1
|
Selestin Raja I, Kim C, Oh N, Park JH, Hong SW, Kang MS, Mao C, Han DW. Tailoring photobiomodulation to enhance tissue regeneration. Biomaterials 2024; 309:122623. [PMID: 38797121 DOI: 10.1016/j.biomaterials.2024.122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/25/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Photobiomodulation (PBM), the use of biocompatible tissue-penetrating light to interact with intracellular chromophores to modulate the fates of cells and tissues, has emerged as a promising non-invasive approach to enhancing tissue regeneration. Unlike photodynamic or photothermal therapies that require the use of photothermal agents or photosensitizers, PBM treatment does not need external agents. With its non-harmful nature, PBM has demonstrated efficacy in enhancing molecular secretions and cellular functions relevant to tissue regeneration. The utilization of low-level light from various sources in PBM targets cytochrome c oxidase, leading to increased synthesis of adenosine triphosphate, induction of growth factor secretion, activation of signaling pathways, and promotion of direct or indirect gene expression. When integrated with stem cell populations, bioactive molecules or nanoparticles, or biomaterial scaffolds, PBM proves effective in significantly improving tissue regeneration. This review consolidates findings from in vitro, in vivo, and human clinical outcomes of both PBM alone and PBM-combined therapies in tissue regeneration applications. It encompasses the background of PBM invention, optimization of PBM parameters (such as wavelength, irradiation, and exposure time), and understanding of the mechanisms for PBM to enhance tissue regeneration. The comprehensive exploration concludes with insights into future directions and perspectives for the tissue regeneration applications of PBM.
Collapse
Affiliation(s)
| | - Chuntae Kim
- Institute of Nano-Bio Convergence, Pusan National University, Busan, 46241, Republic of Korea; Center for Biomaterials Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Nuri Oh
- Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan, 47162, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China.
| | - Dong-Wook Han
- Institute of Nano-Bio Convergence, Pusan National University, Busan, 46241, Republic of Korea; Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
2
|
Farazi N, Salehi-Pourmehr H, Farajdokht F, Mahmoudi J, Sadigh-Eteghad S. Photobiomodulation combination therapy as a new insight in neurological disorders: a comprehensive systematic review. BMC Neurol 2024; 24:101. [PMID: 38504162 PMCID: PMC10949673 DOI: 10.1186/s12883-024-03593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
Preclinical and clinical studies have indicated that combining photobiomodulation (PBM) therapy with other therapeutic approaches may influence the treatment process in a variety of disorders. The purpose of this systematic review was to determine whether PBM-combined therapy provides additional benefits over monotherapies in neurologic and neuropsychiatric disorders. In addition, the review describes the most commonly used methods and PBM parameters in these conjunctional approaches.To accomplish this, a systematic search was conducted in Google Scholar, PubMed, and Scopus databases through January 2024. 95 potentially eligible articles on PBM-combined treatment strategies for neurological and neuropsychological disorders were identified, including 29 preclinical studies and 66 clinical trials.According to the findings, seven major categories of studies were identified based on disease type: neuropsychiatric diseases, neurodegenerative diseases, ischemia, nerve injury, pain, paresis, and neuropathy. These studies looked at the effects of laser therapy in combination with other therapies like pharmacotherapies, physical therapies, exercises, stem cells, and experimental materials on neurological disorders in both animal models and humans. The findings suggested that most combination therapies could produce synergistic effects, leading to better outcomes for treating neurologic and psychiatric disorders and relieving symptoms.These findings indicate that the combination of PBM may be a useful adjunct to conventional and experimental treatments for a variety of neurological and psychological disorders.
Collapse
Affiliation(s)
- Narmin Farazi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran.
| |
Collapse
|
3
|
da Cruz Tobelem D, Silva T, Araujo T, Andreo L, Malavazzi TCDS, Horliana ACRT, Fernandes KPS, Bussadori SK, Mesquita-Ferrari RA. Effects of photobiomodulation in experimental spinal cord injury models: A systematic review. JOURNAL OF BIOPHOTONICS 2022; 15:e202200059. [PMID: 35484784 DOI: 10.1002/jbio.202200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
This systematic review investigated the repercussions of photobiomodulation using low-level laser therapy (LLLT) for the treatment of spinal cord injury (SCI) in experimental models. Studies were identified from relevant databases published between January 2009 and December 2021. Nineteen original articles were selected and 68.4% used light at an infrared wavelength. There was a considerable variation of the power used (from 25 to 200 mW), total application time (8-3000 s) and total energy (0.3-450 J). In 79% of the studies, irradiation was initiated immediately after or within 2 h of the SCI, and treatment time ranged continuously from 5 to 21 days. In conclusion, LLLT can be an auxiliary therapy in the treatment of SCI, playing a neuroprotective role, enabling functional recovery, increasing the concentration of nerve connections around the injury site and reducing pro-inflammatory cytokines. However, there is a need for standardization in the dosimetric parameters.
