1
|
Rezaee P, Rezaee S, Maaza M, Arab SS. Screening of BindingDB database ligands against EGFR, HER2, Estrogen, Progesterone and NF-κB receptors based on machine learning and molecular docking. Comput Biol Med 2024; 183:109279. [PMID: 39461104 DOI: 10.1016/j.compbiomed.2024.109279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Breast cancer, the second most prevalent cancer among women worldwide, necessitates the exploration of novel therapeutic approaches. To target the four subgroups of breast cancer "hormone receptor-positive and HER2-negative, hormone receptor-positive and HER2-positive, hormone receptor-negative and HER2-positive, and hormone receptor-negative and HER2-negative" it is crucial to inhibit specific targets such as EGFR, HER2, ER, NF-κB, and PR. In this study, we evaluated various methods for binary and multiclass classification. Among them, the GA-SVM-SVM:GA-SVM-SVM model was selected with an accuracy of 0.74, an F1-score of 0.73, and an AUC of 0.92 for virtual screening of ligands from the BindingDB database. This model successfully identified 4454, 803, 438, and 378 ligands with over 90% precision in both active/inactive and target prediction for the classes of EGFR+HER2, ER, NF-κB, and PR, respectively, from the BindingDB database. Based on to the selected ligands, we created a dendrogram that categorizes different ligands based on their targets. This dendrogram aims to facilitate the exploration of chemical space for various therapeutic targets. Ligands that surpassed a 90% threshold in the product of activity probability and correct target selection probability were chosen for further investigation using molecular docking. The binding energy range for these ligands against their respective targets was calculated to be between -15 and -5 kcal/mol. Finally, based on general and common rules in medicinal chemistry, we selected 2, 3, 3, and 8 new ligands with high priority for further studies in the EGFR+HER2, ER, NF-κB, and PR classes, respectively.
Collapse
Affiliation(s)
- Parham Rezaee
- Department of Biophysics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran; UNESCO-UNISA-iTLABS Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
| | - Shahab Rezaee
- Department of Biophysics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Malik Maaza
- UNESCO-UNISA-iTLABS Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
| | - Seyed Shahriar Arab
- Department of Pediatrics, University of California, La Jolla, San Diego, 92093, CA, USA.
| |
Collapse
|
2
|
Liu Y, Liu Z, Chen J, Liang M, Cai C, Zou F, Zhou X. Personal history of irradiation and risk of breast cancer: A Mendelian randomisation study. J Glob Health 2024; 14:04106. [PMID: 39391896 PMCID: PMC11467774 DOI: 10.7189/jogh.14.04106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Background Studies on the relationship between personal history of irradiation and breast cancer have been reported for a long time. Still, epidemiological studies have not been conclusive, and the causal relationship is unclear. To address this issue, we employed Mendelian randomisation (MR) analysis to examine the association between individual radiation exposure history and breast cancer. Methods We used a series of quality control methods to select single nucleotide polymorphism (SNP) closely related to exposure. Meanwhile, several analysis methods were used to analyse the sample data to make the conclusion more reliable. To evaluate the horizontal pleiotropy, heterogeneity and stability of SNPs for breast cancer, the MR-Egger intercept test, Cochran's Q test and 'leave one' sensitivity analysis were used. Finally, the outlier variation determined by the Mendelian Randomisation Pleiotropy RESidual Sum and Outlier test is gradually eliminated to reduce the influence of heterogeneity and horizontal pleiotropy. Results After implementing rigorous quality control procedures, we carefully chose 102 qualified instrumental variables closely associated with the selected exposure for sensitivity analysis. This was conducted to evaluate the heterogeneity, level multiplicity, and stability of SNPs in the context of personal radiation history and its correlation with breast cancer. The results of the inverse variance weighted method analysis revealed a positive correlation between personal radiation and a heightened risk of breast cancer (odds ratio (OR) = 1.52; 95% confidence interval (CI) = 1.30-1.77). We also validated on another data set; the results were similar (OR = 1.51; 95% CI = 1.27-1.81). Furthermore, the findings from the sensitivity analysis were consistent. At the genetic level, our research demonstrated that personal radiation exposure is associated with an elevated risk of breast cancer. Conclusions Using genetic data provides evidence and strengthens the causal link that personal radiation causes breast cancer.
Collapse
|
3
|
Esteves B, Pimenta S, Maciel MJ, Costa M, Baltazar F, Cerqueira MF, Alpuim P, Silva CA, Correia JH. Raman spectroscopy for classification of neoplastic and non-neoplastic CAM colon tumors. Heliyon 2024; 10:e36981. [PMID: 39281487 PMCID: PMC11402221 DOI: 10.1016/j.heliyon.2024.e36981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
This paper demonstrates the potential of Raman spectroscopy for differentiating neoplastic from non-neoplastic colon tumors, obtained with the CAM (chicken chorioallantoic membrane) model. For the CAM model two human cell lines were used to generate two types of tumors, the RKO cell line for neoplastic colon tumors and the NCM460 cell line for non-neoplastic colon tumors. The Raman spectra were acquired with a 785 nm excitation laser. The measured Raman spectra from the CAM samples (n = 14) were processed with several methods for baseline correction and to remove artifacts. The corrected spectra were analyzed with PCA (principal component analysis). Additionally, machine learning based algorithms were used to create a model capable of classifying neoplastic and non-neoplastic tumors. The principal component scores showed a clear differentiation between neoplastic and non-neoplastic colon tumors. The classification model had an accuracy of 93 %. Thus, a complete methodology to process and analyze Raman spectra was validated, using a rapid, accessible, and well-established tumor model that mimics the human tumor pathology with minor ethical concerns.
