidant properties. 2-Acetylphenothiazine (ML171) is a potent and selective inhibitor of NOX1. The present study investigated the antioxidant potential and photoprotective ability of ML171 in UVB-irradiated L929 fibroblasts. ML171 had considerable antioxidant activity in both the DPPH• and xanthine/luminol/xanthine oxidase assays. ML171 did not induce cytotoxicity in L929 fibroblasts and increased the viability of UVB-irradiated cells. ML171 also inhibited ROS production, the enzymatic activity of NOX, depolarization of the mitochondrial membrane, and DNA damage. Additionally, ML171 protected cell membrane integrity and induced fibroblast migration. These results suggest that the incorporation of ML171 in topical administration systems may be a promising strategy to mitigate UVB-induced oxidative damage in L929 fibroblasts.
Collapse
Affiliation(s)
| | - Karen Elaine Peloi
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Valdecir Farias Ximenes
- Department of Chemistry, Faculty of Sciences, São Paulo State University (UNESP), Bauru, São Paulo 17033360, Brazil
| | - Celso Vataru Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil; Department of Basic Health Sciences, Maringa State University (UEM), Maringá, Paraná 87020900, Brazil
| | - Sueli de Oliveira Silva Lautenschlager
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil; Department of Basic Health Sciences, Maringa State University (UEM), Maringá, Paraná 87020900, Brazil.
| |
Collapse
|
17
|
Gómez-Hernández MA, Flores-Merino MV, Sánchez-Flores JE, Burrola-Aguilar C, Zepeda-Gómez C, Nieto-Trujillo A, Estrada-Zúñiga ME. Photoprotective Activity of Buddleja cordata Cell Culture Methanolic Extract on UVB-irradiated 3T3-Swiss Albino Fibroblasts. PLANTS 2021; 10:plants10020266. [PMID: 33573194 PMCID: PMC7912278 DOI: 10.3390/plants10020266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
The research on compounds exhibiting photoprotection against ultraviolet radiation (UVR) is a matter of increasing interest. The methanolic extract of a cell culture of Buddleja cordata has potential photoprotective effects as these cells produce phenolic secondary metabolites (SMs). These metabolites are attributed with biological activities capable of counteracting the harmful effects caused by UVR on skin. In the present work, the methanolic extract (310–2500 µg/mL) of B. cordata cell culture showed a photoprotective effect on UVB-irradiated 3T3-Swiss albino fibroblasts with a significant increase in cell viability. The greatest photoprotective effect (75%) of the extract was observed at 2500 µg/mL, which was statistically comparable with that of 250 µg/mL verbascoside, used as positive control. In addition, concentrations of the extract higher than 2500 µg/mL resulted in decreased cell viability (≤83%) after 24 h of exposure. Phytochemical analysis of the extract allowed us to determine that it was characterized by high concentrations of total phenol and total phenolic acid contents (138 ± 4.7 mg gallic acid equivalents and 44.01 ± 1.33 mg verbascoside equivalents per gram of extract, respectively) as well as absorption of UV light (first and second bands peaking at 294 and 330 nm, respectively). Some phenylethanoid glycosides were identified from the extract.
Collapse
Affiliation(s)
- Milton Abraham Gómez-Hernández
- Laboratorio de Toxicología de Productos Naturales, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Av. Wilfrido Massieu, Esq. Con Manuel M. Stampa s/n, Colonia Planetario Lindavista, Delegación Gustavo A. Madero, Ciudad de México C.P. 07700, Mexico;
| | - Miriam V. Flores-Merino
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón s/n, Residencial Colón y Col Ciprés, Toluca C.P. 50120, Mexico;
- Correspondence: (M.V.F.-M.); (M.E.E.-Z.)
| | - Jesús Enrique Sánchez-Flores
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón s/n, Residencial Colón y Col Ciprés, Toluca C.P. 50120, Mexico;
| | - Cristina Burrola-Aguilar
- Centro de Investigación en Recursos Bióticos-Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca Km 14.5, San Cayetano, Toluca C.P. 50295, Mexico; (C.B.-A.); (A.N.-T.)
| | - Carmen Zepeda-Gómez
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Campus El Cerrillo, Piedras Blancas, Carretera Toluca-Ixtlahuaca Km. 15.5, Toluca C.P. 50200, Mexico;
| | - Aurelio Nieto-Trujillo
- Centro de Investigación en Recursos Bióticos-Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca Km 14.5, San Cayetano, Toluca C.P. 50295, Mexico; (C.B.-A.); (A.N.-T.)
| | - María Elena Estrada-Zúñiga
- Centro de Investigación en Recursos Bióticos-Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca-Ixtlahuaca Km 14.5, San Cayetano, Toluca C.P. 50295, Mexico; (C.B.-A.); (A.N.-T.)