Collapse
Affiliation(s)
- Daysi da Cruz Tobelem
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Tamiris Silva
- Postgraduate Program in Rehabilitation Sciences, UNINOVE, São Paulo, SP, Brazil
| | - Tamires Araujo
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Lucas Andreo
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | | | | | | | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- Postgraduate Program in Rehabilitation Sciences, UNINOVE, São Paulo, SP, Brazil
| | - Raquel Agnelli Mesquita-Ferrari
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- Postgraduate Program in Rehabilitation Sciences, UNINOVE, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Miranda DB, Neves Rocha Martins ÂP, Diniz R. Functional neurorehabilitation in a dog with acute non‐compressive nucleus pulposus extrusion. VETERINARY RECORD CASE REPORTS 2021. [DOI: 10.1002/vrc2.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Ângela Paula Neves Rocha Martins
- Functional Neurorehabilitation Department Universidade Lusófona de Humanidades e Tecnologias Campo Grande Lisboa Portugal
- Centro de Reabilitação Animal da Arrábida, Hospital Veterinário da Arrábida R. José Augusto Coelho Azeitão Portugal
| | - Renata Diniz
- RehabilitaCans Carrer de Juan Gris Palma de Mallorca Baleares‐España Spain
| |
Collapse
|
5
|
Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes. Mol Neurobiol 2021; 58:5494-5516. [PMID: 34341881 DOI: 10.1007/s12035-021-02484-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition that affects approximately 294,000 people in the USA and several millions worldwide. The corticospinal motor circuitry plays a major role in controlling skilled movements and in planning and coordinating movements in mammals and can be damaged by SCI. While axonal regeneration of injured fibers over long distances is scarce in the adult CNS, substantial spontaneous neural reorganization and plasticity in the spared corticospinal motor circuitry has been shown in experimental SCI models, associated with functional recovery. Beneficially harnessing this neuroplasticity of the corticospinal motor circuitry represents a highly promising therapeutic approach for improving locomotor outcomes after SCI. Several different strategies have been used to date for this purpose including neuromodulation (spinal cord/brain stimulation strategies and brain-machine interfaces), rehabilitative training (targeting activity-dependent plasticity), stem cells and biological scaffolds, neuroregenerative/neuroprotective pharmacotherapies, and light-based therapies like photodynamic therapy (PDT) and photobiomodulation (PMBT). This review provides an overview of the spontaneous reorganization and neuroplasticity in the corticospinal motor circuitry after SCI and summarizes the various therapeutic approaches used to beneficially harness this neuroplasticity for functional recovery after SCI in preclinical animal model and clinical human patients' studies.
Collapse
|
6
|
Li J, Wei W, Xu F, Wang Y, Liu Y, Fu C. Clinical Therapy of Metastatic Spinal Tumors. Front Surg 2021; 8:626873. [PMID: 33937314 PMCID: PMC8084350 DOI: 10.3389/fsurg.2021.626873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Metastatic spinal tumors (MST) have high rates of morbidity and mortality. MST can destroy the vertebral body or compress the nerve roots, resulting in an increased risk of pathological fractures and intractable pain. Here, we elaborately reviewed the currently available therapeutic options for MST according to the following four aspects: surgical management, minimally invasive therapy (MIT), radiation therapy, and systemic therapy. In particular, these aspects were classified and introduced to show their developmental process, clinical effects, advantages, and current limitations. Furthermore, with the improvement of treatment concepts and techniques, we discovered the prevalent trend toward the use of radiation therapy and MIT in clinic therapies. Finally, the future directions of these treatment options were discussed. We hoped that along with future advances and study will lead to the improvement of living standard and present status of treatment in patients with MST.