Collapse
Affiliation(s)
- B Esteves
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimarães, Portugal
| | - S Pimenta
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimarães, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - M J Maciel
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimarães, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - M Costa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - F Baltazar
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - M F Cerqueira
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, Portugal
| | - P Alpuim
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, Portugal
| | - C A Silva
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimarães, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - J H Correia
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimarães, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
4
|
Jafarzadeh N, Malekfar R, Nadafan M, Eynali S, Koosha F, Satari M. Analysis of the molecular alterations in cancer cells following nanotechnology-assisted targeted radiotherapy using Raman spectroscopy. Appl Radiat Isot 2024; 206:111223. [PMID: 38320379 DOI: 10.1016/j.apradiso.2024.111223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
The study unveiled an innovative strategy for precise radiation targeting in cancer treatment, along with the monitoring of molecular changes induced by this therapeutic approach. In this research, we explored the impact of administering anti-HER2-AgNPs nanoconjugates either individually or in conjunction with gamma irradiation on the viability of SKBR3 breast cancer cells. The utilization of nanoconjugates resulted in an enhancement of cellular sensitivity toward radiation. The viability of the cells exhibited a decline as the dose of irradiation increased, and this decrease was further exacerbated by the passage of time following irradiation. The analysis of RS revealed distinct cellular responses in varying conditions. The observed increase in SERS intensity, resulting from the increment in dose from 0 to 2 Gy, can be attributed to the probable upregulation of HER2 expression induced by irradiation. The observed decrease in SERS intensity at doses of 4 and 6 Gy can be attributed to the likely reduction in HER2 expression. It was illustrated that the analysis of Raman spectroscopy data can aid in the identification of radiation-induced biochemical alterations in cancer cells during the application of nanoconjugates-based radiotherapy. The findings revealed that nanoconjugates have the potential to enhance cellular sensitivity to radiation along with facilitating the detection of radiation-induced biochemical alterations within cancer cells.
Collapse
Affiliation(s)
- Naser Jafarzadeh
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Rasoul Malekfar
- Atomic & Molecular Group, Department of Physics, Tarbiat Modares University, Tehran, Iran
| | - Marzieh Nadafan
- Department of Physics, Shahid Rajaee Teacher Training University, Tehran, P. O. Box 16788-15811, Iran
| | - Samira Eynali
- Radiation Biology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Satari
- Department of Biology, Faculty of Science, Malayer University, Malayer, Iran
| |
Collapse
|
5
|
The effects of bismuth oxide nanoparticles and cisplatin on MCF-7 breast cancer cells irradiated with Ir-192 High Dose Rate brachytherapy. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Amani S, Mehdizadeh A, Movahedi MM, Keshavarz M, Koosha F. Investigation of the Dose-Enhancement Effects of Spherical and Rod-Shaped Gold Nanoparticles on the HeLa Cell Line. Galen Med J 2020; 9:e1581. [PMID: 34466556 PMCID: PMC8343815 DOI: 10.31661/gmj.v9i0.1581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/31/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023] Open
Abstract
Background: Cervical cancer cells are known as radioresistant cells. Current treatment methods have not improved the patients’ survival efficiently; thus, new therapeutic strategies are needed to enhance the efficacy of radiotherapy. Gold nanomaterials with different shapes and sizes have been explored as radiosensitizers. The present study compared the radiosensitizing effects of gold nanorods (AuNRs) with spherical gold nanoparticles (AuNPs) on the HeLa cell line irradiated with megavoltage X-rays. Materials and Methods: The cytotoxicity of AuNRs and AuNPs on HeLa cells in the presence and absence of 6-MV X-ray was investigated using the MTT assay. For this aim, HeLa cells were incubated with and AuNPs and AuNRs at various concentrations (5, 10, and 15 µg/mL) for 6 hours. Afterward, HeLa cells were irradiated with 6-MV X-ray at a single dose of 2 Gy. Results: The results showed that the addition of AuNRs and AuNPs could enhance the radiosensitivity of HeLa cells. Both AuNRs and AuNPs showed low toxicity on HeLa cells, while AuNRs were more toxic than AuNPs at the examined concentrations. Moreover, it was found that AuNRs could enhance the radiosensitivity of HeLa cells more than spherical-shaped AuNPs. Conclusion: This study revealed that the shape of nanoparticles is an effective factor when they are used as radiosensitizing agents during radiotherapy.