- Correspondence: (M.V.F.-M.); (M.E.E.-Z.)
| |
Collapse
|
18
|
Metformin effect on driving cell survival pathway through inhibition of UVB-induced ROS formation in human keratinocytes. Mech Ageing Dev 2020; 192:111387. [PMID: 33080281 DOI: 10.1016/j.mad.2020.111387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/17/2020] [Accepted: 10/12/2020] [Indexed: 11/24/2022]
Abstract
Human skin functions go beyond serving only as a mechanical barrier. As a complex organ, the skin is capable to cope with external stressors cutaneous by neuroendocrine systems to control homeostasis. However, constant skin exposure to ultraviolet (UV) radiation causes progressive damage to cellular skin constituents, mainly due excessive reactive oxygen species (ROS) production. The present study shows new approaches of metformin (MET) as an antioxidant agent. Currently, MET is the first line treatment of type 2 diabetes and has attracted attention, based on its broad mechanism of action. Therefore, we evaluated MET antioxidant potential in cell-free systems and in UVB irradiated human keratinocyte HaCaT cells. In cell-free system assays MET did not show intrinsic scavenging activity on DPPH radicals or superoxide (O2-) xanthine/luminol/xanthine oxidase-generated. Cell-based results demonstrated that MET was able to reduce UVB-induced intracellular ROS and NADPH oxidase-dependent superoxide (O2-) production. MET posttreatment of HaCaT cells reduced ERK 1/2 phosphorylation, NADPH oxidase activity, and cell death by apoptosis. These findings suggest that the protection mechanism of MET may be through the inhibition of ROS formation enzyme. These results showed that MET might be a promising antioxidant agent against UV radiation induced skin damage.
Collapse
|
19
|
Polyphenol-enriched extract of Arrabidaea chica used as a dentin pretreatment or incorporated into a total-etching adhesive system: Effects on bonding stability and physical characterization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111235. [PMID: 32806286 DOI: 10.1016/j.msec.2020.111235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/15/2020] [Accepted: 06/21/2020] [Indexed: 11/22/2022]
Abstract
The aim of this paper was to evaluate the physical properties and the long-term bond strength of a 2.5% polyphenol-enriched extract of Arrabidaea chica (AC) incorporated into both the phosphoric acid and the primer of a three-step total-etch adhesive, or into an aqueous solution as a dentin pretreatment. Fifty dentin surfaces received the treatments (n = 10): CON (control) - application of the three-step adhesive system (Adper Scotchbond Multipurpose, 3M ESPE); WAT - distilled water used as a pretreatment after dentin etching and before application of the adhesive system; ACPA - AC incorporated into the phosphoric acid; ACW - dentin pre-treatment with AC incorporated into an aqueous solution after etching; ACP - AC incorporated into the primer. Microtensile bond strength tests were performed after 24 h, 6 and 12 months of storage. Slices from the resin-dentin interface were obtained for scanning electron microscopy analysis of the hybrid layer. Degree of conversion of AC incorporated into the primer was evaluated. The particle size, polydispersity index and zeta potential of all the solutions prepared by incorporating AC (phosphoric acid, primer and distilled water) were measured by dynamic light scattering, which brought about changes after incorporation. Degree of conversion of the primer was not affected after incorporating AC. ACP showed lower microtensile bond strength values than the other groups. Bond strength decreased after 6 months of storage, stabilizing at the 12-month evaluation. Therefore, use of AC incorporated into the primer led to lower bond strength values, since AC modified the physical properties (particle size, polydispersity index and zeta potential) of the primer, but did not change the degree of conversion. Application of AC as a dentin pretreatment did not affect bond strength or the micromorphological characteristics of the hybrid layer.