Collapse
Affiliation(s)
- Jie Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Wenjie Wei
- Key Laboratory of Pathobiology, Ministry of Education, School of Basic Medical Sciences, Jilin University, Changchun, China
| | - Feng Xu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuanyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yadong Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Lambrechts MJ, Cook JL. Nonsteroidal Anti-Inflammatory Drugs and Their Neuroprotective Role After an Acute Spinal Cord Injury: A Systematic Review of Animal Models. Global Spine J 2021; 11:365-377. [PMID: 32875860 PMCID: PMC8013945 DOI: 10.1177/2192568220901689] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
STUDY DESIGN Systematic review. OBJECTIVE Spinal cord injuries (SCIs) resulting in motor deficits can be devastating injuries resulting in millions of health care dollars spent per incident. Nonsteroidal anti-inflammatory drugs (NSAIDs) are a potential class of drugs that could improve motor function after an SCI. This systematic review utilizes PRISMA guidelines to evaluate the effectiveness of NSAIDs for SCI. METHODS PubMed/MEDLINE, CINAHL, PsycINFO, Embase, and Scopus were reviewed linking the keywords of "ibuprofen," "meloxicam," "naproxen," "ketorolac," "indomethacin," "celecoxib," "ATB-346," "NSAID," and "nonsteroidal anti-inflammatory drug" with "spinal." Results were reviewed for relevance and included if they met inclusion criteria. The SYRCLE checklist was used to assess sources of bias. RESULTS A total of 2960 studies were identified in the PubMed/MEDLINE database using the above-mentioned search criteria. A total of 461 abstracts were reviewed in Scopus, 340 in CINAHL, 179 in PsycINFO, and 7632 in Embase. A total of 15 articles met the inclusion criteria. CONCLUSIONS NSAIDs' effectiveness after SCI is largely determined by its ability to inhibit Rho-A. NSAIDs are a promising therapeutic option in acute SCI patients because they appear to decrease cord edema and inflammation, increase axonal sprouting, and improve motor function with minimal side effects. Studies are limited by heterogeneity, small sample size, and the use of animal models, which might not replicate the therapeutic effects in humans. There are no published human studies evaluating the safety and efficacy of these drugs after a traumatic cord injury. There is a need for well-designed prospective studies evaluating ibuprofen or indomethacin after adult spinal cord injuries.
Collapse
Affiliation(s)
| | - James L. Cook
- University of Missouri, Columbia, MO, USA,James L. Cook, University of Missouri, Missouri Orthopaedic Institute (4028A), 1100 Virginia Ave, Columbia, MO 65212, USA.
| |
Collapse
|
8
|
Ayar Z, Gholami B, Piri SM, Kaveh M, Baigi V, Ghodsi Z, Hassannejad Z, Rahimi-Movaghar V. The effect of low-level laser therapy on pathophysiology and locomotor recovery after traumatic spinal cord injuries: a systematic review and meta-analysis. Lasers Med Sci 2021; 37:61-75. [PMID: 33791887 DOI: 10.1007/s10103-021-03301-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/22/2021] [Indexed: 12/30/2022]
Abstract
This study was designed to determine the effective therapeutic parameters and evaluate the regenerative potential of low-level laser therapy (LLLT) after traumatic spinal cord injuries (TSCIs) in animal studies. The EMBASE and MEDLINE databases were searched on October 5, 2019, and followed with an update on January 2, 2021. All animal studies discussing the effect of LLLT on main pathophysiological events after TSCI, including inflammation, axon growth, remyelination, glial scar formation, cavity size, and locomotor recovery, were included. For statistical analysis, we used mean difference with 95% confidence intervals for locomotor recovery. In total, 19 articles were included based on our criteria. The results showed that regardless of laser type, laser beams with a wavelength between 600 and 850 nm significantly suppress inflammation and led inflammatory cells to M2 polarization and wound healing. Also, laser therapy using these wavelengths for more than 2 weeks significantly improved axon regeneration and remyelination. Improvement of locomotor recovery was more efficient using wavelengths less than 700 nm (SMD = 1.21; 95%CI: 0.09, 2.33; p = 0.03), lasers with energy densities less than 100 J/cm2 (SMD = 1.72; 95%CI: 0.84, 2.59; p = 0.0001) and treatment duration between 1 and 2 weeks (SMD = 2.21; 95%CI: 1.24, 3.19; p < 0.00001). The LLLT showed promising potential to modulate pathophysiological events and recovery after TSCI, although there was heterogeneity in study design and reporting methods, which should be considered in future studies.
Collapse
Affiliation(s)
- Zahra Ayar
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Bahareh Gholami
- Sina Trauma and Surgery Research Center, Sina Hospital, Tehran University of Medical Sciences, Hassan-Abad Square, Imam Khomeini Ave, Tehran, 11365-3876, Iran
| | - Seyed Mohammad Piri
- Sina Trauma and Surgery Research Center, Sina Hospital, Tehran University of Medical Sciences, Hassan-Abad Square, Imam Khomeini Ave, Tehran, 11365-3876, Iran
| | - Meysam Kaveh
- Sina Trauma and Surgery Research Center, Sina Hospital, Tehran University of Medical Sciences, Hassan-Abad Square, Imam Khomeini Ave, Tehran, 11365-3876, Iran
| | - Vali Baigi
- Sina Trauma and Surgery Research Center, Sina Hospital, Tehran University of Medical Sciences, Hassan-Abad Square, Imam Khomeini Ave, Tehran, 11365-3876, Iran
| | - Zahra Ghodsi
- Sina Trauma and Surgery Research Center, Sina Hospital, Tehran University of Medical Sciences, Hassan-Abad Square, Imam Khomeini Ave, Tehran, 11365-3876, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran.