Collapse
Affiliation(s)
- Samad Amani
- Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Mehdizadeh
- Department of Medical Physics and Medical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Movahedi
- Department of Medical Physics and Medical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Keshavarz
- Department of Medical Physics and Medical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Correspondence to: Fereshteh Koosha, Ph.D, Assistant Professor, Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Darband St, Ghods Sq., Tehran, Iran Telephone Number: +98-2122717503 Email Address:
| |
Collapse
|
7
|
Moisoiu V, Stefancu A, Gulei D, Boitor R, Magdo L, Raduly L, Pasca S, Kubelac P, Mehterov N, Chiș V, Simon M, Muresan M, Irimie AI, Baciut M, Stiufiuc R, Pavel IE, Achimas-Cadariu P, Ionescu C, Lazar V, Sarafian V, Notingher I, Leopold N, Berindan-Neagoe I. SERS-based differential diagnosis between multiple solid malignancies: breast, colorectal, lung, ovarian and oral cancer. Int J Nanomedicine 2019; 14:6165-6178. [PMID: 31447558 PMCID: PMC6684856 DOI: 10.2147/ijn.s198684] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Surface-enhanced Raman scattering (SERS) spectroscopy on serum and other biofluids for cancer diagnosis represents an emerging field, which has shown promising preliminary results in several types of malignancies. The purpose of this study was to demonstrate that SERS spectroscopy on serum can be employed for the differential diagnosis between five of the leading malignancies, ie, breast, colorectal, lung, ovarian and oral cancer. PATIENTS AND METHODS Serum samples were acquired from healthy volunteers (n=39) and from patients diagnosed with breast (n=42), colorectal (n=109), lung (n=33), oral (n=17), and ovarian cancer (n=13), comprising n=253 samples in total. SERS spectra were acquired using a 532 nm laser line as excitation source, while the SERS substrates were represented by Ag nanoparticles synthesized by reduction with hydroxylamine. The classification accuracy yielded by SERS was assessed by principal component analysis-linear discriminant analysis (PCA-LDA). RESULTS The sensitivity and specificity in discriminating between cancer patients and controls was 98% and 91%, respectively. Cancer samples were correctly assigned to their corresponding cancer types with an accuracy of 88% for oral cancer, 86% for colorectal cancer, 80% for ovarian cancer, 76% for breast cancer and 59% for lung cancer. CONCLUSION SERS on serum represents a promising strategy of diagnosing cancer which can discriminate between cancer patients and controls, as well as between cancer types such as breast, colorectal, lung ovarian and oral cancer.
Collapse
Affiliation(s)
- Vlad Moisoiu
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Stefancu
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania
- MedFuture - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- MedFuture - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu Boitor
- School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Lorand Magdo
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pathophysiology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Sergiu Pasca
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Paul Kubelac
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Medical Oncology, Prof. Dr. Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Nikolay Mehterov
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, Plovdiv, Bulgaria
- Technological Center for Emergency Medicine, Plovdiv, Bulgaria
| | - Vasile Chiș
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Marioara Simon
- Department of Bronchology, Leon Daniello Pneumophysiology Clinical Hospital, Cluj-Napoca, Romania
| | - Mihai Muresan
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- 5th Surgical Department, Cluj-Napoca Municipal Hospital, Cluj-Napoca, Romania
- Department of Surgical and Gynecological Oncology, Prof. Dr. Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Alexandra Iulia Irimie
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutics, Aesthetics, Faculty of Dentistry, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Baciut
- Department of Cranio-Maxillofacial Surgery and Dental Emergencies, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rares Stiufiuc
- MedFuture - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana E Pavel
- MedFuture - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Chemistry, Wright State University, Dayton, OH, USA
| | - Patriciu Achimas-Cadariu
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Surgical Oncology, Prof. Dr. Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Calin Ionescu
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- 5th Surgical Department, Cluj-Napoca Municipal Hospital, Cluj-Napoca, Romania
| | - Vladimir Lazar
- Worldwide Innovative Network for Personalized Cancer Therapy, Villejuif, France
| | - Victoria Sarafian
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, Plovdiv, Bulgaria
- Technological Center for Emergency Medicine, Plovdiv, Bulgaria
| | - Ioan Notingher
- School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Nicolae Leopold
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania
- MedFuture - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- MedFuture - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, Prof. Dr. Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Yan Y, Shi R, Yu X, Sun C, Zang W, Tian H. Identification of atrial fibrillation-associated microRNAs in left and right atria of rheumatic mitral valve disease patients. Genes Genet Syst 2019; 94:23-34. [DOI: 10.1266/ggs.17-00043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yang Yan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Rui Shi
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Xiaojiang Yu
- Department of Pharmacology of Xi’an Jiaotong University
| | - Chaofeng Sun
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University
| | - Weijin Zang
- Department of Pharmacology of Xi’an Jiaotong University
| | - Hongyan Tian
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of Xi’an Jiaotong University
| |
Collapse
|