Collapse
|
20
|
Nrf2 Overexpression for the Protective Effect of Skin-Derived Precursors against UV-Induced Damage: Evidence from a Three-Dimensional Skin Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7021428. [PMID: 31737172 PMCID: PMC6815583 DOI: 10.1155/2019/7021428] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/07/2019] [Accepted: 06/02/2019] [Indexed: 12/26/2022]
Abstract
Background Skin photodamage is associated with ultraviolet- (UV-) induced reactive oxygen species (ROS) overproduction and nuclear factor erythroid 2-related factor 2 (Nrf2) inactivation. In our previous study, skin-derived precursors (SKPs) were shown to ameliorate a UV-induced damage in mice, probably through Nrf2 activation and ROS scavenging. Objective To clarify the mechanism underlying the photoprotective effect of SKPs against UV-induced damage in a three-dimensional (3D) skin model. Methods The Nrf2 gene in SKPs was modified using lentiviral infection, and 3D skin models were reconstructed with keratinocytes and fibroblasts on the basis of type I collagen. Subsequently, these models were divided into the following six groups: normal, model, overexpressed, control, silenced, and negative control groups. Prior to irradiation, respective SKPs were injected into the last four groups. Next, all groups except the normal group were exposed to UVA+UVB. Lastly, the pathological and molecular-biological techniques were employed to determine the parameters. Additionally, LY294002, a PI3K inhibitor, was used to investigate the roles of PI3K/Akt and Nrf2/hemeoxygenase-1 (HO-1) in SKP photoprotection. Results Normal 3D skin models appeared as milky-white analogs with a clear, well-arranged histological structure. After the skin was exposed to irradiation, it exhibited cell swelling and a disorganized structure and developed nuclear condensation with numerous apoptotic cells. The expressions of cellular protective genes and Nrf2/HO-1/PI3K/Akt proteins remarkably decreased, which were accompanied by increased oxidative stress and decreased antioxidants (P < 0.05). However, these phenomena were reversed by nrf2-overexpressing SKPs. The 3D skin in the overexpressed group showed mild swelling, neatly arranged cells, and few apoptotic cells. Cellular protective genes and Nrf2/HO-1/PI3K/Akt proteins were highly expressed, and the oxidative biomarkers were remarkably ameliorated (P < 0.05). Nevertheless, the expression of these proteins decreased after LY294002 pretreatment regardless of SKP treatment or not. Meanwhile, there were increases in both UV-induced apoptotic cells and ROS level accompanied with SOD and GPX decrease in the presence of LY294002. Conclusions Evidence from the 3D skin model demonstrates that the protection of SKPs against UV-mediated damage is primarily via the PI3K/Akt-mediated activation of the Nrf2/HO-1 pathway, indicating that SKPs may be a promising candidate for the treatment of photodermatoses.
Collapse
|
21
|
Kaur K, Rath G. Formulation and evaluation of UV protective synbiotic skin care topical formulation. J COSMET LASER THER 2019; 21:332-342. [PMID: 31451001 DOI: 10.1080/14764172.2019.1658878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: The objective of current study to investigate the photo protective potential of synbiotic formulation comprising of prebiotic and probiotic. Methods: Selenium nanoparticles were synthesized by chemical reduction method and investigated for physical-chemical properties including morphology, physical state, and free radical scavenging potential. Selection of probiotic biomass was made on the free radical scavenging potential by using NO assay. A topical w/o emulsion-based cream was prepared with screened ingredients to achieve a stable product with optimum free radical scavenging potential. The finished product was investigated for various mechanical, physiochemical, and viscoelastic characteristics. The SPF of optimized formulation was determined in UV-stimulated Wistar rat model. Results: Results indicated that the finished product shows nanoscale feature of elemental selenium. Cream comprising of potential free radical reagent (Selenium nanoparticles with IC50 50.097 µg/ml and biomass of Lactobacillus rhamnosus have IC50 61.63 µg/ml) exhibits a SPF of 29.77. Optimized skin care formulation has desirable physiochemical and viscoelastic properties required for topical application. Histopathology and Draize test indicated the finished product does not show any sign of skin toxicity. Conclusion: Results inferred that topical formulation combining the features of selenium and probiotic biomass offer an effective alternative for the treatment of sunburn complications.