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Sina Hospital, Tehran University of Medical Sciences, Hassan-Abad Square, Imam Khomeini Ave, Tehran, 11365-3876, Iran.
| |
Collapse
|
9
|
Ramezani F, Razmgir M, Tanha K, Nasirinezhad F, Neshastehriz A, Bahrami-Ahmadi A, Hamblin MR, Janzadeh A. Photobiomodulation for spinal cord injury: A systematic review and meta-analysis. Physiol Behav 2020; 224:112977. [DOI: 10.1016/j.physbeh.2020.112977] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 04/05/2020] [Accepted: 05/19/2020] [Indexed: 01/29/2023]
|
10
|
Sensory and motor responses after photobiomodulation associated with physiotherapy in patients with incomplete spinal cord injury: clinical, randomized trial. Lasers Med Sci 2020; 35:1751-1758. [DOI: 10.1007/s10103-020-02968-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 01/22/2020] [Indexed: 12/23/2022]
|
11
|
Vahdatinia F, Gholami L, Karkehabadi H, Fekrazad R. Photobiomodulation in Endodontic, Restorative, and Prosthetic Dentistry: A Review of the Literature. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:869-886. [PMID: 31873065 DOI: 10.1089/photob.2019.4707] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objective: To provide a review of the literature about the photobiomodulation therapy (PBMT) dental treatment protocols in endodontic, restorative, and prosthetic dentistry based on validated clinical studies published so far. More specifically, this study was carried out to carefully review therapeutic protocol of PBMT in clinical studies and their conclusions. Background data: The importance of using low-power lasers and photobiomodulation (PBM) is increasing in dentistry mainly due to their painless and noninvasive function. However, lack of sufficient clinical studies has led to unclear results regarding PBMT in dentistry, and also lack of an available precise protocol for clinicians. Moreover, scarcity of clinical studies in this area has made conduction of a precise systematic review study difficult. Methods: In our study, published clinical studies up to April 2019 were reviewed from library sources, Google Scholar, PubMed and Medline, Elsevier, Embase, Cochrane, Scopus, and Web of science (ISI). Inclusion criteria included those presented in clinical trials and case report/case series, language (English), and studies available in full text. Exclusion criterion was in vitro studies. Results: In general, findings of clinical studies have shown that PBMT can have a significant role in reducing postoperative dental pain, increasing depth of anesthesia, improving tooth hypersensitivity, reducing inflammation of the tissue, and helping wound healing. Conclusions: A review of clinical studies showed that the use of alternative or adjunctive PBMT is of great importance in controlling postoperative pain after endodontic treatments. In addition, evidence suggests that different parameters of light can be efficient in the treatment of tooth hypersensitivity. Nevertheless, lack of sufficient clinical studies and reliable results do not allow introducing a precise treatment protocol.
Collapse
Affiliation(s)
- Farshid Vahdatinia
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamandan, Iran
| | - Leila Gholami
- Department of Periodontology, Hamadan University of Medical Sciences, Hamandan, Iran
| | | | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran.,International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
12
|
Kalhori KA, Vahdatinia F, Jamalpour MR, Vescovi P, Fornaini C, Merigo E, Fekrazad R. Photobiomodulation in Oral Medicine. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:837-861. [DOI: 10.1089/photob.2019.4706] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Farshid Vahdatinia
- Dental Implants Research Center, Dental School of Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Jamalpour
- Department of Oral and Maxillofacial Surgery, Dental Implants Research Center, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Paolo Vescovi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlo Fornaini
- Group of Applied ElectroMagnetics, Department of Engineering and Architecture, University of Parma, Parma, Italy
- Laboratoire MicOralIS (Microbiologie Orale, Immunothérapie et Santé) EA7354, UFR d'Odontologie, Université Nice Sophia Antipolis, Nice, France
| | - Elisabetta Merigo
- Laboratoire MicOralIS (Microbiologie Orale, Immunothérapie et Santé) EA7354, UFR d'Odontologie, Université Nice Sophia Antipolis, Nice, France
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|