Collapse
Affiliation(s)
- Kirandeep Kaur
- Department of pharmaceutics, I.S.F. College of Pharmacy , Moga , Punjab , India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) , Bhubaneswar , Odisha , India
| |
Collapse
|
22
|
Torres CA, Pérez Zamora CM, Nuñez MB, Gonzalez AM. In vitro antioxidant, antilipoxygenase and antimicrobial activities of extracts from seven climbing plants belonging to the Bignoniaceae. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 16:255-262. [PMID: 29759936 DOI: 10.1016/j.joim.2018.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/06/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This study aimed to evaluate the in vitro antioxidant capacity, to determine the anti-inflammatory effect due to lipoxygenase inhibition and to test the antimicrobial activity of ethanolic extracts from leaves of seven climbing species belonging to the Bignoniaceae family. These species are Adenocalymma marginatum (Cham.) DC., Amphilophium vauthieri DC., Cuspidaria convoluta (Vell.) A. H. Gentry, Dolichandra dentata (K. Schum.) L. G. Lohmann, Fridericia caudigera (S. Moore) L. G. Lohmann, Fridericia chica (Bonpl.) L. G. Lohmann and Tanaecium selloi (Spreng.) L. G. Lohmann. METHODS The antioxidant activity was evaluated using three methods, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power. Lipoxygenase-inhibiting activity was assayed spectrophotometrically; the result was expressed as percent inhibition. The antimicrobial activity was assessed using the agar disk diffusion method. Minimal inhibitory concentration (MIC) and minimal bactericidal/fungicidal concentration were also determined for each extract against 12 pathogenic bacterial strains of Staphylococcus aureus and seven fungal strains of the Candida genus. The identification of the major compounds present in the most promising extract was established by high-performance liquid chromatography-tandem mass spectrometry. RESULTS C. convoluta, F. caudigera, and F. chica exhibited the best antioxidant activity by scavenging DPPH and ABTS+ radicals and reducing Fe3+ ion. These extracts showed a notable inhibition of lipoxygenase. F. caudigera was found to have the lower MIC value against S. aureus strains and six Candida species. The extracts of F. caudigera and C. convoluta were active even against methicillin-resistant S. aureus. C. convoluta had higher total phenol content, better antioxidant activity and superior anti-inflammatory and antimicrobial activity. The main phenolic compounds found in this extract were coumaric and hydroxybenzoic acid derivatives and glycosylated and nonglycosylated flavones. CONCLUSION Most of the extracts exhibited antioxidant activity as well as in vitro inhibition of lipoxygenase. The excellent antimicrobial activity of T. selloi and F. chica supports their use in traditional medicine as antiseptic agents. The extracts of F. caudigera and C. convoluta, both with notable biological activities in this study, could be used as herbal remedies for skin care. In addition, this study provides, for the first time, information about phenolic compounds present in C. convoluta.
Collapse
Affiliation(s)
- Carola Analía Torres
- Laboratory of Microbiology and Pharmaceutical Technology, Department of Basic and Applied Sciences, National University of Chaco Austral, Presidencia Roque Sáenz Peña 3700, Chaco, Argentina; National Council for Scientific and Technical Research (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina.
| | - Cristina Marisel Pérez Zamora
- Laboratory of Microbiology and Pharmaceutical Technology, Department of Basic and Applied Sciences, National University of Chaco Austral, Presidencia Roque Sáenz Peña 3700, Chaco, Argentina; National Council for Scientific and Technical Research (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina
| | - María Beatriz Nuñez
- Laboratory of Microbiology and Pharmaceutical Technology, Department of Basic and Applied Sciences, National University of Chaco Austral, Presidencia Roque Sáenz Peña 3700, Chaco, Argentina
| | - Ana María Gonzalez
- National Council for Scientific and Technical Research (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina; Institute of Botany of the Northeast (IBONE-CONICET), Sargento Juan Bautista Cabral 2131, Corrientes, Argentina
| |
Collapse
|